JournalofAsianEarthSciences93(2014)275–287 ContentslistsavailableatScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes The geochemical and Sr–Nd isotopic characteristics of Eocene to Miocene NW Anatolian granitoids: Implications for magma evolution in a post-collisional setting ⇑ Dag˘han Çelebi, Nezihi Köprüba(cid:2)sı DepartmentofGeologicalEngineering,KocaeliUniversity,41380I_zmit,Turkey a r t i c l e i n f o a b s t r a c t Articlehistory: EarlyEocenetoEarlyMiocenemagmaticactivityinnorthwesternAnatolialedtotheemplacementofa Received16December2013 numberofgranitoidplutonswithconvergentmargingeochemicalsignatures.Granitoidplutonsinthe Receivedinrevisedform23July2014 areaaremainlydistributedwithinandnorthofthesuturezoneformedafterthecollisionoftheAnato- Accepted25July2014 lide-TaurideplatformwiththePontidebelt.Wepresentgeochemicalcharacteristicsofthreeintrusive Availableonline4August2014 bodiesintheregioninordertoidentifytheirsourcecharacteristicsandgeodynamicsignificance.Among these,theÇataldag˘andIlıca-S(cid:2)amlıplutonsarelocatedtothenorthandtheOrhaneliplutonislocatedto Keywords: thesouthoftheIAESZ(Izmir-Ankara-ErzincanSutureZone).Theplutonsarecalc-alkaline,metaluminous, Magmamixing andI-typewithcompositionsfromgranitetomonzonite.TheydisplayclearenrichmentsinLILEandLREE Granitoidicmagmatism anddepletionsinHFSErelativetoN-MORBcompositionsandhavehigh87Sr/86Srandlow143Nd/144Nd Fractionalcrystallization Assimilationandfractionalcrystallization ratios. NorthwestAnatolia TheresultsoftheoreticalFractionalCrystallization(FC)modelshowthatthesamplesareaffectedby fractionationofK-feldspar,plagioclase,biotiteandamphibole.AssimilationandFractionalCrystallization (AFC)modelingindicatesthatthervalue,theproportionofvariablecontaminationtofraction,ishigh, indicatingsignificantcrustalcontaminationinthegenesisofgranitoidmagmas.Combined evaluation ofisotopicandtraceelementdataindicatesthatthegranitoidsaretheproductsofmantle-derivedmafic magmasvariablydifferentiatedbysimultaneouscrustalcontaminationandfractionalcrystallizationin lowertomiddlecrustalmagmachambersinapost-collisionalsetting. (cid:2)2014ElsevierLtd.Allrightsreserved. 1.Introduction the Armutlu, Kapıdag˘ and Lapseki peninsulas are of mostly calc- alkaline,metaluminousandI-typeincharacterwithcompositions The northwestern Anatolian region, lying on one of the most fromhornblendemonzogranitetogranodioriteandrepresentedby important collision belts in the world, contains a number of anenrichmentinLILEandLREEandadepletioninHFSErelativeto deep-seated granitoid bodies formed in association with tectonic MORBcomposition(negativeNbandTaanomalies),similartosub- activityprevailedinthePost-LateCretaceous(Fig.1).Theseoccur- duction-related or active continental margin granites. They also renceshavebeenthesubjectofseveralrecentinvestigations. suggest that the heat which caused partial melting within the Harrisetal.(1994)statedthattheOrhaneligranitoidisrepre- metasomatizedpartoflithosphericmantlefollowingthecessation sented by a metaluminous melt composition and calc-alkaline ofsubductionwasprobablyeitherduetothelateorogenicdelam- affinity which are typical of subduction-related magmas. inationofthesubductingslaborthelowermostpartoflithospheric DelaloyeandBingöl(2000)analyzedradiometricagesofgranitoids mantle (delamination of thermal boundary layer) and associated inthewesternandnorthwesternAnatoliaandfoundK–Aragesof rise of hot asthenosphere. According to Boztug˘ et al. (2006), the 20.8±0.4Ma for theÇataldag˘ granitoidand 57.9±1.2, 53.0±1.1, Ilıca (Balıkesir) and Kozak (Bergama) granitoids in the west and 31.4±0.6and51.7±1.0MafortheOrhaneligranitoid.Theyinter- northwesternAnatoliaarecomposedsolelyofhighandintermedi- pretedthesegranitoidstobeofsubductionorigin.Köprüba(cid:2)sıand ate-K, calc-alkaline, metaluminous and I-type granitoids, whilst Aldanmaz (2004) suggested that the Eocene plutonic bodies in the Çataldag˘ (Balıkesir) granitoid consists of two different litho- logic units. Altunkaynak (2007) examined two E–W extending ⇑ linearbeltsoftheEoceneplutonsalongtheI_zmir-Ankara-Erzincan Correspondingauthor.Tel.:+902623033136. Suture Zone (IAESZ) and suggested that the geochemical E-mailaddress:[email protected](N.Köprüba(cid:2)sı). http://dx.doi.org/10.1016/j.jseaes.2014.07.037 1367-9120/(cid:2)2014ElsevierLtd.Allrightsreserved. 276 D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 Fig.1. MapofnorthwesternAnatoliashowingthedistributionoftheEocene–Miocenepostcollisiongranitoidplutonsalongwiththemainrockunitsexposedacrossthe collisionzone. characteristicsandagerelationsoftheseplutonsareinsupportofa sion of Tauride-Anatolide platform withthe Sakarya continent at slab break-off. Karacık et al. (2008) studied the plutons in the north resulted in formation of compression deformations in the southernMarmara,includingtheIlıcagranitoid,whicharegener- Paleocene and extension in the Oligo-Miocene (Seyitog˘lu and ally represented by granodiorite bodies, stocks and sills within Scott, 1992, 1997; Is(cid:2)ık et al., 2004; Purvis and Robertson, 2004; the Triassic basement rocks. They proposed that, although the Kaya et al., 2007). The Çataldag˘, Ilıca-S(cid:2)amlı and Orhaneli plutons granitoidsareofLateCretaceoustoMioceneage,theycanbepre- are situated approximately in the east–west direction in the NW dominantlydividedintotwogroups:TheEocenegranitoidsinthe Anatolia(Fig.1).TheÇataldag˘ granitoidcuttheMesozoicunitsof northandtheMiocenegranitoidsinthesouth. the Sakarya Zone and was covered by the Neogene deposits and Thisstudyreportsthegeochemicalandisotopic(Sr–Nd)datafor volcanic lavas. The Ilıca-S(cid:2)amlı granitoid intruded into the Kiraz theOrhaneli,Çataldag˘andIlıca-S(cid:2)amlıgranitoidbodiesandparticu- MetamorfitsandÇataltepemarbleoftheSakaryaZone.TheOrha- larly focuses on the major-trace element and isotopic data from neligranitoidintrudedintothebaserocksoftheTav(cid:2)sanlıZoneand threeplutonicbodiesforinterpretingtheevolutionoftheEocene wascoveredbytheEarlyMiocenevolcanics(Altunkaynak,2007). toMiocenemagmatism.TheEocene–Miocenegranitoidbodiesout- cropped in the NW of Turkey provide important data for under- 3.Fieldandpetrographiccharacteristics standingtheageandstagesoftheextensionregimethathasnot beenfullyexplainedinwesternAnatolia.Thisstudycouldalsocon- The geographical distributions of the plutons are shown in tributetotheinvestigationofsimilarpost-collisiongranitoidrocks. Fig. 1. The Çataldag˘ granitoid locally presents contact with the metamorphicrocksofthearea.Itgenerallyintrudedintothebed- 2.Geologicalbackground dinganddiscontinuityplanesoftheolderrocksconcordantly.The sills intruded into the foliation planes and dikes cut or intruded Most part oftectonic – geologic history ofnorthwestAnatolia vertically into the foliation planes. The Ilıca-S(cid:2)amlı granitoid pre- reflectstheevolutionofTethysOceanandisrepresentedbyaccre- sents sharp contacts with the neighboring rocks, forming an tionoflithosphericblocksduetoaseriesofcollisionaleventspre- approximately2kmwidecontactmetamorphiczone.TheOrhaneli vailed during the upper Mesozoic-Eocene (Köprüba(cid:2)sı and plutonisincontactwiththeMioceneandesitesanddacitesalong Aldanmaz, 2004). In northwest Anatolia, in the period between thewesternborderofthepluton.Besides,theplutonhasbordered theendoflateCretaceousandTertiary,asaresultofnortherlysub- byapproximatelyNE–SWnormalfaultsinitssoutheastpartwhere ductionofnorthernbranchofNeotethysOceanundertheSakarya itcontactswithblueschists. continent,theTauride-AnatolideplatformatsouthandtheSakarya Petrographically, the Çataldag˘ Granitoid is composed of holo- continent at north were collided and, as a consequence, IAESZ crystalline granitic and granodioritic rocks. These rocks contain crossing the wholenorthernAnatolia was formed. Granitoidplu- 30–35% quartz, 15–20% K-feldspar (orthoclase-microcline) and tons are exposed in a large area at north and south of the 35–45% plagioclase (albite-oligoclase) and rare biotite together Izmir-Ankarasuturezone(Köprüba(cid:2)sıandAldanmaz,2004).Colli- with accessory minerals of sphene, zircon and apatite (Table 1). D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 277 Table1 PetrographicfeaturessamplesofIlıca-S(cid:2)amlı,Çataldag˘,Orhaneliplutons. Location Sample Name Texture Grainsize Majorminerals Accessories Ilica-S(cid:2)amliGranitoid YK-1 Granodiorite Holocrystalline Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. YK-4 Granodiorite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. YK-5 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. YK-6 Tonalite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. YK-7 Granodiorite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. YK-8 Granodiorite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. YK-9 Granodiorite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. YK-10 Granodiorite Holocrystalline Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. KD-1 Tonalite Holocrystalline Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. KD-2 Tonalite Holocrystalline Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. KD-3 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. IL-1 Granodiorite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. IL-2 Granodiorite Porphyritic Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. IL-3 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. IL-4 Granodiorite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Çataldag˘Granitoid Bo-1 Granodiorite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-2 Granodiorite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-3 Granite Graphic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-4 Granite Graphic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-5 Granodiorite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-6 Granodiorite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-7 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-8 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op.+Ms Bo-9 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-10 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Bo-11 Granite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. SU-1 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. SU-2 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. SU-3 Granodiorite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. SU-7 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. SU-9 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. SU-10 Granodiorite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. OrhaneliGranitoid O-1 Granite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-2 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-3 Granite Porphyritic Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-4 Granite Holocrystalline Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-5 Granite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-6 Granite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-7 