Navigation, Path Planning, and Task Allocation Framework For Mobile Co-Robotic Service Applications in Indoor Building Environments by Bharadwaj Mantha A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil Engineering) in the University of Michigan 2018 Doctoral Committee: Associate Professor Carol C. Menassa, Chair Assistant Professor Clive D’Souza Professor Vineet R. Kamat Associate Professor SangHyun Lee Bharadwaj Mantha [email protected] ORCID iD: 0000-0002-3173-3966 © Bharadwaj Mantha 2018 DEDICATION I would like to dedicate this dissertation to my loving and caring parents (Bhavani Shankar Mantha and Suryakumari Peri), wife (Ramani Ayyagari), brother (Dheeraj Mantha), and in laws (Srinivas Rao Ayyagari and Padmavathi Ayyagari). ii ACKNOWLEDGMENTS I would like to express my sincere gratitude to my advisor Dr. Carol Menassa for all the support and guidance throughout my PhD. Her ever smiling face made me feel comfortable right from the moment I met her. I found her to be uniquely capable of capturing my attention and helping me learn confidently. She was always supportive, optimistic and encouraging in all the encounters. I have learned a great deal from her especially hardworking, professional etiquette, academic writing skills, presentation skills, and most importantly the technical expertise to name a few. I would be deeply indebted to Dr. Vineet Kamat who I closely collaborated with since the beginning of my graduate studies. His passion for research, simplicity, patience, and technical abilities helped me polish my skills. I will never forget the conversations I had with him during a few successful and challenging phases of my PhD. It has been an honor working with him. I also want to thank the rest of my committee members Dr. SangHyun Lee and Dr. Clive D’Souza. Especially, Dr. Lee’s constructive feedback during my proposal defense to improve the technical and logical continuity of my thesis was invaluable. In addition, the wheelchair navigation study wouldn’t have been possible without Dr. D’Souza’s guidance and suggestions. I would also like to specially thank Dr. Branko Kerkez for having inspired me with his out of the box approach during my preliminary examination. iii I also thank my lab mates (SICIS’ers and LIVE’ers) Albert Thomas, Kurt Lundeen, Yong Xiao, Da Li, Chen Feng, Lichao Xu, Xi Wang, for round the clock advice, sleepless working nights, and for all the fun we had in the past few years. Last but definitely not the least I would like to thank all the members of my family and friends who directly or indirectly made this possible. iv TABLE OF CONTENTS DEDICATION ................................................................................................................................ ii ACKNOWLEDGMENTS ............................................................................................................. iii LIST OF TABLES ....................................................................................................................... viii LIST OF FIGURES ....................................................................................................................... ix LIST OF APPENDICES .............................................................................................................. xiv ABSTRACT .................................................................................................................................. xv Chapter 1 Introduction .................................................................................................................... 1 1.1 Background and Literature Review.................................................................................. 2 1.1.1 Task Allocation and Route Planning ........................................................................ 2 1.1.2 Localization and Navigation ..................................................................................... 4 1.1.3 Path Planning ............................................................................................................ 6 1.2 Research Objectives ......................................................................................................... 9 1.3 Research Methodology ..................................................................................................... 9 1.4 Dissertation Outline........................................................................................................ 11 Chapter 2 Planning and Coordination Algorithms for Indoor Robotic Service Networks ........... 13 2.1 Introduction ......................................................................................................................... 13 2.2 Related Work....................................................................................................................... 17 2.3 Problem Statement And Characteristics .............................................................................. 20 2.4 Methodology ....................................................................................................................... 22 2.4.1 Network formulation .................................................................................................... 22 2.4.2 Network Solution .......................................................................................................... 30 2.5 Case Study ........................................................................................................................... 45 2.5.1 Scenario 1: No Constraints ........................................................................................... 46 2.5.2 Scenario 2: Distance Constraints .................................................................................. 48 2.5.3 Scenario 3: Tasks Requirements, Frequency, and Resource (Robots) Constraints ...... 50 v 2.5.4 Scenario 4: Occlusion Constraints ................................................................................ 50 2.6 Results And Discussion ....................................................................................................... 51 2.6.1 Scenario 1 ..................................................................................................................... 51 2.6.2 Scenario 2 ..................................................................................................................... 55 2.6.3 Scenario 3 ..................................................................................................................... 57 2.6.4 Scenario 4 ..................................................................................................................... 60 CONCLUSIONS ....................................................................................................................... 61 Chapter 3 Localization and Navigation Algorithms for Indoor Robotic Data Collection and Simulation ..................................................................................................................................... 64 3.1 Introduction ......................................................................................................................... 64 3.2 Review Of Data Collection Methods In Buildings ............................................................. 66 3.3 Research Objectives ............................................................................................................ 68 3.4 Design Of The Mobile Robot .............................................................................................. 69 3.5 Methodology ....................................................................................................................... 71 3.5.1 Localization .................................................................................................................. 72 3.5.2 Navigation .................................................................................................................... 80 3.5.3 Data Collection and Geotagging................................................................................... 90 3.6 Verification.......................................................................................................................... 91 3.6.1 Localization .................................................................................................................. 91 3.6.2 Navigation .................................................................................................................... 