ebook img

Navier—Stokes Equations in Irregular Domains PDF

582 Pages·1995·14.277 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Navier—Stokes Equations in Irregular Domains

Navier-Stokes Equations in Irregular Domains Mathematics and Its Applications Managing Editor: M.HAZEWINKEL Centre for Mathematics and Computer Science, Amsterdam, The Netherlands Volume 326 Navier-Stokes Equations in Irregular Domains by L. Stupelis Institute ofM athematics and Informatics, Vilnius, Lithuania '~·' SPRINGER-SCIENCE+BUSINESS MEDIA. B.V. A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-4562-1 ISBN 978-94-015-8525-5 (eBook) DOI 10.1007/978-94-015-8525-5 This is an updated and revised translation of the original Russian work The Boundary Value Problems for the System of Navier-Stokes Equations in Piecewise Smooth Domains, Vilnius, Mokslas, © 1992 Printed on acid-free paper All Rights Reserved © 1995 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1995 Softcover reprint of the hardcover 1st edition 1995 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. To my Teacher Olga Alexandrovna Ladyzhenskaya Contents Preface xiii Chapter 1. Preliminaries 1 1.1. Normed Linear Spaces and Operators . . . . . . . . . . . . . . . . . . 1 1.1.1. Normed Linear Spaces . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2. Linear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3. Regularization of Operators . . . . . . . . . . . . . . . . . . . . 10 1.2. Some Functional Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1. Spaces of Generalized Functions . . . . . . . . . . . . . . . . 11 1.2.2. Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.3. Function Spaces. Classes of Domains . . . . . . . . . . . . 17 1.2.4. Imbedding Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.2.5. Spaces with Negative Norms . . . . . . . . . . . . . . . . . . . 42 1.3. Integral Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.3.1. Singular Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.3.2. Singular Integral Operators in Weighted Spaces . . . . 45 1.3.3. Generalized Hardy-Littlewood Inequality . . . . . . . . . 50 Chapter 2. Boundary Value Problems for the Stokes System . . . . . . . . . . . . 55 2.1. Statement of the Boundary Value Problems and the Green Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.1. Statement of the Boundary Value Problems . . . . . . . . 55 2.1.2. The Green Formulas and the Problems Formally Adjoint with Respect to Them . . . . . . . . . . . . . . . . . . 56 2.2. The Green Matrices on the Half-space and the Half-plane 60 2.2.1. Green Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.2.2. The Main Properties of the Green Matrices . . . . . . . . 64 2.3. Weighted Spaces of Functions on JR+ . . . . . . . . . . . . . . . . . . 66 2.3.1. Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . 66 vii viii 2.3.2. Spaces of Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.3.3. Spaces with Negative Norms . . . . . . . . . . . . . . . . . . . 74 2.3.4. Weighted HOlder Spaces . . . . . . . . . . . . . . . . . . . . . . . 76 2.4. Strong Solvability of the Boundary Value Problems in the Half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.4.1. The First Boundary Value Problem in Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2.4.2. Solvability of the Second Boundary Value Problem . 91 2.4.3. Solvability of the Boundary Value Problems in Weighted Holder Classes . . . . . . . . . . . . . . . . . . . . . . . 92 2.5. Generalized Solutions of Boundary Value Problems . . . . . . 101 2.5.1. Auxiliary Propositions . . . . . . . . . . . . . . . . . . . . . . . . . 101 2.5.2. Generalized Solutions of the Boundary Value Problems for the Stokes System . . . . . . . . . . . . . . . . . 105 2.5.3. Solvability of the Boundary Value Problems in Weighted Holder Spaces . . . . . . . . . . . . . . . . . . . . . . . 114 2.6. Weak Solutions of the Boundary Value Problems in the Half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 2.6.1. The First Boundary Value Problem . . . . . . . . . . . . . . 124 2.6.2. The Second Boundary Value Problem . . . . . . . . . . . . 127 2.7. 'Perturbed' Boundary Value Problems in the Half-space . . . 132 2.7.1. The First Boundary Value Problem . . . . . . . . . . . . . . 132 2. 7 .2. The First Boundary Value Problem in Weighted Holder Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 2.7.3. The Second Boundary Value Problem . . . . . . . . . . . . 141 2.8. Local Solutions in Half-space . . . . . . . . . . . . . . . . . . . . . . . . 148 2.8.1. The First Boundary Value Problem . . . . . . . . . . . . . . 148 2.8.2. The Second Boundary Value Problem . . . . . . . . . . . . 157 2.9. Local Properties of Solutions near Boundary . . . . . . . . . . . . 166 2.9.1. Local Estimates of Solutions near Boundary . . . . . . . 166 2.9.2. The Case of Two Independent Variables . . . . . . . . . . 174 Chapter 3. Boundary Value Problems in Plane and Bihedral Angles . . . . . . 176 3.1. Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 3 .1.1. Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . 177 3.1.2. Weighted HOlder Spaces . . . . . . . . . . . . . . . . . . . . . . . 179 CONTENTS IX 3.2. Model Problems in Plane Angle . . . . . . . . . . . . . . . . . . . . . . 182 3.2.1. Auxiliary Problem in Arc . . . . . . . . . . . . . . . . . . . . . . 183 3.2.2. Finding of the Maximal Strip on the Complex Plane without Spectra of the Boundary Value Problems 189 3.2.3. Solvability in Weighted Hilbert Spaces of Model Problems in Plane Angle . . . . . . . . . . . . . . . . . . . . . . . 193 3.3. Boundary Value Problems Depending on a Parameter . . . . . 209 3.3.1. Boundary Value Problems Depending on Parameter in Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 3.3.2. Auxiliary Boundary Value Problems in a Plane Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 3.3.3. The Noether Property of Boundary Value Problems and Coercive Estimates . . . . . . . . . . . . . . . . . . . . . . . . 225 3.3.4. Unique Solvability of the Boundary Value Problems in a Plane Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 3.4. Solvability in Weighted Hilbert Spaces of the Boundary Value Problems in a Bihedral Angle . . . . . . . . . . . . . . . . . . . 242 3.4.1. Solvability of the Boundary Value Problems in Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . 243 3.4.2. The Boundary Value Problems in Weighted Hilbert Spaces with Negative Norms . . . . . . . . . . . . . . . . . . . 245 3.4.3. Local Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 3.5. The Green Matrices of the Boundary Value Problems in a Bihedral Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 3.5.1. Existence of the Green Matrix . . . . . . . . . . . . . . . . . . 262 3.5.2. The Main Properties of the Green Matrix and Pointwise Estimates of its Elements . . . . . . . . . . . . . . 266 3.6. L -Estimates of Solutions to the Boundary Value Problems 8 in Bihedral Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 3.6.1. Estimates of Solutions in Weighted Sobolev Spaces 277 3.6.2. Unique Solvability of the Boundary Value Problems in Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . 282 3.7. Estimates of Solutions to the Boundary Value Problems in a Variational Form by Weighted L -Norms . . . . . . . . . . . . . . . 283 8 3.7.1. A Priori Estimates of Solutions . . . . . . . . . . . . . . . . . 283 3.7.2. Unique Solvability of the Boundary Value Problems in Generalized Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 X 3.8. Solvability of the Boundary Value Problems in Weighted Holder Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 3.8.1. Estimates of Solutions of the Boundary Value Problems in Weighted Holder Spaces . . . . . . . . . . . . . 292 3.8.2. Solvability of the Problem (3.4.1), (3.4.2) in Weighted Holder Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 Chapter 4. The First Boundary Value Problem in a Given Domain . . . . . . . 295 4.1. Classes C1·a . . . . . . • . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . 295 4.1.1. Holder Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 4.1.2. Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . . 300 4.2. Classes N1·a . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . 302 4.2.1. Weighted HOlder Classes . . . . . . . . . . . . . . . . . . . . . . . 302 4.2.2. Continuous Differential Operators in Weighted HOlder Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 4.2.3. Diffeomorphisms Preserving Spaces . . . . . . . . . . . . . 308 4.3. Spaces Vi,v(Q, M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 4.3.1. Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . 309 4.3.2. Differential Operators . . . . . . . . . . . . . . . . . . . . . . . . . 310 4.4. The First Boundary Value Problem in a Bounded Angular Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 4.4.1. Simple Connected Domain . . . . . . . . . . . . . . . . . . . . . 311 4.4.2. Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 4.4.3. Generalized Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 318 4.4.4. The Boundary Value Problem in Weighted Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 4.5. The First Boundary Value Problem for the Navier-Stokes System in Domains with Noncompact Boundaries . . . . . . . . 333 4.5.1. Spaces of Solenoidal Vector-Functions on Domains whose 'Exits' to Infinity Contain a Cone . . . . . . . . . . 333 4.5.2. Spaces of Solenoidal Vector-Functions on Domains with Noncompact Boundaries . . . . . . . . . . . . . . . . . . . 343 4.5.3. The First Boundary Value Problem for the Navier-Stokes System . . . . . . . . . . . . . . . . . . . . . . . . . 356 Chapter 5. Steady Motion of a Fluid with a Free Surface . . . . . . . . . . . . . . . 363 5.1. Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363 CONTENTS xi 5.2. The Extension Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 5.2.1. Notation and Auxiliary Propositions . . . . . . . . . . . . . 366 5.2.2. The Extension Theorem . . . . . . . . . . . . . . . . . . . . . . . 369 5.3. Auxiliary Linear Problem in a Given Bounded Domain . . . 375 5.3.1. Properties of the Domain and Diffeomorphisms of the Class NI+J,o: n c1..x . . . . . . . . . . . . . . . . . . . . . . . . . . . 375 5.3.2. Auxiliary Propositions . . . . . . . . . . . . . . . . . . . . . . . . . 379 5.3.3. The Noether Property of the Boundary Value Problem and a priori Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 390 5.3.4. Solvability of the Boundary Value Problem in Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 5.4. Solvability of the Boundary Value Problem in Weighted HOlder and Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 406 5.4.1. Solvability in N~·o:(G) x Ni·o:(G) . . . . . . . . . . . . . . . . 406 5.4.2. Solvability in N~"t~·o:(G) x N~!:·o:(G) and V~"t~-t<G) x v:.t~t(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409 5.5. Auxiliary Nonlinear Problem . . . . . . . . . . . . . . . . . . . . . . . . . 412 5.6. Variation of the Solution to the Auxiliary Problem in a Varying Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 5.7. Solvability of the Free Boundary Problem . . . . . . . . . . . . . . 423 5.8. The Two-Dimensional Free Boundary Problem . . . . . . . . . . 434 5.9. The Case of Complete Wetting . . . . . . . . . . . . . . . . . . . . . . . 442 5.9.1. Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . 442 5.9.2. Auxiliary Propositions . . . . . . . . . . . . . . . . . . . . . . . . . 444 5.9.3. Generalized Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 455 5.9.4. Weighted Holder Spaces . . . . . . . . . . . . . . . . . . . . . . . 466 5.9.5. A Classical Solution of an Auxiliary Linearized Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 5.9.6. A Nonlinear Auxiliary Problem . . . . . . . . . . . . . . . . . 498 5.9.7. Variation of the Solution to the Auxiliary Problem in a Varying Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 5.9.8. Solvability of the Free Boundary Problem . . . . . . . . . 507 Appendix 1. The Green Matrices on the Half-Space and Half-Plane . . . . . . . 518 1. The Green Matrices on the Half-Space 518 2. The Green Matrices on the Half-Plane 528

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.