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-11 Granite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-13 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-14 Granite Porphyritic Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-15 Granite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-16 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-17 Granite Holocrystalline Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-18 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-19 Granite Graphic Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-20 Granite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-21 Granodiorite Holocrystalline Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-22 Granodiorite Porphyritic Mediumtocoarsegrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-23 Granodiorite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-24 Tonalite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-25 Granodiorite Holocrystalline Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. O-26 Granodiorite Porphyritic Mediumgrain Q,Pl.,KFel.,Am.,Bi. Zr,Ap.,S.,Op. Plutons Ilıca-S(cid:2)amlıGranitoids Çataldag˘Granitoids OrhaneliGranitoids Phenocrystalgrainsize Mediumtocoarsegrain Mediumgrain Mediumtocoarsegrain Phenocrystalmodalabundance(%) 94 95 96 Phenocrystalshape Regulartoirregular Regulartoirregular/irregular Regulartoirregular Holocrystalline texture is common in granitoids. The samples of crystalsandsomequartzgrainsshowundulatoryextinctionunder IlıcaS(cid:2)amlıplutonaregranitic,granodioriticandtonaliticincompo- cross polarized light. Hornblende are seen in pale green color as sition, and the majority of the samples display a holocrystalline euhedraland subhedralcrystals and in some samples, chloritiza- porphyritic texture. The samples contain 22–33% quartz, 15–33% tion is seen due to alteration. Biotite minerals are dark brown in alkalifeldspar,36–48%plagioclase.TheOrhaneliGranitoidisgra- color and some of them present chloritization along their niticandgranodioriticincompositionwithholocrystallineporfhy- cleavages. ritictexturesimilartotheÇataldag˘ pluton.TherocksofOrhaneli plutoncontain26–34%quartz,21–32%alkalifeldspar,36–48%pla- gioclase.Plagioclasecrystalsinspectedinalloftheplutonsarein 4.Analyticalmethods formofeuhedralandsubhedralcrystalsanddisplaycompositional zoning.Alkalifeldsparsdisplaysimpletwinningalongwithgraph- Majorandselectedtraceelementconcentrationswereanalyzed icaltextures.Quartzmineralsareseenasanhedralamongfeldspar withatotalof54samplescollectedfromÇataldag˘,Ilıca-S(cid:2)amlıand 278 D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 Table2 RepresentativechemicalanalyzesofthegranitoidsfromNWAnatolia. O-1 O-2 O-3 O-4 O-5 O-6 O-7 O-11 O-13 O-14 O-15 O-16 O-17 O-18 O-19 O-20 O-21 O-22 O-23 O-24 0-25 O-26 Orhanelipluton SiO2 60.23 61.16 60.57 58.33 60.85 63.85 59.16 58.78 61.88 62.9 60 63.21 59.01 61.61 60.64 62.54 62.7 60.64 63.84 62.55 64.81 62.04 TiO2 0.53 0.49 0.51 0.57 0.47 0.48 0.58 0.57 0.5 0.45 0.53 0.43 0.6 0.5 0.5 0.43 0.51 0.51 0.47 0.48 0.47 0.48 Al2O3 16.42 16.58 16.27 16.72 16.52 16.82 16.58 16.7 17.19 16.67 16.44 16.56 16.63 16.95 15.63 16.59 17.15 16.43 16.65 16.89 16.76 17.03 Fe2O3 5.95 5.56 5.76 6.38 6.03 3.82 6.37 6.23 5.47 4.62 5.69 4.26 6.25 4.83 5.88 4.69 4.57 5.24 4.87 4.91 4.26 4.94 MnO 0.1 0.12 0.11 0.11 0.1 0.05 0.12 0.11 0.1 0.09 0.11 0.07 0.13 0.1 0.09 0.08 0.09 0.09 0.08 0.09 0.08 0.08 MgO 2.31 1.99 2 2.3 1.93 1.78 2.28 2.45 2.12 1.94 2.21 1.59 2.41 2.09 2.1 1.64 2.16 2.36 1.97 2.08 1.89 2.23 CaO 6.08 5.78 6.06 6.85 6.01 4.94 6.14 6.74 5.8 5.83 6.04 5.4 6.4 6.01 5.99 5.57 5.56 6.58 5.06 5.43 4.73 5.92 Na2O 4.69 4.78 5.15 5.49 4.57 4.03 5.22 5.08 4.16 4.17 5.05 4.76 5.17 4.73 5.24 4.99 4.19 4.55 4.15 4.25 3.79 4.22 K2O 2.89 2.83 3.04 2.8 2.85 2.74 2.69 2.64 2.09 2.62 3.17 2.94 2.66 2.55 3.2 2.64 2.2 2.72 2.06 2.46 2.07 2.26 P2O5 0.02 0 0 0.01 0 0.05 0.03 0.01 0.01 0.04 0.03 0 0.06 0.04 0.03 0.01 0.05 0.02 0.03 0.03 0.04 0.03 LOI 0.65 0.59 0.43 0.33 0.55 1.36 0.61 0.58 0.58 0.57 0.59 0.68 0.58 0.49 0.57 0.67 0.72 0.76 0.73 0.72 1.02 0.7 Total 99.89 99.88 99.89 99.89 99.89 99.9 99.78 99.9 99.89 99.9 99.86 99.9 99.89 99.89 99.87 99.86 99.9 99.9 99.9 99.9 99.92 99.93 Mg# 0.25 0.24 0.23 0.24 0.22 0.29 0.23 0.25 0.25 0.27 0.25 0.24 0.25 0.27 0.24 0.23 0.29 0.28 0.26 0.27 0.28 0.28 ADI 0.85 0.87 0.81 0.78 0.87 1.01 0.84 0.82 1.02 0.93 0.81 0.89 0.83 0.9 0.76 0.89 1.02 0.84 1.05 0.99 1.12 0.98 Sc 5 3.2 3.4 3.5 3.3 4.1 5.9 3.3 3.6 3.6 3.7 3.5 3.6 3.8 4.5 3.3 4.1 3.9 4.2 3.4 3.7 4.2 V 88 73 68 78 73 50 72 77 72 57 56 46 66 63 63 47 67 69 80 61 61 70 Ni 4.6 3.6 4.5 2.9 7 2.6 4.4 3.3 2.1 4.5 3.3 5.6 2.9 4.9 6.8 4.7 3.2 4 4.1 4 3.3 5.3 Cu 93.8 5.34 8.43 14.9 16.4 2.75 3.65 6.67 3.55 6.88 4.85 9.82 7.18 7.97 7.19 6.61 4.35 11.3 7.01 6.23 6.17 7.42 Zn 41.5 87.8 31.5 36.8 30.9 38.4 44.8 36.8 30.5 37.6 40.4 35.1 45.6 34.2 39.1 27.1 38.1 31.4 34.4 34.6 36.3 39 Ga 7.18 5.3 4.74 6.49 4.84 6.65 5.54 5.91 5.91 3.54 4.03 5.28 6.37 4.51 6.54 6.42 4.21 7.3 7.96 4.66 4.64 4.38 Rb 37.2 26.7 31 29.1 31.3 22.2 46 20.3 24.6 29 31.5 29.8 31.9 34 39.6 28.3 35.4 22.3 31.2 24.1 9.6 32.3 Sr 94.9 58.1 71.1 78.6 85.5 61.6 86.7 69.7 69.3 80.5 80.3 69.3 75.9 88 135 63.8 92.3 87.7 94.7 68 62.8 86.3 Y 15.2 12.2 11.5 12.8 11.4 17 12.9 11.7 11 10 13.8 12.9 9.94 10.1 12.3 10.1 11.5 12.5 11.7 10.5 11.2 11.5 Zr 4.7 3.8 4.1 3.7 4.6 2.3 2.2 4.4 3.3 2.7 2.6 3.1 2.2 3 3 2.9 2.6 3.5 3 3.4 3 3.2 Nb 0.5 0.5 0.5 0.5 0.4 0.7 0.4 0.6 0.5 0.5 0.7 0.7 0.6 0.4 0.5 0.6 0.5 0.6 0.5 0.5 0.7 0.5 Cs 1.13 1.3 1.13 1.15 1.25 0.71 1.66 0.73 1 0.95 0.96 0.73 0.94 1.11 1.01 0.61 0.99 0.57 0.76 0.94 0.35 0.81 Ba 244 145 142 133 161 152 236 194 185 273 267 226 238 263 352 193 306 232 287 229 111 297 La 11.1 13.1 15.6 16.2 13.1 14.3 17 12.3 13.2 14.1 12.4 26.2 18.6 15 20.3 17.9 10.3 16.3 20.1 19.9 14.4 12.5 Ce 26.6 26.9 30.3 32.8 26.4 31.6 35 25.5 26.3 27.8 26.2 50 36.9 30.2 40 34.5 23.4 33.8 39.2 37.6 28.6 26 Pr 3.3 3.1 3.2 3.6 2.9 3.9 4 2.9 2.9 3.2 3.1 5.2 4 3.4 4.4 3.8 2.8 3.9 4.2 4.1 3.2 3.1 Nd 12.7 11.6 11.2 12.8 10.5 16.3 14.6 10.8 10.6 11.5 12 17.8 14.2 12.5 15.4 13.5 11 14.5 14.4 14.3 11.9 11.3 Sm 2.6 2.3 2.1 2.4 2.1 3.6 2.7 2.1 2.1 2.1 2.5 2.8 2.4 2.3 2.7 2.3 2.3 2.6 2.5 2.5 2.2 2.2 Eu 0.5 0.4 0.4 0.5 0.4 0.7 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.4 0.4 0.5 0.4 0.5 0.4 0.4 Gd 2.6 2.4 2.1 2.4 2.2 3.3 2.7 2.2 2.2 2.2 2.6 2.4 2.3 2.3 2.4 2.2 2.3 2.5 2.3 2.5 2.4 2.3 Tb 0.4 0.3 0.3 0.3 0.3 0.5 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 Dy 2.47 2.2 2.06 2.21 2.05 3.01 2.31 2.05 2.02 1.87 2.41 2.09 1.74 1.87 2.08 1.78 2.03 2.19 1.97 2.01 2.05 2.03 Ho 0.5 0.5 0.4 0.5 0.4 0.6 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Er 1.6 1.3 1.3 1.4 1.2 1.8 1.4 1.2 1.3 1.1 1.5 1.3 1.1 1.1 1.2 1.1 1.2 1.3 1.2 1.2 1.2 1.2 Tm 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Yb 1.6 1.4 1.2 1.4 1.2 1.7 1.2 1.3 1.3 1.1 1.5 1.3 1.1 1.1 1.2 1.1 1.1 1.4 1.1 1.2 1.2 1.2 Lu 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Hf 0.2 0.2 0.2 0.2 0.3 0.1 0.1 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1 Ta 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Pb 2.41 2.14 2.02 2.09 2.45 3.46 2.7 1.99 2.49 2.2 2 2.06 2.22 2.34 2.44 2.01 3.15 2.19 1.92 2.17 2.13 2.01 Th 9.6 9.4 9.1 10.6 9 6.7 8 8.5 7.3 9 7.2 10.9 8.6 7.8 10.1 8.9 6.3 8.7 8.5 7.4 7.4 6.5 U 1.3 1.9 1.4 1.7 1.8 2.1 1.9 1.1 1.7 1.9 2.3 1.8 2.1 1.6 2 1.4 1.3 1.8 1.2 1.6 1.5 1.4 Bo-1 Bo-2 Bo-3 Bo-4 Bo-5 Bo-6 Bo-7 Bo-8 Bo-9 Bo-10 Bo-11 SÜ-1 SÜ-2 SÜ-3 SÜ-7 SÜ-9 SÜ-10 YK-1 YK-4 YK-5 YK-6 YK-7 Çataldag˘pluton Ilica-S(cid:2)amlipluton SiO2 61.34 67.48 65.87 63.09 68.58 60.95 72.28 66.77 70.42 67.53 64.13 66.72 65.66 71.41 67.39 67.37 69.54 64.27 63.67 58.92 63.03 59.44 TiO2 0.56 0.4 0.4 0.51 0.26 0.56 0.17 0.39 0.27 0.35 0.45 0.39 0.47 0.3 0.33 0.34 0.33 0.53 0.53 0.66 0.59 0.62 Al2O3 15.94 16.36 16.28 16.67 15.8 15.85 13.71 16.23 15.8 13.91 14.63 15.81 15.85 15.51 16.14 16.13 15.53 15.52 14.99 15.41 15.97 16.49 Fe2O3 4.29 2.56 2.86 4.06 1.71 4.79 1.33 2.54 1.34 2.77 3.25 2.4 3.04 1.45 1.75 2.23 2.06 4.14 4.68 6.41 4.97 5.96 MnO 0.08 0.09 0.06 0.11 0.03 0.12 0.02 0.01 0.01 0.05 0.05 0.02 0.02 0.01 0.01 0.02 0.02 0.36 0.07 0.1 0.06 0.09 MgO 1.38 0.83 1.08 1.44 0.59 1.26 0.39 0.8 0.58 0.91 1.1 0.82 0.82 0.59 0.53 0.72 0.83 2.03 1.96 2.81 2.32 2.87 CaO 4.58 2.79 3.4 4.54 2.36 4.5 0.85 1.5 1.33 3.05 3.02 2.51 3.19 1.95 1.94 1.94 2.09 3.93 4.34 5.94 4.98 5.76 Na2O 6.09 4.64 5.02 5.72 5.13 6.3 4.78 3.95 5.03 4.81 5.81 6.14 6.38 4.53 5.61 5.8 4.53 3.63 4.24 4.63 3.88 4.33 K2O 4.33 3.16 3.9 3.05 3.88 4.65 5.87 6.75 4.5 5.47 6.52 4.65 3.75 3.58 5.28 4.13 3.25 4.54 4.91 4.01 3.73 3.78 P2O5 0.18 0.04 0.07 0.13 0.03 0.14 0.01 0 0 0 0.01 0 0.02 0 0 0.01 0.02 0.07 0.03 0.1 0.09 0.11 LOI 1.12 1.57 0.98 0.6 1.55 0.78 0.5 0.98 0.66 1.02 0.92 0.43 0.67 0.6 0.94 1.24 1.35 1.22 0.47 0.88 0.29 0.46 Total 99.88 99.92 99.93 99.92 99.92 99.89 99.92 99.92 99.94 99.87 99.9 99.89 99.88 99.93 99.92 99.92 99.55 100.24 99.88 99.87 99.91 99.9 Mg# 0.22 0.22 0.25 0.23 0.23 0.18 0.2 0.21 0.27 0.22 0.22 0.23 0.19 0.26 0.21 0.22 0.26 0.3 0.26 0.27 0.29 0.29 ADI 0.74 1.07 0.92 0.88 0.96 0.71 0.8 0.89 0.99 0.72 0.65 0.82 0.83 1.06 0.86 0.94 1.09 0.89 0.77 0.74 0.89 0.83 Sc 3.6 2.2 2.2 2.8 1.6 3.1 1.8 1.2 1.7 3.6 3.5 2.3 1.6 1.7 1.4 1.8 1.9 1.8 3.8 6.1 4.4 5.9 V 43 25 27 38 12 32 5 3 6 18 23 18 15 14 8 12 15 56 61 94 67 78 Ni 3.2 5.5 3.6 5.2 2.4 4.3 2.7 3.3 2.1 5.4 3.7 2.7 3.5 2 3 3.4 4.1 7.3 5.2 9.5 7.5 9.2 Cu 5.38 8.15 9.27 11.3 6.71 13.5 7.38 6.71 3.56 16.1 7.3 6.68 6.96 9.6 10.6 2.03 6.09 105 23.6 21.2 16.7 14.4 Zn 42.8 101 58.6 69.6 32.2 55.5 14.3 46 43.5 39.9 37 57.2 61.5 44.6 23.5 57.8 45.3 31.5 30.9 46.6 37.6 45.1 Ga 5.86 4.84 5.18 7.1 3.89 4.77 3.7 5.67 6.13 4.1 4.95 7.87 6.36 5.84 6.07 6.68 6.02 4.11 3.17 6.94 2.06 5.64 Rb 35 34.5 60.6 66.7 34.6 49.8 43.2 45.9 60.5 59.6 53.3 74.8 42.8 41.6 62.3 79.9 85.6 11.1 37.8 33.4 31 36.9 Sr 62.2 93.5 65.6 86.4 76.4 66.5 4.1 8.6 11.2 15.9 15 20.1 36.9 25.7 12.9 13.9 25.8 59.2 69.5 80.7 76.8 85 D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 279 Y 17.4 14.2 12.1 14.4 12.9 16.1 6.89 3.55 4.64 18.1 20.7 4.5 5.02 4.55 4.39 6.66 7.33 15.5 17.4 16.5 12.5 11.7 Zr 3.2 3 1.7 4.5 1.2 3 1.6 2.3 1.4 2 1.4 1.8 1.6 1.3 2.2 1.6 1.6 6.6 4.3 7.2 5.6 5.8 Nb 2.3 1.6 1.5 1.7 1.2 2.4 1 0.6 0.5 2.6 2.6 0.5 0.4 0.8 0.6 0.6 0.8 1.4 1.1 1 0.8 0.5 Cs 3.7 3.55 5.78 7.07 2.93 3.86 3.95 3.32 8.32 3.53 3.8 7.37 3.73 4.55 6.25 7.84 9.23 0.74 1.89 2.26 1.73 2.12 Ba 82.4 147 109 144 87.9 99.6 22.3 91.6 45.7 97.2 129 85.2 126 80.1 42.7 58.3 279 137 240 246 268 284 La 47.9 41.3 33.9 42.5 22.7 47.7 13.6 21.2 19 29.1 26.3 20.5 46.7 30.6 19.9 18.5 29.4 28.3 42.3 33.3 31.1 24.7 Ce 83 71 58.9 74.9 40.2 78.4 26.8 38.4 35.7 51.9 47 39 75 55.4 35.2 33.3 48.4 54.5 72.2 63.6 56.1 46.8 Pr 9.4 7.9 6.5 8.6 4.3 8.8 3 4.1 3.9 5.6 5.2 4.3 7.5 6 3.8 3.6 5 5.9 7.6 7.2 6.1 5.2 Nd 33.2 28.4 22.4 30.8 14.7 31.2 10.3 14.2 13.8 19.3 18.1 14.8 25.1 20.1 13.2 13 16.5 21.3 24.7 26 21.2 19.2 Sm 5.7 4.9 3.9 5.3 2.8 5.3 2.5 2.6 2.6 3.7 3.6 2.6 3.9 3.2 2.2 2.4 2.8 3.7 4.1 4.6 3.6 3.5 Eu 1.4 1.2 1 1.3 0.6 1.3 0.1 0.1 0.2 0.2 0.3 0.1 0.4 0.2 0.1 0.2 0.3 0.7 0.7 0.8 0.6 0.7 Gd 4.6 4.3 3.3 4.6 2.7 5 2.3 2.3 2.2 3.8 3.9 1.9 3 2.4 1.8 2.1 2.5 3.7 3.9 4 3.2 3.2 Tb 0.6 0.5 0.4 0.5 0.4 0.6 0.3 0.2 0.2 0.6 0.6 0.2 0.3 0.2 0.2 0.3 0.3 0.4 0.5 0.5 0.4 0.4 Dy 3.05 2.82 2.27 2.77 2.42 3.41 1.57 1.12 1.16 3.4 3.53 1.03 1.35 1.1 0.99 1.44 1.66 2.66 3.12 2.99 2.46 2.34 Ho 0.6 0.5 0.4 0.5 0.4 0.6 0.3 0.2 0.2 0.7 0.7 0.2 0.2 0.2 0.2 0.2 0.3 0.5 0.6 0.6 0.5 0.4 Er 1.6 1.4 1.1 1.4 1.2 1.6 0.6 0.3 0.4 1.8 2 0.4 0.4 0.4 0.4 0.6 0.6 1.4 1.8 1.8 1.3 1.3 Tm 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.2 0.2 Yb 1.4 1.4 1 1.2 1 1.5 0.6 0.1 0.2 1.6 2.1 0.2 0.2 0.2 0.2 0.3 0.4 1.3 1.7 1.8 1.2 1.3 Lu 0.2 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 Hf 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 0.2 0.4 0.3 0.3 Ta 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Pb 7 52.3 9.24 10.2 14 6.34 10.3 4.7 8.46 7.89 6.83 6.3 5.63 11.5 5.23 3.73 9.78 17.5 6.33 7.63 6.18 7.36 Th 18.2 18.3 14.5 20.9 10.3 20.4 19.9 9.9 11.2 20.9 23.2 11.1 17.5 15.1 11.9 11.3 10.9 32.3 41.3 33.5 54.2 24.5 U 9.6 6.3 10.7 11.9 16.3 8.7 3.1 1.6 4.9 7.5 6.8 1.9 6 4.5 1.1 1.2 1.1 4.7 9.1 7.8 7.7 2.5 YK-8 YK-9 YK-10 IL-1 IL-2 IL-3 IL-4 KD-1 KD-2 KD-3 Ilica-S(cid:2)amlipluton SiO2 62.28 61.06 58.24 59.54 60.19 60.1 59.92 59.13 58.22 59.26 TiO2 0.62 0.6 0.68 0.65 0.64 0.62 0.66 0.65 0.68 0.67 Al2O3 15.72 15.5 15.54 16.14 16.11 16.17 16.19 16.59 16.25 16.66 Fe2O3 5.37 5.48 7.3 6.07 5.85 5.77 6.06 6.13 6.53 5.83 MnO 0.08 0.1 0.11 0.09 0.09 0.08 0.1 0.11 0.1 0.09 MgO 2.66 2.66 2.61 2.87 2.96 2.71 2.92 2.88 3.11 2.4 CaO 4.99 5.16 5.72 5.83 5.71 5.61 5.71 5.7 5.86 5.67 Na2O 3.94 4.3 4.71 4.33 4.08 4.42 4.36 4.3 4.43 4.27 K2O 3.58 4.22 4.06 3.46 3.62 3.7 3.43 3.43 3.83 3.56 P2O5 0.11 0.09 0.07 0.06 0.06 0.06 0.07 0.08 0.09 0.08 LOI 0.57 0.75 0.08 0.75 0.61 0.65 0.49 0.92 0.82 1.42 Total 99.92 99.92 99.12 99.79 99.92 99.89 99.89 99.92 99.91 99.9 Mg# 0.3 0.29 0.24 0.29 0.3 0.29 0.29 0.29 0.29 0.26 ADI 0.88 0.79 0.75 0.83 0.84 0.83 0.84 0.87 0.81 0.87 Sc 4.7 4.9 5.2 5.6 5.5 4.7 4.3 4 4.7 7.1 V 80 73 74 80 80 80 75 74 81 93 Ni 8.1 9.6 12 5.5 8.1 5.2 6.5 5.1 6.6 5.9 Cu 12.9 12.3 18.4 9.74 13.9 7.34 8.95 11.9 13.6 9.32 Zn 42.7 35.9 46.6 37.2 48.5 45.7 46 119 45 45.1 Ga 5.78 2.98 3.82 2.81 6.21 5.95 4.08 4.21 4.97 6.12 Rb 40.6 42.5 39.5 43.1 39.8 32 36.5 18.2 19.9 36.7 Sr 66 75.6 127 90.8 83.1 84.7 68.6 70.2 81.4 86.8 Y 13 13.3 16.4 13.4 15 13 12.4 11.8 13.3 12.4 Zr 4.8 5.8 4.9 5 6.9 4.9 5.8 3.8 5.6 3.6 Nb 0.7 0.8 0.6 0.5 0.8 0.6 0.7 0.7 0.5 0.5 Cs 1.91 2.45 1.95 2.67 3.23 2.88 3.74 1.68 1.31 6.38 Ba 297 295 427 347 419 396 394 280 326 233 La 31.5 31.9 24.1 28.8 24.9 23.9 21.4 20.2 20.6 28.2 Ce 55.4 55.6 48.1 49.1 46.3 44.3 40.2 37.2 38.3 50.5 Pr 5.9 5.8 5.4 5 5 4.8 4.4 4.1 4.2 5.4 Nd 20.2 20.3 19.7 17.2 17.6 16.9 15.7 14.8 15.4 18.4 Sm 3.4 3.5 3.7 2.9 3.1 3.1 2.9 2.6 2.8 3.1 Eu 0.6 0.6 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Gd 3 3.2 3.6 2.9 3 2.8 2.9 2.6 2.7 2.8 Tb 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 Dy 2.32 2.49 3.03 2.41 2.53 2.33 2.32 2.22 2.18 2.26 Ho 0.5 0.5 0.6 0.5 0.5 0.5 0.5 0.4 0.5 0.5 Er 1.3 1.4 1.8 1.4 1.6 1.3 1.4 1.3 1.3 1.3 Tm 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Yb 1.3 1.3 1.6 1.4 1.5 1.3 1.3 1.1 1.1 1.2 Lu 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Hf 0.2 0.3 0.2 0.2 0.3 0.2 0.3 0.1 0.2 0.1 Ta 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Pb 5.31 5.72 19.1 6.53 9.25 17.4 14.8 58.5 14.5 33.6 Th 26.7 30 26.4 20.8 21.5 21.9 20.7 17.6 21.5 20.6 U 6.1 6.3 4.4 6.5 4.6 4.7 4.8 2 1.8 2.5 280 D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 Orhaneli granitoids. Analyses of the samples were carried out at 16.66%,andNa Ocontentbetween3.94%and4.71%.Thesamples 2 Actlabs (Activation Laboratories Ltd.) in Ontario with the ICP-MS of the Çataldag˘ granitoid present a SiO content from 60.95 to 2 method.Resultsofthemajorandtraceelementanalysesaregiven 72.28,Al O %contentfrom13.91%to16.67%,andaNa Ocontent 2 3 2 inTable2. from 4.53% to 6.30%. The samples of the Orhaneli granitoid are The Sr and Nd isotope analyses were conducted at the Radio- composedofSiO contentbetween58.30%and63.85%,Al O con- 2 2 3 genic Isotope Laboratory of the Middle East Technical University, tentbetween17.19%and15.63%,andNa Ocontentbetween5.24% 2 Ankarainasimilarmannertotheanalyticalproceduresdescribed and3.79%. by Köksal and Göncüog˘lu (2008). Isotope ratios were measured In the major and trace element Harker diagrams, increasing usingaTritonMulti-CollectorThermalIonizationMassSpectrom- trendsofSiO withincreasingK OandRbcontentsanddecreasing 2 2 eter (TIMS). Powdered samples (ca. 80mg) were weighed and TiO ,Al O ,Fe O ,MgO,CaOandP O contentsofstudiedsamples 2 2 3 2 3 2 5 transferredintoteflonperfluoroalkoxyvials.Sampleswereleached can be explained by a fractional crystallization. Increasing SiO 2 with 4ml of 52% HF for four days at 160(cid:3)C on the hot plate. contentswithadecreaseinTiO isattributedtosphenecrystalliza- 2 Digested samples were dried and then dissolved overnight in tion whilst the decrease in P O is due to apatite crystallization. 2 5 4ml6NHClat160(cid:3)Conthehotplate.Leachinganddryingwere DecreasingtrendsinCaO andAl O concentrationsareexplained 2 3 doneonteflonhotplateswithinlaminarflowhotboxes. byplagioclasefractionation.Additionally,fractionalcrystallization Sr was separated in 2.5N HCl medium using 12ml Bio Rad effectsonstudiedsamplesareindicatedbyEu,GdandErnegative poly-propylene columns with 2ml Bio Rad AG50W-X12, anomalies in chondrite normalized diagrams and P–Ti negative 100–200 mesh resin. Sr was loaded on single Re-filaments with anomalies in N-MORB normalized diagrams. The negative Eu Ta-activatorand0.005NH PO ,anditsisotopiccompositionwas anomaly is attributed to plagioclase fractionation, and negative 3 4 determinedbyusingthestaticmulti-collectionwithTritonTIMS. Gd–Eranomaliesareduetoamphibolefractionation.Thenegative Analytical uncertainties are given at the 2-sigma error. 87Sr/86Sr Tianomalyisassociatedwithfractionationofilmeniteandtitanite data are normalizedwith 86Sr/88Sr=0.1194.During thecourse of (sphene)whilethenegativePanomalyisexplainedbyanapatite the measurements, Sr standard NIST SRM 987 was measured as fractionation. 0.710240±5(n=3)whichiswithintheerroroftheacceptedvalue forthisstandard. 6.Isotopechemistry NdwasseparatedfromtheREEfractionina0.022NHClmed- ium using 12ml Bio Rad poly-propylene columns with 2ml bio- IsotopevaluesofsamplescollectedfromtheOrhaneli,Çataldag˘ beads (Bio Rad) coated with HDEHP (bisethyexyl phosphate). Nd andIlıca-S(cid:2)amlıgranitoidplutonsareshowninTable3.Initialiso- was loaded on the double Re-filaments with 0.005N H3PO4, and topevaluesofsampleswerecomputedusingages51.8Maforthe itsisotopiccompositionwasdeterminedbyusingstaticmulti-col- Orhanelipluton,20.4MafortheÇataldag˘ plutonand21.9Mafor lectionwithTritonTIMS.Analyticaluncertaintiesaregivenatthe theIlıca-S(cid:2)amlıpluton(Altunkaynaketal.,2012a,2012b).87Sr/86Sr 2-sigma error. 143Nd/144Nd data are normalized to 146Nd/144- and (87Sr/86Sr) ratios of the Orhaneli pluton are 0.706412– i Nd=0.7219.ThemeasurementoftheNdLaJollastandardgavea 0.707042 and 0.705581–0.706132. Those of Çataldag˘ pluton are value of 0.511850±5 (n=3) which is within the accepted error 0.706923–0.711293and0.706283–0.707392and87Sr/86Srand(87- range for this standard. No corrections were applied to the Nd Sr/86Sr) ratios of Ilıca-S(cid:2)amlı pluton are 0.707215–0.707651 and i andSrisotopiccompositionsforinstrumentalbias. 0.706842–0.707274. The e Nd values of these plutons are in the range of (cid:2)3.51 to (cid:2)4.06, (cid:2)3.45 to (cid:2)7.06 and (cid:2)3.27 to (cid:2)3.59 5.Wholerockgeochemistry respectively. Comparisonofisotoperesultstoagedatafrompreviousworks The samples of the Ilıca-S(cid:2)amlı granitoid have a SiO content indicatesthatastheagebecomes younger,the(87Sr/86Sr) values 2 i between 58.22% and 64.27%, Al O content between 14.99% and increase (Fig. 2). In the same diagram, isotope and age data of 2 3 Table3 SrandNdisotopeanalysesofOrhaneli,Çataldag˘andIlıca-S(cid:2)amlıgranitoids. Sample Loc. Rocktype Rb Sr 87Rb/86Sr 87Sr/86Sr Std.error (87Sr/86Sr)i Sm Nd 147Sm/144Nd 143Nd/144Nd Std.error eNd(0) (ppm) (ppm) 87Sr/86Sr (ppm) (ppm) 143Nd/144Nd O-1 Orhaneli Granite 37.2 94.9 1.14 0.706412 ±6 0.705581 2.6 12.7 0.1292 0.512502 ±4 (cid:2)3.5 O-4 Granite 29.1 78.6 1.07 0.706408 ±6 0.705623 2.4 12.8 0.1184 0.512504 ±9 (cid:2)3.4 O-5 Granite 31.3 85.5 1.06 0.706414 ±3 0.705644 2.1 10.5 0.1262 0.512490 ±5 (cid:2)3.7 O-16 Granite 29.8 69.3 1.25 0.707042 ±5 0.706132 2.8 17.8 0.0993 0.512494 ±9 (cid:2)3.4 O-17 Granite 31.9 75.9 1.22 0.706567 ±5 0.705672 2.4 14.2 1.1067 0.512466 ±4 (cid:2)4.1 O-22 Granodiorite 22.3 87.7 0.74 0.706475 ±4 0.705934 2.6 14.5 0.1138 0.512471 ±7 (cid:2)4 Bo-3 Çataldag˘ Granite 60.6 65.6 2.68 0.707078 ±5 0.706302 3.9 22.4 0.1099 0.512467 ±5 (cid:2)3.7 Bo-4 Granite 66.7 86.4 2.24 0.706923 ±4 0.706283 5.3 30.8 0.1086 0.512477 ±3 (cid:2)3.5 Bo-6 Granite 49.8 66.5 2.17 0.706957 ±4 0.706334 5.3 31.2 0.1072 0.512471 ±45 (cid:2)3.6 Bo-7 Granodiorite 43.2 4.1 30.54 0.713613 ±5 0.706792 2.5 10.3 0.1532 0.512413 ±9 (cid:2)4.8 Bo-8 Granite 45.9 8.6 15.47 0.711293 ±5 0.706821 2.6 14.2 0.1156 0.512293 ±9 (cid:2)7.1 SU-1 Granite 74.8 20.1 10.78 0.710508 ±5 0.707392 2.6 14.8 0.1109 0.512367 ±9 (cid:2)5.6 YK-4 Ilica-S(cid:2)amli Granodiorite 37.8 69.5 1.58 0.707325 ±6 0.706842 4.1 24.7 0.1048 0.512475 ±5 (cid:2)3.6 YK-5 Granite 33.4 80.7 1.20 0.707215 ±5 0.706841 4.6 26 0.1117 0.512482 ±5 (cid:2)3.4 KD-3 Granite 36.7 86.8 1.23 0.707651 ±5 0.707274 3.7 19.7 0.1186 0.512473 ±4 (cid:2)3.6 IL-3 Granite 32 84.7 1.09 0.707530 ±5 0.707193 3.1 16.9 0.1158 0.512488 ±4 (cid:2)3.2 YK-10 Granodiorite 39.5 127 0.90 0.707273 ±5 0.706992 3.1 18.4 0.1063 0.512492 ±12 (cid:2)3.3 eNd(0)=104*((143Nd/144Nd)sample(0)/(143Nd/144Nd)CHUR(0)(cid:2)1). (87Sr/86Sr)i=(87Sr/86Sr)sample(t)(cid:2)(Rb/Sr)*ekt(cid:2)1. k(87Rb)=1.42*10(cid:2)5Ma. k(147Sm)=1.42*10(cid:2)5Ma. (143Nd/144Nd)CHUR(0)=0.512638. D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 281 Fig.2. 87Sr/86SrversusagediagramforthenorthwesternAnatoliangranitoids. Fig.4. ThemolecularAl2O3/Na2O+K2O(A/NK)versusAl2O3/CaO+Na2O+K2O(A/ theArmutluandKapıdag˘plutoninthenorthofthestudiedregion CNK)(ManiarandPiccoli,1989)plotsshowingthepredominantlymetaluminous are also plotted. Increasing (87Sr/86Sr) values are attributed to characterofEocenetoMiocenegranitoidsfromnorthwesternAnatolia. i increasingcrustalcontaminationeffect. intothemetaluminousfield.Afewsamplesplotintoperalumini- ousandperalkalinefield. 