92 3.6.3 Data Collection ............................................................................................................. 95 3.6.4 Geotagging.................................................................................................................... 96 3.7 Case Study ........................................................................................................................... 97 3.7.1 Model Creation ............................................................................................................. 99 3.7.2 Model Calibration ....................................................................................................... 103 3.7.3 Simulation Output and Analysis ................................................................................. 104 3.8 Discussion, Conclusions And Limitations ........................................................................ 106 Chapter 4 Usability Evaluation of a User Interface based on a Preferential Path Planning Algorithm for Assisting Individuals with Disabilities in Indoor Building Environments .......... 109 4.1 Introduction ....................................................................................................................... 109 4.2 Background ....................................................................................................................... 112 vi 4.3 Methodology ..................................................................................................................... 115 4.3.1 Attribute Loaded Graph Network ............................................................................... 116 4.3.2 Attribute Sensitive Path Planning ............................................................................... 122 4.3.3 Fiducial Marker Network ........................................................................................... 125 4.3.4 Communication .......................................................................................................... 132 4.4 Case Study ......................................................................................................................... 141 4.4.1 Scenario 1: Preferential Constraints (shortest vs least number of turns) .................... 142 4.4.2 Scenario 2: Add Stop .................................................................................................. 143 4.4.3 Scenario 3: Detour Management ................................................................................ 144 4.4.4 Scenario 4: Missed Marker ......................................................................................... 144 4.5 Pilot Testing Of The Navigation Application ................................................................... 146 4.5.1 Phase I: Training with the wheelchair and application interface ................................ 148 4.5.2 Phase II: Actual navigation tasks................................................................................ 148 4.5.3 Phase III: Basic Survey and Post-trial interview ........................................................ 149 4.6 Results ............................................................................................................................... 151 4.7 Conclusions ....................................................................................................................... 154 Chapter 5 Conclusions and Future Work .................................................................................... 156 5.1 Future Directions of Research ........................................................................................... 159 5.1.1 Multi-Base Depot Optimization for Indoor Robotic Service Networks ..................... 159 5.1.2 Sensor Suite Design for Robotic Data Collection ...................................................... 159 5.1.3 Data Fusion, Aggregation, and Visualization of Data Collected by Robots .............. 160 APPENDICES ............................................................................................................................ 161 BIBLIOGRAPHY ....................................................................................................................... 167 vii LIST OF TABLES Table 2.1 Characteristics of the problem statement ...................................................................... 19 Table 2.2 Limitations of the existing studies ................................................................................ 19 Table 2.3. Simulation results without any constraints for floor plan-1 ........................................ 52 Table 2.4 Simulation results without any constraints for floor plan-2 ......................................... 53 Table 2.5 Simulation results with minimum and maximum distance constraints for floor plan-2 With Minimum (30 units) and Maximum (70 units) Distance Constraints .................................. 56 Table 2.6 Interdependency between the number of robots and the frequency of task accomplishment (applied with distance constraints) for floor plan-2. .......................................... 59 Table 3.1 Experimental results to determine the marker to marker distance ................................ 94 Table 3.2 Experimental results validating the drift correction algorithm developed. .................. 95 Table 3.3 Characteristics of the case study building..................................................................... 99 Table 3.4 R-value estimation for individual materials. ............................................................... 101 Table 3.5 Conductivity value estimation for individual materials by assuming a building age of 20 years and K value as 40%. ..................................................................................................... 102 Table 3.6 Comparison of simulated (EnergyPlus) and actual (robot) ambient temperature values. ..................................................................................................................................................... 104 Table 3.7 EnergyPlus output results for multiple retrofit scenarios ........................................... 105 Table 4.1 Functional requirements of an assistive navigation interface for individuals with disabilities ................................................................................................................................... 132 viii LIST OF FIGURES Figure 1.1 Research Overview (Topics and Applications) ................................................................. 11 Figure 2.1 Detailed descriptive procedure of the proposed methodology .................................... 24 Figure 2.2 Multilayer information generation and simultaneous storage of graph network data (i.e. creating the network): (a) task requirement layer (data collection locations); (b) landmark network layer (for localization/navigation); (c) reduced node network layer .............................. 27 Figure 2.3 (a) Complete graph network with four nodes; (b) random incomplete network; (c) random incomplete graph network converted to a complete graph by including pseudo edges .. 28 Figure 2.4 Graphical representation of the conversion from created network (reduced incomplete node network) to setting up the network (complete network): (a) reduced graph node network layer; (b) undirected incomplete graph network (G = V, E); (c) complete graph network with pseudo edges (dashed) .................................................................................................................. 29 Figure 2.5 Two-dimensional graph network representation of indoor multilevel building network ....................................................................................................................................................... 30 Figure 2.6 Methodical process to find the shortest path for a single robot to visit all the nodes in a graph (at least once): (a) complete graph network with pseudo edges (dashed); (b) shortest path to visit all the nodes with a single robot (dashed lines represent pseudo edges); (c) shortest path to visit all the nodes with a single robot ....................................................................................... 32 Figure 2.7 Process flow for solving the multi-robot task allocation and path planning problem . 35 Figure 2.8 Edge representation of an example indoor network .................................................... 36 ix
Description: