ebook img

Navier-Stokes turbulence PDF

744 Pages·2019·23.387 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Navier-Stokes turbulence

Wolfgang Kollmann Navier–Stokes Turbulence Theory and Analysis – Navier Stokes Turbulence Wolfgang Kollmann – Navier Stokes Turbulence Theory and Analysis 123 WolfgangKollmann Department ofMechanical Engineering University of California Davis Davis, CA,USA ISBN978-3-030-31868-0 ISBN978-3-030-31869-7 (eBook) https://doi.org/10.1007/978-3-030-31869-7 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Thesubjectofthebookisthetheoreticaltreatmentoffullydevelopedturbulencein fluids governed by the Navier–Stokes equations. The investigation begins with a collection of properties of turbulent flows of Newtonian fluids observed in exper- iments and direct numerical simulations. The main purpose of this assembly is to condense them to a working definition of turbulence. Then the variables for the complete description of turbulence based on Navier–Stokes dynamics are estab- lished and the equations governing them are derived within the framework of classical mechanics. The phenomenon of turbulence is analysed with the tools of probability theory. The fundamental difficulty encountered in this approach is the fact that countably infinitesystemsofequationsorfunctionsofinfinitelymanyvariablesappear,which cannot be truncated without arbitrary measures to generate solvable systems. It is, however,possibletoderiveasingle,linearequationforthecharacteristicfunctional containing all relevant information on a turbulent flow. This equation, derived by E.Hopfmorethan50yearsago,iscentraltothetreatmentofturbulentflowsinthis book.Itcontainsfunctionaloperationsthatrequirecarefulanddetailedconsideration for their proper use. The basic operations of differentiation and integration of functionalsarereviewedandexamplesrelevanttoturbulentflowsareconstructedto illustratetheirapplication.Theequationforthecharacteristicfunctionalinthespatial description contains the effects of convection as second variational derivatives, whose trace is a generalized Laplacian. There have been several variants of the infinite-dimensional Laplacian developed for different purposes, two of those defi- nitions are considered in detail. These are the generalized and the Lévy-Laplacian. Therelationsofconvection,expressedintermsofthecharacteristicfunctional,tothe generalized Hessian and thegeneralized Laplacian operatorsare explored. The Hopffde for turbulent flows of an incompressible fluid in statistical steady stateisanalysedwiththeaidofasolenoidalONSbasisforacompactflowdomain with a combination of homogeneous and periodic boundary conditions. The argumentsofthecharacteristicfunctionalarerepresentedinthesolenoidal basisas divergence-free vector fields thus allowing elimination of the pressure gradient in theHopfequation.Basisprojectionoftheargumentfieldsandtheprojectionofthe v vi Preface Hopffdeonto finite-dimensionalsubspacesiscentral tothenumericaltreatmentof turbulent flow through pipes. It is shown to produce linear, second-order standard pdes. The example of pipe flow with periodic entrance and exit conditions is the vehicle to develop and illustrate the general theory. Two aspects of turbulence theory require the geometric and limit properties of the n-dimensional ball in Euclidian space as the dimension n goes to infinity, first, the definition and evaluation of the standard and the Lévy-Laplacian; second, the formulation of integrals in infinite-dimensional spaces. The properties of the n-dimensional ball in Euclidian space are summarized in Sect. 23.11 of Appendix A. The properties of turbulence measures and the associated characteristic func- tional are discussed at an elementary level in Chap. 6. Methods of construction of measuresininfinite-dimensionalspacesarepresentedandillustratedwithexamples. The Hopf and Lewis–Kraichnan equations (Vishik et al. [1, 2], Lewis and Kraichnan [3], Dopazo and O’Brien [4]) governing the evolution of characteristic functionalsarederivedinseveralversions.Furthermore,variantsoftheseequations are established using various local and global mappings and a general mapping equation is derived. Theindeterminatepdes(partialdifferentialequations)forfinite-dimensionalPdfs play an important role in the practical treatment of turbulence, they are deduced using the (coarse-grained) Dirac pseudo-function leading to the well-known Lundgren–Monin–Novikov hierarchy. The properties of the terms representing convection, frictional effects and external volume forces are established and examples are constructed to illustrate their properties. Furthermore, examples for the closure of these pdes are presented and the shortcomings of various arbitrary assumptions necessary to construct a solvable system of equations are discussed. Homogeneous turbulence is discussed in the light of the hypotheses of Kolmogorov and Onsager and recent experimental results leading to modifications ofthetheoryduetointernalintermittency.Thenotionofstructuresinturbulentflow fields and their classification is analysed in the spatial and material descriptions. Several examples are discussed in detail. Wall bounded flows are of prime importance for theoretical and a variety of practicalreasons.Thus,particularexamples(pipeflowandplanechannelflow)are chosen to illustrate theoretical difficulties and, briefly in Appendices C and D, simple engineering approaches for dealing with this phenomenon are presented. Theemphasisisplacedonfullydevelopedturbulenceforincompressiblefluids, butsomeaspectsofcompressiblefluidsarealsoincludedinSects.2.1,2.1.2,2.5.3, while stability and transitional phenomena are not covered, since they deserve a volume on their own and there is an enormous amount of literature on these subjects available [5–9], Chap. 9 and references therein. Davis, CA, USA Wolfgang Kollmann Preface vii References 1. Vishik, M.J.: Analytic solutions of Hopf’s equation corresponding to quasilinear parabolic equationsortotheNavier-Stokessystem.Sel.Math.Sov.5,45–75(1986) 2. Vishik,M.J.,Fursikov,A.V.:MathematicalProblemsofStatisticalHydromechanics.Kluwer AcademicPubl.,Dordrecht(1988) 3. Lewis,R.M.,Kraichnan,R.H.:Aspace-timefunctionalformalismforturbulence.Comm.Pure Appl.Math.XV,397–411(1962) 4. Dopazo,C.,O’Brien,E.E.:Functionalformulationofnonisothermalturbulentreactiveflows. Phys.Fluids17,1968–1975(1974) 5. Schlichting,H.:BoundaryLayerTheory.McGraw-Hill(1987) 6. Ruelle,D.,TakensF.:Onthenatureofturbulence.Comm.Math.Phys.20,167–192(1971) 7. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems.Comm.Math.Phys.74,189–197(1980) 8. Andereck, C.D., Liu, S.S., Swinney, H.L.: Flow regimes between independently rotating cylinders.JFM164,155–183(1986) 9. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer Verlag (2001) Acknowledgements It is a pleasure to acknowledge many fruitful discussions with J. J. Chattot (MAE Department, University of California, Davis), M. S. Chong (MAE Department, University of Melbourne, Australia), J. Janicka (EKT, TU-Darmstadt, Germany), M. Oberlack (Department of Mechanical Engineering, TU-Darmstadt, Germany), B. A. Younis (Civil and Environmental Engineering, UCD) and M. D. White (Dayton, Ohio). I am particularly indebted to Florian Ries (Department of Mechanical Engineering,TU-Darmstadt)forproviding DNSdata for thepipe flow and to Thomas O. Kollmann (Davis) for help with graphics applications. ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Navier–Stokes Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Spatial/Eulerian Description. . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.1 Incompressible Fluids . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Compressible Fluids . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Symmetries of the Euler and Navier–Stokes pdes . . . 22 2.2 Fundamental Properties of the Solutions for a Single Incompressible Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Rotation and Vorticity in the Spatial Description . . . . . . . . . . 33 2.3.1 Beltrami and Trkalian Vector Fields . . . . . . . . . . . . 35 2.3.2 Vorticity pde for Compressible Fluids . . . . . . . . . . . 35 2.4 Lamb Vector Dynamics for Incompressible Fluids . . . . . . . . . 37 2.5 Material/Lagrangean Description . . . . . . . . . . . . . . . . . . . . . . 40 2.5.1 Piola Transform … . . . . . . . . . . . . . . . . . . . . . . . . 41 ab 2.5.2 Incompressible Fluids . . . . . . . . . . . . . . . . . . . . . . . 41 2.5.3 Compressible Fluids . . . . . . . . . . . . . . . . . . . . . . . . 42 2.6 Rotation and Vorticity in the Material Description . . . . . . . . . 44 2.6.1 Divergence of the Material Vorticity . . . . . . . . . . . . 45 2.6.2 Material Vorticity in Plane Flows . . . . . . . . . . . . . . 46 2.6.3 Frozen Vector Fields. . . . . . . . . . . . . . . . . . . . . . . . 47 2.7 Velocity Gradient Tensor in the Spatial Description . . . . . . . . 49 2.8 Problems for this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3 Basic Properties of Turbulent Flows. . . . . . . . . . . . . . . . . . . . . . . . 55 3.1 Working Definition of Turbulence . . . . . . . . . . . . . . . . . . . . . 63 3.2 Asymptotic Properties of Turbulent Flows . . . . . . . . . . . . . . . 66 xi xii Contents 3.3 Number of Degrees of Freedom of the Turbulence Attractor for Maintained Turbulence. . . . . . . . . . . . . . . . . . . . 67 3.4 Problems for this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Flow Domains and Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Homogeneous Turbulence Domain Dht. . . . . . . . . . . . . . . . . . 74 4.2 Periodic Pipe Flow Domain D. . . . . . . . . . . . . . . . . . . . . . . . 75 4.2.1 Schauder Basis for Scalar Fields . . . . . . . . . . . . . . . 76 4.2.2 Schauder Basis for Vector Fields with Non-zero and Zero Dilatation. . . . . . . . . . . . . . . . . . . . . . . . . 77 4.3 Open and Noncompact Domains . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Semi-infinite Pipe: z ¼0 and z ¼1. . . . . . . . . . . 80 0 1 4.3.2 Boundary Layer Domain Dbl. . . . . . . . . . . . . . . . . . 82 4.3.3 Free Shear Layer Domain Dfs . . . . . . . . . . . . . . . . . 85 4.4 Problems for this Chapter: Flow Domains and Bases . . . . . . . 88 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 Phase and Test Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.1 Solution Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Phase Space for the Turbulence Measure: Incompressible Fluids and Homogeneous Boundary Conditions . . . . . . . . . . . 94 5.3 Phase Space: Noncompact Domains. . . . . . . . . . . . . . . . . . . . 96 5.4 Argument/Test Function Space for Characteristic Functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5 Example for a Nuclear Space. . . . . . . . . . . . . . . . . . . . . . . . . 98 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6 Probability Measure and Characteristic Functional . . . . . . . . . . . . 101 6.1 Elementary Properties of the Turbulence Measure. . . . . . . . . . 102 6.2 Turbulence Measure for Incompressible Fluids . . . . . . . . . . . . 104 6.3 Construction of Measures as Limits of Cylinder Measures. . . . 105 6.3.1 Cylinder Measures . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.2 Kolmogorov Extension Theorem . . . . . . . . . . . . . . . 106 6.3.3 Examples of Measures in Function Spaces. . . . . . . . 108 6.3.4 Wiener Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.4 Problems for this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7 Functional Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.1 Elliptic fdes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2 Parabolic fdes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.3 Problems for this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.