7.Discussion InHarkerdiagramswheremajorandtraceelementabundances of samples are plottedagainst their SiO contents (Fig. 5), trends 7.1.Petrogenesis 2 reflectseveralprocessesincludingfractionalcrystallization,partial melting, magma mixing and contamination, which exerted pri- ThesamplesoftheOrhaneliplutonplotintoquartzmonzonite, marycontrolonthecrystallizationofmagmaticrocks. monzonite, granodiorite and diorite fields; Çataldag˘ samples are In Harker diagrams, samples from the Orhaneli granitoid dis- represented by granite, syenite and quartz monzonite and Ilıca- playapeculiarRb–SiO trendthattendstoyieldasomewhatsmall S(cid:2)amlı samples plot into monzonite and quartz monzonite fields 2 increase.TheincreaseintheRbcontentisduetothereplacement (Fig.3).Mostofthesamplesareofsub-alkalinecharacterandonly ofKbyRbinalkalifeldspar,biotiteandamphibole(hornblende). afewareofalkalinetype.ThediagraminFig.2indicatesthatrocks The decreasing Sr trend might be explained by a fractionation of oftheseplutonsarecharacterizedbysimilarandcontinuousmag- Ca-richplagioclaseasaresultofthereplacementofCabySr.The maticseries. negativeBatrendwhichisnotsignificantascomparedwithother In order to determine aluminum saturation of the Çataldag˘, plutonsisattributedtobiotitefractionation.Thepeculiarnegative Ilıca-S(cid:2)amlı and Orhaneli plutonic rocks, A/NK (Al O /Na O+K O) 2 3 2 2 trendinYisduetoamphibolefractionation. and A/CNK (Al O /CaO+Na O+K O) values were calculated in 2 3 2 2 Samples from the Çataldag˘ granitoid are represented by more molarbasisandplottedontheManiarandPiccoli(1989)diagram significant trends in comparison to those of the Orhaneli pluton. (Fig.4).TheIlıca-S(cid:2)amlıplutonranges0.9,Çataldag˘ plutonranges Although the course of fractionation process is the same as the 0.8andtheOrhaneliplutonranges0.9.Thewholesamplesofthe Orhanelipluton,scatteredtrendsintheÇataldag˘samplesareasso- Ilıca-S(cid:2)amlı pluton are located in the metaluminous field. The ciatedwiththecrustalcontaminationratherthanfractionation.In majorityofthesamplesoftheÇataldag˘ andOrhaneliplutonsplot the chondrite-normalized diagrams all light rare earth elements showenrichmentpatterns(Fig.6).NegativeEuanomalyissignifi- cantinalldiagrams.Thisanomalyisrelatedtofractionalcrystalli- zationofK-feldsparandplagioclaseinfelsicmagmas. 7.1.1.Traceelementandisotopicevidence Inallthesamplesfromthestudiedplutons,rareearthelements displayanupward-concaveshape,andheavyREEandMREE(e.g. Gd, Er) are represented by a relatively depleted trend which is attributedtotheseparationofamphibole,asamaincrystallization phase,fromthegranitoidmelt. The comparison of MORB-normalized values of granitoids to negativeanomaliesofHFSelements(Ti,Hf,Zr,NbandTa)andnor- malvaluesofLILEs(Rb,Ba,Th,U,K)showsthatallgranitoidsam- ples are enriched in LILE elements (Fig. 6). Although negative anomaliesofNbandotherHFSEelementsmightberelatedtocrus- tal contamination, theyare the characteristic features of subduc- tion related magmas, and this arises from relative enrichment of mantlesourceviaLILEadditionfromsubductingslabtothemantle (McCullochandGamble,1991).IntheNb–Ydiagram(Pearceetal., Fig.3. Totalalkalis(Na2O+K2O)versussilicadiagram(Middlemost,1994).Redline 1984)constructedfortheOrhaneli,Çataldag˘ andIlıca-S(cid:2)amlıgran- boundarydistinguishesalkalicandsubalkalicrocksaccordingtoIrvineandBaragar itoidplutons,allsamplesplotintotheVAG(volcanicarcgranites) (1971).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereader isreferredtothewebversionofthisarticle.) and Syn-COLG (syn-collisiongranites) fields (Fig. 7a). In the 282 D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 Fig.5. SelectedHarkervariationdiagramsfortheOrhaneli.Çataldag˘andIlıca-S(cid:2)amlıgranitoidsfromnorthwesternAnatolia. Rb–Y+Nbdiagram(Pearceetal.,1984),thesamesamplesploton fromatypicalmantlesourceandseemtobeaffectedbyafraction- volcanicarcgranitesandpost-collisionalfields(Fig.7b). ationprocessratherthancrustalcontamination(Fig.9).Otherplu- InthediagramproposedbyBatchelorandBowden(1985),the tons, however, are predominantly affected by a crustal R1andR2valueswerecalculatedandsamplelocationsweredeter- contamination similar to the Early Miocene Aegean volcanics mined accordingly. In this plot, most of the samples are repre- (Güleç,1991). sented by a mantle fraction and post-orogenic character (Fig. 8). The diagram in Fig. 9 was constructed using the data given in 7.1.2.FCandAFC Table3,andthedatafromgranodioriticrocksoutcroppinginthe Assimilation and fractional crystallization processes are mod- northwestern Anatolia were also plotted on the same diagram. eledusing(87Sr/86Sr) versusSiO diagram(Fig.10).Thisdiagram i 2 ThedataoftheAegeanvolcanics,KulabasaltsandBodrumvolcan- highlights significant variation in silica content with limited ics separated in the diagram are from Altunkaynak et al. (2010), change in Sr isotope ratios, which can best be explained by frac- and the data of asthenospheric mantle melting and lithospheric tional crystallization of isotopically near-homogeneous magma. mantle melting are taken from Dilek and Altunkaynak (2007). Thismaysuggestthattheeffectofcontaminationbycrustalrocks RegardingotherplutonsoutcroppinginthenorthwesternAnatolia, with contrasting isotopic ratios was minimal, and the dominant the data of Armutlupluton (Köprübasi and Aldanmaz, 2004) and petrologicalprocesswasfractionalcrystallization. Kapıdag˘andKarabigaplutons(Karacıketal.,2008)werealsoused. Fractionationtrends,whicharetheoreticallypreparedforcrys- OntheeNd–(87Sr/86Sr) diagram,almostallsamplesarewithin tallization of a certain mineral or mineral assemblage, are com- i themantlearray,andexceptforafewsamples,themostsamples pared with proposed trends to examine the role of fractionation fromthestudiedplutonsplotintotheAegeanvolcanicsfield.Sam- intheevolutionofrocks.Theoreticalfractionationtrendsarecal- plesfromtheArmutlu,Kapıdag˘ andKarabigaplutonsarederived culated using Rayleigh equation (C/C =F(D(cid:2)1)). Mineral vectors L 0 D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 283 Fig.6. (a–c)N-MORB-normalizedmulti-elementpatternsfortheOrhaneli,Çataldag˘andIlıca-S(cid:2)amlıgranitoidsinnorthwesternAnatolia.N-MORBnormalizingvaluesare fromSunandMcDonough (1989).(d–f) ChondritenormalizedREE patternsfortheOrhaneli. Çataldag˘ andIlıca-S(cid:2)amlıgranitoidsin northwesternAnatolia.Chondrite normalizingvaluesarefromSunandMcDonough(1989). Fig.7. Trace-elementdiscriminationdiagramsofthenorthwesternAnatoliangranitoids.(a)NbversusYand(b)RbversusY+NbfieldsarefromPearceetal.(1984).The shadedareadenotescompositionsofpost-collisiongranitoids.Abbreviations:WPG=within-plategranite;VAG=volcanic-arcgranite;syn-COLG=syn-collisionalgranite; ORG=ocean-ridgegranite. 284 D.Çelebi,N.Köprüba(cid:2)sı/JournalofAsianEarthSciences93(2014)275–287 Fig.10. (87Sr/86Sr)iversusSiO2diagramforthenorthwesternAnatoliangranitoids showingtheeffectsoffractionalcrystallizationandAFC. Fig.8. R1–R2diagramforOrhaneli.Çataldag˘andIlıca-S(cid:2)amlıgranitoidsBatchelor andBowden(1985). a single mineral phase cannot be questioned. In Ba–Rb diagram (Fig.11c), thetheoretically formedmineralassemblageisconsis- tentwith(plagioclase34%+biotite10%+alkalifeldspar56%).Like intheY–Srdiagram,itisevidentthatsingle-phasecrystallizationis noteffective. In theoretical modeling studies, fractionationwas found to be an effective process for all pluton samples. In addition, in order to determine the degree of crustal contamination effect on sam- ples,Th/YbandNb/Ybratioswereplotted.AlthoughNb/Ybratios ofsamplesareclosetoN-MORB,Th/Ybratiosaresignificantlyhigh, indicatinganextremeenrichmentinTh.Theseratiossuggestthat samples were subjected to notable subduction-zone enrichment, and therefore, the plutons are believed to be formed by magmas derivingfromadepletedsourcewithasignificantarccomponent. ThepositionsofsamplesinFig.12yieldthatÇataldag˘ samplesare much more affected by subduction-zone enrichment than Ilıca-S(cid:2)amlı and Orhaneli samples. In addition, it is also clear that othernorthwesternAnatolianplutonsplottedinthediagramseem tobelessaffectedbysubduction-zoneenrichmentwithrespectto studiedplutons(Fig.12). In Fig. 12, element ratios of E–W extending Armutlu, Kapıdag˘ andLapsekiplutonslocatedinthefarnorthofthestudiedplutons werealsoplotted.Itisimportanttonotethattheseplutonsarenot affected by the crustal contamination as much as the Çataldag˘, Fig.9. (a)eNdversus(87Sr/86Sr)idiagramfornorthwesternAnatoliangranitoids. Ilıca-S(cid:2)amlıandOrhaneliplutons. ThefieldsforasthenosphericandlithosphericmantlemeltingarefromDilekand Petrographic and geochemical data of the Orhaneli, Çataldag˘ Altunkaynak(2007)Kapıdag˘andKarabigagranitoidsdataaretakenKaraciketal. and Ilıca-S(cid:2)amlı pluton samples show that magma mixing and (2008).(b)eNd(i)versus(87Sr/86Sr)idiagramfornorthwesternAnatoliangranitoids. assimilation processes played an important role in the develop- KulaBasaltsandBodrumVolcanicsdataaretakenAltunkaynaketal.(2010). mentoftheserockgroups.Inordertoexaminethiseffect,thethe- oretical AFC (Assimilation–Fractional Crystallization) modeling used in the modeling were constructed using the computer pro- (DePaolo,1981)wastestedusingtraceelementdata.Inthemodel, gram by Keskin (2002). Fractional crystallization models for the an‘r’valueisusedastheAFCnumericindex. Ilıca-S(cid:2)amlı,Çataldag˘ andOrhaneligranitoidicrocksareillustrated Models were prepared for correlating the Nd–Sr isotope data in Fig. 11a–c. with trace element contents (Th, U, Rb). Fig. 13 was drawn to PetrographicdeterminationsyieldthattheIlıca-S(cid:2)amlı,Çataldag˘ examinetheeffectsofAFCprocessandtoshowthatallofthesam- and Orhaneli granitoid samples are composed of quartz+alkali plesplotclosetomodeledrvalues.Highvaluesofr,whichisthe feldspar+plagioclase+amphibole+biotite and titanite and opa- ratioofvaryingcontamination/fractionratio,indicatethatsamples queminerals.Inordertoexaminefractionalcrystallizationeffects aresignificantlyaffectedbythecontaminationprocess.Inthedia- onplutons,theserock-formingmineralswereconsideredandmin- gram,samplenoK-93-80ofAlıcıetal.(2002)wasusedastheman- eral compositions of vectors were also specified which are tle component and the value for crust component is taken from expressedasmulti-mineralcompositionsusedinconstructedthe- TaylorandMcLennan(1985).Startingandend-membercomposi- oreticalvectors.ItisshownfromBa–Thdiagramthatallsamples tionsare144Nd/143Nd=0.512773and87Sr/86Sr=0.70349forman- areaffectedbyalkalifeldsparandplagioclasefractionation;how- tle (Alıcı et al., 2002) and 144Nd/143Nd=0.511994 and ever,amongthetheoreticallycomputedmineralassemblages,the 87Sr/86Sr=0.711700forcrust(TaylorandMcLennan,1985). trendof(50%alkalifeldspar+50%plagioclase)yieldsamorecon- In the AFC diagrams constructed based on these results, sam- sistentresult(Fig.11a). plesarefoundtobemuchmoreaffectedbythecontaminationpro- IntheY–Srdiagram(Fig.11b),theoreticalmineralassemblage cess. In addition, among the studies carried out for the plutons, and (plagioclase 56%+amphibole 8%+alkali feldspar 36%) seem Çataldag˘ is the most affected pluton by the contamination and tobeconsistent.Thatis,inthisdiagram,thecrystallizationofonly theseresultsareconsistentwithdatashowninFig.13.
Description: