ebook img

Nature of W51e2: Massive Cores at Different Phases of Star Formation PDF

0.48 MB·English
by  Hui Shi
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nature of W51e2: Massive Cores at Different Phases of Star Formation

DRAFTVERSIONJANUARY17,2010 PreprinttypesetusingLATEXstyleemulateapjv.11/12/01 NATUREOFW51E2:MASSIVECORESATDIFFERENTPHASESOFSTARFORMATION HUISHI1,JUN-HUIZHAO2,J.L.HAN1, DraftversionJanuary17,2010 ABSTRACT Wepresenthigh-resolutioncontinuumimagesoftheW51e2complexprocessedfromarchivaldataoftheSub- 0 1 millimeterArray(SMA)at0.85and1.3mmandtheVeryLargeArrayat7and13mm.Wealsomadelineimages 0 and profiles of W51e2 for three hydrogenradio recombinationlines (RRLs; H26α, H53α, and H66α) and ab- 2 sorption of two molecular lines of HCN(4-3) and CO(2-1). At least four distinct continuum componentshave beendetectedinthe3′′regionofW51e2fromtheSMAcontinuumimagesat0.85and1.3mmwithresolutionsof n 0.3′′×0.2′′and1.4′′×0.7′′,respectively.Thewestcomponent,W51e2-W,coincideswiththeultracompactHIIre- a J gionreportedfrompreviousradioobservations.TheH26αlineobservationrevealsanunresolvedhyper-compact ionized core (<0.06′′ or <310AU) with a high electron temperature of 1.2×104K, with the corresponding 7 1 emissionmeasureEM>7×1010pccm- 6 andtheelectrondensityNe >7×106 cm- 3. TheinferredLymancon- tinuumfluximpliesthattheHIIregionW51e2-Wrequiresanewlyformedmassivestar,anO8staroraclusterof ] B-typestars,tomaintaintheionization. W51e2-E,thebrightestcomponentat0.85mm,islocated0.9′′eastfrom R the hyper-compactionized core. It has a total mass of ∼140M according to our spectral energy distribution ⊙ S analysisanda largeinfallrate of>1.3×10- 3M⊙yr- 1 inferredfromtheabsorptionofHCN. W51e2-Eappears . tobetheaccretioncenterinW51e2. Giventhefactthatnofree- freeemissionandnoRRLshavebeendetected, h p the massive core of W51e2-E appears to host one or more growing massive proto-stars. Located 2′′ northwest - fromW51e2-E,W51e2-NWisdetectedinthecontinuumemissionat0.85and1.3mm. Nocontinuumemission o hasbeendetectedatλ≥7mm. Alongwith themaseractivitiespreviouslyobserved,ouranalysissuggeststhat tr W51e2-NWisatanearlierphaseofstarformation. W51e2-Nislocated2′′northofW51e2-Eandhasonlybeen s detectedat1.3mmwithalowerangularresolution(∼1′′),suggestingthatitisaprimordial,massivegasclump a intheW51e2complex. [ Subjectheadings:HIIregions–ISM:individualobjects(W51e2)–stars: formation 2 v 1 1. INTRODUCTION 2004;Ketoetal.2008). 0 Observationsofhydrogenradiorecombinationlines(RRLs) Massivestarsareformedindense,massivemolecularcores. 1 were carried out toward W51e2 (Mehringer 1994; Ketoetal. Detailed physical processes in star-forming regions have not 1 2008;Keto&Klaassen 2008). Mehringer(1994) failedto de- beenwellstudieduntilrecenthigh-resolutionobservationswere . tect the H92α line in this region, which might be attributed 1 available at submillimeter wavelengths. High angular resolu- 0 tionobservationsarenecessarytounveilthephysicalenvirons to the large optical depth and/or the large pressure broaden- 0 ingoftheUCHIIregionat3.6cm. Basedontheobservations andactivitiesoftheindividualsub-coresaswellastheirimpact 1 of H66α, H53α, and H30α, Ketoetal. (2008) arguedthat the ontheoverallprocessofmassivestarformation. : pressurebroadeningisresponsibleforthebroad-linewidthsob- v W51 is a well-known complex of HII regions with about i 1◦ area in the Galactic plane (Westerhout 1958). W51A, also servedintheRRLs. X Observationsofmolecularlines(e.g.Ho&Young1996;Zhang&Ho calledG49.5-0.4,isthemostluminousregioninW51(Kundu&Velusamy r 1967).SeveraldiscretecomponentshavebeenfoundfromW51A 1997;Zhangetal.1998;Youngetal.1998;Sollinsetal.2004) a andreferredalphabeticallyasa- iintherightascension(R.A.) showedevidenceforinfall(oraccretion)gaswithin5′′(<0.2pc) aroundW51e2.ApossiblerotationwassuggestedbyZhang&Ho order (Martin 1972; Mehringer 1994). W51e is one of the (1997) on the basis of fitting the position- velocity (PV) dia- brightest regions in W51A. High-resolution centimeter obser- gramoftheNH (3,3)absorptionlineat13mm. Aspin-upro- vations have revealedthat W51e consists of severalultracom- 3 tation with an axis of position angle (P.A.) ≈20◦ was further pact(UC)HIIregions(Scott1978;Gaumeetal.1993),among suggestedbased on the velocitygradientof CH CN(8 - 7 ) at which the UC HII region of W51e2 appears to be the bright- 3 3 3 2mm(Zhangetal.1998). However,basedonthevelocitygra- est. This region is severely obscured by the dust, and no IR dientobservedfromtheH53αline,Keto&Klaassen(2008)in- detection has been made at wavelengths shorter than 20µm terpretedtheir resultsasevidenceforrotationalionizedaccre- (Genzeletal.1982).TheinferreddistancetoW51e2is∼5.1kpc (Xuetal.2009);thus,1′′correspondstoalinearscaleofabout tionflowaroundtheUCHIIregionandderivedarotationalaxis of P.A.≈- 30◦. In addition, a possible bipolar outflow along 5100AU. thenorthwestandsoutheast(NW- SE)directionswassuggested Based onthe radiocontinuumobservations,spectralenergy basedontheobservationsoftheCO(2-1)lineemission(Keto&Klaassen distribution(SED)analysesofW51e2suggestthattheemission 2008),whichappearstobeperpendiculartotheaxisofthero- sourcefromthisregionconsistsoftwocomponents,namely,(1) thermalemissionfromacolddustcomponentand(2)free- free tationalionizeddisk. However,thesouthwest(SW)elongation oftheUCHIIregioninGaumeetal.’s(1993)observationswas emissionfromahotHIIregion(Rudolphetal.1990;Sollinsetal. explainedas a collimatedionizedoutflow. On the otherhand, 1 NationalAstronomicalObservatories, ChineseAcademyofSciences, Jia20 proper-motion measurements of H2O/OH masers appeared to DatunRoad,ChaoyangDistrict,Beijing100012,China. Email: shihui,hjl@ favor a hypothetical model with an outflow or expanding gas nao.cas.cn bubbleinW51e2(Imaietal.2002;Fish&Reid2007). 2Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge, Thus,improvedimagesandcomprehensiveanalysisofhigh- MA02138,USA.Email:[email protected] 1 2 SHI,ZHAO,&HAN TABLE1 OBSERVATIONPARAMETERSFORW51E2 Parameters SMA:0.85mm SMA:1.3mm VLA:7mm VLA:13mm Observationdate 2007Jun.18 2005Sep.1 2004Feb.14 2003Sep.29 Arrayconfiguration Veryextended(8ants) Extended(6ants) AB BC PointingcenterR.A.(J2000) 19:23:43.888 19:23:43.895 19:23:43.918 19:23:43.918 Pointingcenterdecl.(J2000) +14:30:34.798 +14:30:34.798 +14:30:28.164 +14:30:28.164 Frequency(GHz) 343,353 221,231 43 22 Bandwidth 2.0+2.0(GHz) 2.0+2.0(GHz) 12.5(MHz) 12.5(MHz) On-sourcetime(hr) 2.10 4.75 5.90 3.93 Systemtemperature(K) 150∼500 100∼250 Bandpasscalibrators J1229+020,J1751+096 3C454.4 3C84 3C84 Phasecalibrators J1733- 130,J1743- 038 J1751+096,J2025+337 J1923+210 J1923+210 J2015+371 Fluxcalibrators Callisto Ceres 3C286 3C286 resolution observations at the wavelengths from radio to sub- millimeter are needed to reconcile the differences in the in- terpretation of the results from the previous observations of W51e2. In this paper, we show the high-resolution contin- e2-NW uum imageswith the SubmillimeterArray(SMA) at0.85and 1.3mmandwiththeVeryLargeArray(VLA)at7and13mm, aswellaslineimagesandprofilesofthehydrogenrecombina- tionlines(H26α,H53α,andH66α)andthemolecularlinesof HCN(4-3) and CO(2-1). In Section 2, we describe the details e2-W e2-E ofthedataprocessingandresults. InSection3, wemodelthe individualcomponentson the basis of the high-resolutionob- servationsofW51e2with theSMA andVLA.The natureand astrophysical processes of star formation cores in W51e2 are discussed. AsummaryandconclusionsaregiveninSection4. 0.85 mm 2. DATA REDUCTION AND RESULTS WeprocessedthearchivaldatafromtheSMAandVLAob- servations of W51e2 and constructed both the continuum and spectrallineimages.Detailsincalibrationandimagingaredis- FIG. 1.— High-resolution 0.85 mm continuum image of W51e2 ob- served with the SMA. Contours are ±5σ×2n (n= 0, 1, 2, 3, ... and cussedbelowalongwiththerelevantparametersthataresum- σ=7.11 mJybeam- 1). TheFWHMbeam (0.31′′×0.22′′, P.A.=60.6◦)is marizedinTable1. shownatbottomright. Threecontinuumemissioncomponentse2-NW,e2-E, ande2-Waremarkedwith“+”.Theλ3.6cmpositionoftheUCHIIregionin 2.1. TheSMAcontinuumimagesat0.85and1.3mm W51e2Gaumeetal.(1993)ismarkedwith“×”. TheobservationsofW51e2at0.85mmwerecarriedoutwith the SMA in the very extended array (eight antennas) and at Figure 1, the symbol “+” marks the positions of the compo- 1.3mmintheextendedarray(sixantennas).Thedatawerecal- nents). Thebrightestsource,W51e2-E,islocated∼0.9′′ east ibratedinMiriad(Saultetal.1995)followingthereductionin- oftheUCHIIregionwhichismarkedwith“×”forthepeakpo- structionsforSMAdata3. Thesystemtemperaturecorrections sitionat3.6cmfromGaumeetal.(1993).Thesecondarybright were applied to the visibility data. The bandpass calibration source, W51e2-W, coincides with the 3.6cm peak of the UC wasmadewithstrongcalibratorsforeachofthetwodatasets HIIregion.Thethirdcomponent,W51e2-NW,islocatedabout (Table1). ThefluxdensityscalewasdeterminedusingCallisto 2′′northwestofW51e2-E.Inaddition,thesecompactemission at0.85mmandCeresat1.3mm. componentsappeartobesurroundedbyanamorphoushaloin Corrections to the complex gains at 1.3mm were made by the continuum emission at 0.85mm. The three bright contin- applyingthesolutionsinterpolatedfromthetwonearbyQSOs uum sources were also detected in the low-resolution contin- J1751+096 and J2025+337. For the high-resolution data at uumimageat1.3mm(Figure2(a)). Moreover,aweakcontin- 0.85mm,thevisibilitydataareinitiallycalibratedwithamodel uumcomponent,W51e2-N,ispresent∼2′′northofW51e2-E. ofW51e2derivedfromobservationsinalowangularresolution at 0.87mm. The residual phase errors were further corrected 2.2. TheVLAcontinuumimagesat7and13mm using the self-calibration technique. The final continuum im- ages wereconstructedbycombiningall the line-freechannels The observations of W51e2 at 7 and 13mm were carried inbothuppersidebandandlowersidebanddata. out with the VLA (see the summarized observing parameters Figure1showsthehigh-resolution(0.3′′×0.2′′)continuum inTable1).Wemadethecalibrationsbyfollowingthestandard imageofW51e2at0.85mm. ThecomplexofW51e2hasbeen data-reductionprocedureforVLA datawithAIPS4. Then,the resolved into at least three bright, compact components (see calibratedvisibilitieswereloadedintotheMiriadenvironment. 3http://www.cfa.harvard.edu/sma/miriad 4http://www.aips.nrao.edu NATUREOFW51e2:MASSIVECORESATDIFFERENTPHASESOFSTARFORMATION 3 (a) (b) (c) e2-W e2-W e2-W H26a H53a H66a (d) (e) (f) FIG. 2.— (a): 1.3mmcontinuumimageofW51e2observedwiththeSMA.Contoursare±5σ×2n(n=0,1,2,3,... andσ=14.0mJybeam- 1). TheFWHM beam(1.35′′×0.69′′,P.A.=- 87.4◦)isshownatbottomright.Thethreecomponentsdetectedat0.85mmtogetherwiththeadditionalcomponente2-Ndetectedat 1.3mmaremarkedwith“+”. Theposition“+”ofthesubmillimetercomponentsandthepeaksofthe3.6cmcontinuum(“×”)andH26α(“⋆”)arealsomarked intherestoftheimages. (b): 7mmcontinuumimageofW51e2observedwiththeVLA.Contoursare±5σ×2n/2(n=0,1,2,3,... andσ=1.12mJybeam- 1). TheFWHMbeam(0.40′′×0.15′′,P.A.=80.3◦)isshownatbottom-right. (c): 13mmcontinuumimageofW51e2observedwithVLA.Contoursare±5σ×2n (n=0,1,2,3,...,andσ=0.50mJybeam- 1). TheFWHMbeam(0.23′′×0.10′′,P.A.=82.6◦)isshownatbottomright. (d): ImageoftheH26αlineemission integratedfrom25kms- 1to84kms- 1fromW51e2. Contoursare±5σ×2n(n=0,1,2,3,... andσ=0.146Jybeam- 1 kms- 1). TheFWHMbeam(0.25′′)is shownatbottomright. AlltheRRLimagesareconvolvedtoacommoncircularbeam(0.25′′).ThestardenotesthepeakpositionoftheH26αlineandismarked intherestoftheRRLimages. (e): ImageoftheH53αlineemissionintegratedfrom22kms- 1 to101kms- 1. Contoursare±5σ×2n (n=0,1,2,3,... and σ=9.68×10- 3Jybeam- 1kms- 1).(f):ImageoftheH66αlineemissionintegratedfrom24kms- 1to120kms- 1.Contoursare±5σ×2n/2(n=0,1,2,3,...and σ=6.14×10- 3Jybeam- 1kms- 1). TheimagingandfurtheranalysiswerecarriedoutwithMiriad. with a 3σ cutoff in the velocity range from 25 to 84km s- 1. ThedirtyimagesweremadeusingINVERTwithrobustweight- The H26α line emission from the UC HII region(W51e2-W) ing(robust=0)andwerecleanedwiththehybriddeconvolution appearstobeverycompactandhasnotbeenresolvedwiththe algorithm.Figures2(b)and2(c)showthecontinuumimagesat beam of 0.25′′, suggesting thatthe intrinsic source size of the 7 and 13mm, respectively. Strong continuumemission is de- hyper-compactHII core is <0.06′′. The peak position of the tectedfromW51e2-Watboth7and13mmingoodagreement integrated H26α line emission (stars in Figure 2) appears to withpreviousobservationsatcentimeters(Gaumeetal.1993). haveasignificantoffsetof∼0.15′′fromthecontinuumpeakat In addition,a weakbutsignificant(>10σ)emissionfeatureat 13mm(alsosee theGaume’spositionin Figure2(d)). Unlike W51e2-Ehasbeendetectedatonly7mm. AsshowninFigure the other RRLs and continuum emission at centimeter wave- 2(b), the weak 7mm continuum source at W51e2-E has been lengths, the line emission at the frequency of the H30α line clearlyseparatedfromtheUCHIIregion,W51e2-W. (theimageisnotshowninthispaper)showsanextendeddistri- butioncoveringtheentire3′′ region,suggestingthattheH30α 2.3. Hydrogenrecombinationlines line might have been severely contaminated by one or more molecularlinesinW51e2(e.g.,C H CNwitharestfrequency For the line cubes, the continuum emission was subtracted 3 7 of231.9009GHz). using the linear interpolationfrom the line-free channelswith ThelineofH66αisbroadandweak,whichisbarelycovered UVLIN.TheH26αline(353.623GHz)wasincludedintheline by the VLA correlator band with which we had difficulty de- cubes made from the SMA data at 0.85mm. We also made a terminingtheline-freechannels. Instead,thecontinuumlevels lineimagecubetocovertheH30αline(231.901GHz)fromthe weredeterminedbyaveragingallchannelsexcludingafewrel- SMAdataat1.3mm. BoththeH26αandH30αlinedatawere resampled to 1km s- 1. The rmsnoises of 49mJy beam- 1 and ativelystronglineemissionchannelsandweresubtractedfrom 81mJy beam- 1 in each of the channelimages are inferredfor the visibility data. The uncertaintyis <5% in the continuum levels due to the line contamination. The image cubes of the theH26αandH30αlineimagecubes,respectively.Figure2(d) H53αandH66αlineswerecleanedandconvolvedtoacircular showstheintegratedlineintensityimageoftheH26αlinemade 4 SHI,ZHAO,&HAN corecorrespondstothecoldgasinfrontofthedustcoremov- ing toward it, i.e., the infall. The CO(2-1) spectrum shows a broaderredshiftedfeatureinabsorptionthanthatofHCN.Due tothepoorangularresolutionintheCO(2-1)observations,the observedbroadprofileinabsorptionis causednotonlybythe infallbutalsobytheoutflow. Inparticular,thehighredshifted absorptionarisesverylikelyfromtheoutflowgas. Incompari- sonwiththatofW51e2-E,thespectrumtowardW51e2-Wonly showsaweakspectralfeature(Figure4(d))whichcanbechar- acterized as an inverse P Cygni profile, suggesting that only littlemoleculargas(ifpresent)fallsontotheUCHIIregion. Toshowthespatialdistributionoftheabsorptiongas,wecar- riedoutamomentanalysis. Thecalculationofthezerothmo- mentcorrespondsto the integrated intensity over the velocity. Inordertoavoidcancellationbetweenemissionandabsorption FIG. 3.— Profiles of hydrogen recombination lines, H26α, H53α, and spectralfeaturesinthesamebeamarea,weseparatetheabsorp- H66α, integrated from W51e2-W in an area of 0.5′′×0.5′′ centered at the tion and emission in the moment calculation. We found that H26αlinepeak. Allthelineimageshavebeenconvolvedwiththesamecir- both the blueshifted and redshifted emission of the HCN(4-3) cular beam of0.25′′. Thespectra aremultiplied with theratios ofthe rest line(theimagesarenotshowninthispaper)isextendedfrom fvreerqtiuceanlcdyasohfetdhelinHe2d6eαnoltiensethtoetshyestRemRaLticrevstelforceiqtyueonfc5ie3s.9(±νH12.61αk/mνRsR- L1)w. hTichhe northwest to southeast across W51e2-E, which is, in general, wedeterminedfromthepreviousmeasurementsofsevendifferenthotmolec- consistent with the molecular outflow direction as suggested ularlines(seeSection2.4). basedontheCO(2-1)lineobservation(Keto&Klaassen2008). TheHCN(4-3)absorption,integratedfrom44to62kms- 1with a5σcutoffineachchannel(Figure4(a)),isfoundtobemainly beamof0.25′′,givingthermsnoisesof2.4and1.5mJybeam- 1 concentratedonW51e2-E.Fromthelower-resolutionobserva- per channel, respectively. The integrated intensities of H53α tion, thedistributionofthe CO(2-1)absorptionline integrated (witha3σcutoffineachchannel)andH66α(witha2σcutoffin from43 to 71km s- 1 (a 5σ cutoffin each channel, see Figure eachchannel)areshowninFigures2(e)and2(f),respectively. 4(b)), also shows the absorptionpeaks at W51e2-Einstead of BothH53α,andH66αlinesaredetectedfromonlyW51e2-W, W51e2-W. We also note that the CO(2-1) absorption shows a theUCHIIregion. FortheH26α,H53α,andH66αlinesfrom relatively extendedfeature north of W51e2-E, further indicat- W51e2-W,weintegratedthelineemissionregionwithasizeof ingthattheabsorptionofCO(2-1)mightindeedbesignificantly 0.5′′aroundtheH26αpeakposition.TheprofilesoftheH26α, contaminatedbytheoutflowgas. H53α and H66α lines are multiplied by the frequency ratios Alongwiththeabsorptionspectra,thedistributionoftheab- of ν /ν , ν /ν and ν /ν , respectively, H26α H26α H26α H53α H26α H66α sorbinggasinW51e2evidentlydemonstratesthatthe submil- asshowninFigure3. Themeasurementsofthepeakintensity limeter(dust)coreW51e2-E,insteadofW51e2-W(theUCHII (I ), radialvelocity(V ), andFWHM linewidth(∆V)for peak LSR region),isthecenterofaccretionforthemajorityofthehigh- theH26α,H53α,andH66αlinesaregiveninTable3. densitygasfromthismolecularcore. 2.4. AbsorptionofHCN(4-3)andCO(2-1) 2.5. SpectralEnergyDistributions The systematic velocity of W51e2 varies when it is mea- In lack of high angular resolution observations at millime- sured using different hot molecular lines (Sollinsetal. 2004; ter/submillimeter wavelengths, the flux densities from the en- Remijanetal. 2004; Zhangetal. 1998; Rudolphetal. 1990). tireregionofW51e2wereconsideredinthepreviousanalyses Inordertominimizethepossibleeffectsofthedifferentdistri- oftheSED(Rudolphetal.1990;Sollinsetal.2004;Ketoetal. butionswithdifferentmolecularlines,weaveragedthesemea- 2008).Withthehigh-resolutionobservationsatthewavelengths surementsofmolecularlinesH13CO+,SO ,SiO,CH CN,and 2 3 fromradiotosubmillimeter,wearenowabletospatiallysepa- HCO+ and obtained a mean value of 53.9±1.1km s- 1. We rateindividualemissioncomponentsinourSEDanalysis. adoptthis value as the systematic velocityfor W51e2-Ehere- Addingthe data at3.6cm (Gaumeetal. 1993) and at2 and after. 6cm (Rudolphetal. 1990) along with the continuum data at The lines of HCN(4-3) at ν = 354.505GHz and CO(2-1) 0 thefourwavelengths(13,7,1.3,and0.8mm)discussedinthis at ν = 230.538GHz were covered in the SMA observations 0 paper,we havesevenmeasurementsin fluxdensitiescovering at 0.85mm and 1.3mm, respectively. The dirty images were nearly 2 order of magnitude in frequency. For 13, 7, and 0.8 made with natural weighting and deconvolved with the Hog- mm data, the flux density measurementswere made by fitting bomClarkSteerhybridalgorithm. Thefinalrmsnoisesofσ= a Gaussian to the individual emission components in the im- 65 and 94mJy beam- 1 per channel (1km s- 1 in the channel ageswiththesamesizeoftheconvolvedFWHMbeam(0.4′′). width)wereachievedforHCN(4-3)andCO(2-1),respectively. For the 1.3mm data, we determined the flux density by fit- Figure4showsthespectraofHCN(4-3)towardW51e2-Eand tingmultipleGaussiancomponentstotheemissionfeaturesin W51e2-WandthespectrumofCO(2-1)nearthepeakposition a relativelylower resolution(1.1′′), which results in relatively of W51e2-E.A significantabsorptionof the HCN(4-3)line is largeuncertainties. FortheemissioncoresW51e2-W,W51e2- detectedagainstthesubmillimetercore,W51e2-E,andmostof E,W51e2-NW,andW51e2-N,thefluxdensitiesdeterminedare which is redshifted with respect to the systematic velocity of givenin Table 2. The relevantcontinuumspectra for the four 53.9±1.1kms- 1asindicatedbytheverticaldashedlineinFig- emissioncomponentsareshowninFigure5. ure4(c). NotethattheredshiftedabsorptionofHCNobserved withthehighangularresolutionagainstthecompactcontinuum NATUREOFW51e2:MASSIVECORESATDIFFERENTPHASESOFSTARFORMATION 5 White Contours: CO(2-1) Contours: HCN(4-3) absorption Black Contours: HCN(4-3) Color: 0.85 mm Color: 0.85 mm (a) (b) (c) (d) (e) FIG. 4.— (a): Image of the HCN(4-3) absorption line integrated from 44 to 62 km s- 1. Dashed contours are ±5σ×2n (n=0, 1, 2, 3, ... and σ=0.113Jybeam- 1 kms- 1), overlaid onthegray-scaled continuum imageat0.85mm. TheFWHMbeam0.33′′×0.24′′ (sup=0)isshownatbottomright. (b):ImageoftheCO(2-1)absorptionlineintegratedfrom43to71kms- 1.Whitedashedcontoursare±5σ×2n(n=0,1,2,3,...andσ=0.771Jybeam- 1kms- 1), overlaidonthegray-scaledcontinuumimageat0.85mm. TheFWHMbeam1.35′′×0.73′′(sup=0)isshownatbottomright. (candd): Thespectralprofilesof theHCN(4-3)absorptionlinetowardW51e2-EandW51e2-W,respectively. Theverticaldashedlinedenotesthesystematicvelocityof53.9±1.1kms- 1.(e):The spectralprofileoftheCO(2-1)absorptionlinetowardW51e2-E,withaverticaldashedlineforthesystematicvelocity. 3. NATUREOF THEW51E2COMPLEX with the radio continuum images observed at 1.3cm (Figure Four distinct componentshave been identified in the 3′′ re- 2(c) and Gaumeetal. 1993), 3.6cm (Gaumeetal. 1993), and 7mm(Figure2(b)),suggestingthattheNE- SWextensionob- gionofW51e2fromthehigh-resolutionimagesatwavelengths served in the H53α line corresponds to the expansion of ion- fromcentimetertosubmillimeter(Figure1and2). Thenature izedgas(oroutflow). TheH66αlineemissionalsohasasim- ofthesecomponentsisdiscussedasfollows. ilarelongation(Figure2(f)),withpeakintensitynearGaume’s 3.1. W51e2-W:UCHIIregion position in the NE and an extension structure in the SW. We also found a significant velocity gradient of the H53α line in W51e2-Wistheonlycoredetectedatcentimeterwavelengths, theW51e2-Wregion,inagreementwithwhatwasobservedby anditscontinuumemissionisdominatedbythefree- freeemis- Keto&Klaassen(2008), redshiftedintheSWandblueshifted sion from the ionized core and traces the thermal HII region in the NE. Thebroadwingsofthe recombinationlines shown around the central star. Figure 2(b)- (f) show the UC HII re- in Figure 3 (also in Table 3) correspondingto extended, opti- gion,W51e2-W,includinganunresolvedcore(apossibleion- callythinemissionindicatethatitishardtoexplainthemasan ized disk) and a northeastand southwest (NE- SW) extension ionizeddisk. ThevelocitygradientobservedintheH53αline as a possible outflow. The NE and SW extensions are best to is more likely produced by an ionized outflow rather than an beseenat7and13mminFigure2(b)and(c),whichisingood ionizedaccretiondisk. agreementwiththepreviousobservationsat3.6and1.3cmby We fitted the SED of W51e2-W with a free- free emission Gaumeetal.(1993).Gaumeetal.(1993)foundthespectralin- model dicesαofabout2(opticallythick)and0.4fortheNEandSW extensionsofW51e2-W,respectively,andsuggestedthatthere Sν =ΩsBν(Te)(1- e- τc) (Jy), (1) isaone-side(SW)collimatedionizedoutflowfromthecore. whereSν isthefluxdensityatfrequencyν,Ωsisthesolidangle TheH26αlineisanexcellenttracerforhyper-compaction- ofthesource,Bν(Te)isthePlanckfunction,andTe istheelec- izedcores(starinFigure2(d)),providingagooddiagnosisfor trontemperature. Thecontinuumopticaldepthisexpressedby the presence of an ionized disk. On the basis of the SMA (Mezger&Henderson1967)as observations with an angular resolution of 0.25′′, the hyper- T - 1.35 ν - 2.1 EM compactionizedcore whichpeakedat 59.1kms- 1 in W51e2- τ =0.0824 e α(ν,T).(2) c K GHz pccm- 6 e Whasnotbeenresolved,givingalimitontheintrinsicsizeof (cid:18) (cid:19) (cid:16) (cid:17) (cid:18) (cid:19) θ <0.06′′ and linear size <310AU from a Gaussian fitting. Theemissionmeasure(EM)canbewrittenas s TheelongationshownintheH53αimage(Figure2(e))agrees EM=N2Lf , (3) e V 6 SHI,ZHAO,&HAN TABLE2 COREFLUXESOFW51E2ATCENTIMETERTOSUBMILLIMETERBANDS parameters W51e2-W W51e2-E W51e2-NW W51e2-N ReferencesandBeamsizeΘ R.A.(J2000) 19:23:43.90 19:23:43.96 19:23:43.87 19:23:43.97 Thispaper Decl.(J2000) +14:30:34.62 +14:30:34.56 +14:30:35.97 +14:30:36.57 Thispaper Deconvolvedsize(′′)∗ 0.45 0.71 0.38 1.24 Thispaper S (Jy) 0.35±0.07 3.30±0.20 0.81±0.34 Thispaper:Θ=0.4′′ 0.85mm S (Jy) 2.15±0.12 0.62±0.12 0.73±0.08 Thispaper:Θ=1.1′′ 1.3mm S (Jy) 0.62±0.09 0.04±0.01 <0.0052 <0.0052 Thispaper:Θ=0.4′′ 7mm S (Jy) 0.43±0.03 <0.004 <0.004 <0.004 Thispaper:Θ=0.4′′;Gaumeetal.(1993):upperlimit 1.3cm S (Jy) 0.21±0.05 Rudolphetal.(1990):Θ=0.4′′ 2cm S (Jy) 0.067±0.004 <0.001 <0.001 <0.001 Gaumeetal.(1993):Θ=0.21′′;Gaumeetal.(1993):upperlimit 3.6cm S (Jy) 0.025±0.003 – – – Rudolphetal.(1990):Θ=0.6′′ 6cm ∗Thesizesofe2-W,e2-E,ande2-NWarederivedfromthe0.85mmimage,ande2-Nisfromthe1.3mmimage. where N is the mean electron density, L is the path length, AssumingN(He)/N(H)=0.096(Mehringer1994)andα(ν,T)= e e and f is the volume filling factor. The dimensionless factor 1,wehaveT∗=12,000±2,000Kwhichappearstobeconsid- V e α(ν,T)istheorderofunity(Mezger&Henderson1967). For erablyhigherthanthemeanelectrontemperatureoftheoverall e ahomogeneousionizedcore,themodelcanbeexpressedwith HIIregion. TheEMofthehyper-compactHIIcorecanbeas- two freeparameters,namely,T andEM,forthefirstapproxi- sessedas e mationdescribedabove. T 3/2 θ - 2 λ S ThesolidcurveinFigure5(a)showsthebestfittothedata, EM=7.1pccm- 6 e s L × suggestinga turnoverfrequencyofν0≈27GHz. Thederived (cid:18)K(cid:19) (cid:18)arcsec(cid:19) (cid:18)mm(cid:19)(cid:18)Jy(cid:19) mean values for the physical parameters for the overall HII ∆V region, Te=4900±320K and EM=(1.3±0.2)×109pc cm- 6, are kms- 1 , (7) similar tothepreviousresultinZhangetal.(1998). Thus, the (cid:18) (cid:19) mean electron density of N ∼3×105cm- 3 is inferred on the whereTe is the electrontemperature,θs is the intrinsicsize of assumptionofLf ∼0.5′′×5e.1kpc. the HII region, SL is the peak line intensity in Jy, ∆V is the V FWHM line width in km s- 1, and λ is the observing wave- Both the Lyman continuumflux(N ) and the excitationpa- L lengthinmillimeters. BasedonthemeasurementsoftheH26α rameter(U)canbederived(Rubin1968;Panagia1973;Matsakisetal. linefromthehyper-compactionizedcoretogetherwiththeas- 1976)asfollows: sumption of T ≈T∗, EM >7×1010 pc cm- 6 is found. The e e S D 2 ν 0.1 corresponding lower limit of the volume electron density is NL &7.5×1046s- 1 Jyν kpc GHz × Ne >7×106cm- 3 assuming LfV <0.06′′×5.1 kpc. The in- Te - 0.45(cid:18), (cid:19)(cid:18) (cid:19) (cid:16) (cid:17) (4) fgeersrtedthhaitghtheeleHct2r6oαntleimnepearraistuesrefarnodmhaighhoetl,ecvterroyncdoemnspitayctsurge-- 104K gion(<0.06′′) whichisprobablycloseto thecentralionizing (cid:18) (cid:19) 1 4 star(s). With the nature of optically thin and sensitive to the U = 3.155×10- 15pccm- 2 NL 3 Te 15, (5) high-density ionized gas, the H26α line is an excellent tracer s- 1 104K of the hot, high-density ionized region surroundingthe ioniz- (cid:18) (cid:19) (cid:18) (cid:19) whereDisthedistancetothesource.Weassumedα(ν,T)∼1. ing source. In comparison with the mean electron tempera- Basedonourmodelfitting,thecontinuumemissionfromee2-W ture(Te=4900K)inferredfromthefree- freeemissioninalarge becomesopticallythin ata frequency>80GHz (τ <0.1),and area(0.5′′),thehightemperatureofTe=12,000Kderivedfrom we obtained N =3.0×1048 s- 1 and U=37.6pc cm- 2. The in- theH26αinacompactarea(<0.06′′)suggeststhatatemper- L ferredLymancontinuumfluxrequiresamassivestarequivalent aturegradientispresentalongtheradiusoftheUCHIIregion toazero-agemean-sequencestaroftypeO8locatedinsidethe W51e2-W. UC HII regionW51e2-W(Panagia1973), whichis consistent Observationsof RRLs in a wide rangeatwavelengthsfrom withtheresultofO7.5inRudolphetal.(1990).Alternatively,a centimeterstosubmillimetersalsoofferameanstofurtherex- clusterofB-typestarscanalsoberesponsiblefortheionization. plorephysicalconditionsofW51e2-W.Table3summarizesthe Thetotalionizedmasswithin0.5′′ ofW51e2-Wis∼0.02M , reliable measurements of three RRLs from W51e2, namely, ⊙ whichagreeswiththevaluederivedbyGaumeetal.(1993). H26α, H53α, and H66α. We plotted the spectral profiles of Forthehyper-compactcore(θ <0.06′′)asobservedwiththe thethreeRRLstogether,andeachoftheprofileshasbeenmul- s H26αline,theelectrontemperaturecanbeestimatedfromthe tipliedby a factorof ν26α/νnα, the ratio ofthe H26αlinefre- H26αlineandthecontinuumfluxdensityat354GHz(0.85mm) quency to that of RRLs (Figure 3). In the case of optically ontheassumptionofopticallythin,LTEcondition: thinandno-pressurebroadening,thethreelineprofilesshould match each other. ComparingH53α with H26α, we find that T∗ = 6985 ν 1.1 ∆VH26α - 1 S0.85mm × thepeakintensitiesofthetwolinesagreewitheachother,which e α(ν,T) GHz kms- 1 S suggeststhat,ingeneral,boththeH53αandH26αlinesareun- "(cid:18) e (cid:19)(cid:16) (cid:17) (cid:18) (cid:19) (cid:18) H26α (cid:19) deranopticallythin,LTEcondition. Severalvelocitypeaksin 0.87 1 the H26α line indicate multiple kinematic components in the . (6) hyper-compactHII core. The H53α line is characterizedbya 1+N(He)!# N(H) relativelysmooth profile with large velocitywings. The large NATUREOFW51e2:MASSIVECORESATDIFFERENTPHASESOFSTARFORMATION 7 (a) (b) (c) (d) FIG.5.— TheSEDforW51e2cores.(a):SEDfittingforW51e2-Wwithafree- freeemissionmodel.Blackpointsdenotethemeasurementsfromthiswork,and theasterisksarefromRudolphetal.(1990)andGaumeetal.(1993).AllfluxvaluesarelistedinTable2.(b):TheSEDfittingfortheW51e2-Ecorewithathermal dustemissionmodel. ThearrowsdenotetheupperlimitsfromRudolphetal.(1990)andGaumeetal.(1993). (c): TheSEDfittingfortheW51e2-NWcore. The upperlimitofthefluxdensityat43GHz(7mm)isfromourdata(3σofthe7mmimage).(d):TheSEDfittingfortheW51e2-Ncore. velocitywingsobservedintheH53αlinecanbeexplainedby TABLE3 thelargevelocitygradientinthelower-densityelectrongasof the ionized outflow (Gaumeetal. 1993). However, the line PARAMETERSOFRRLSDERIVEDFROMOURDATA∗ intensity of H66α appears to be significantly weaker than the H26α H53α H66α othertwohigh-frequencyRRLs. Thepeakofthemodifiedline RestFrequency(GHz) 353.623 42.952 22.364 profile of H66α is a factor of ∼5 less than that of the other Measurements two. Considering the fact that the frequency of H66α is be- Ipeak(Jy) 1.29±0.02 0.137±0.001 0.015±0.003 lowtheturnoverfrequencyofν0≈27GHz,wefoundthatthe VLSR(kms- 1) 59.1±0.2 60.4±0.2 62.1±1.3 H66αlinefromtheionizedgasisobscuredseverelyduetothe ∆V (kms- 1) 23.1±0.5 32.0±0.3 35.1±8.3 self-absorption process in the hyper-compactHII core. From Derivedlinebroadenings Equation(2),ameanopticaldepthofτc=1.6atνH66α=22.36 ∆VP(kms- 1) 0.01 1.3 6.5 GHzisfound. Theexponentialattenuationofexp(- 1.6)≈0.2 ∆VT (kms- 1) 15.0 15.0 15.0 suggeststhattheH66αlineisattenuatedmainlyduetotheself- ∆Vt (kms- 1) 17.5 28.3 31.1 absorptionintheionizedcore. Inaddition,thepressurebroad- ∆VD(kms- 1) 23.1 32.0 34.5 eningeffectwhichweakensthelowerfrequencylinesneedsto ∗All line profiles are integrated from the 0.5′′×0.5′′ region around beassessed. thepeakpositionofH26αfrommapsofthesamebeamsizeof0.25′′. ThetotallinewidthofRRLs(∆V)canbeexpressedbythe Dopplerbroadening(∆V )andpressurebroadening(∆V ).Ac- D P cordingtoBrocklehurst&Leeman(1971)andGordon&Sorochenkowhere∆V istheturbulentbroadeningofthegasincludingbroad- t (2002),wehave ening due to outflows and disk rotations and n is the princi- palquantumnumberofthetransition. Wecalculatedbroaden- T ∆V 2 ∆VD=kms- 1s0.0458× Ke + kmst- 1 , (8) imngeasnoenletchteromnedaennseitlyec(tNron≈t3e×m1p0e5ractmur-e3)(Toeft≈he49U0C0KH)IIarnedgiothne. (cid:18) (cid:19) (cid:18) (cid:19) e ∆VP=3.74×10- 14kms- 1n4.4 mλm cmNe- 3 × Tprheessthuerermbarolabdroenadinegniinsga(s∆trVoTn)gisfu1n5cktimonso- 1fftohreTper=in4c9i0p0alKq.uTahne- T - 0.1 (cid:18) (cid:19)(cid:18) (cid:19) tfuremquneunmcybleirn,eis..e.F,o∆rVthPeihnicgrhe-afsreesqudernacsyticlianlley(Hto2w6aαr)d,tthheeplorews-- Ke , (9) surebroadening(∆VP=0.01kms- 1)canbeignored,whilefor (cid:18) (cid:19) the H66α line, the pressure broadening of ∆V =7km s- 1 be- P ∆V = ∆V2+∆V2, (10) comessignificant. Thepressurebroadeningis∆V =76kms- 1 D P P q 8 SHI,ZHAO,&HAN fortheH92αline,whichcanactuallywashouttheprofileofthe surroundingmolecular gas as indicated by both the HCN and lineemission. Thus,inadditiontotheopacityeffect,thepres- COabsorptionlines(seeSection2.4). Thisproposedscenario surebroadeningmayalso makeaconsiderablecontributionto forW51e2-Eisalsoconsistentwiththehourglass-likemagnetic diminishtheH92αlinewhichwasnotdetectedintheobserva- fields inferred from polarization measurements of Tangetal. tionsofMehringer(1994). Theturbulentand/orthedynamical (2009) for the W51e2 region. The configuration center of B motionsoftheionizedgascontributeatotalof∆V ≈18kms- 1 vectorscoincideswith the peak position of the W51e2-E dust t in the line broadening for the H26α line and ∆V ≈28 and core. t 31km s- 1 for the H53α and H66α lines, respectively. The From a Gaussian fitting to the absorption spectrum of the H26α line traces the high-density ionized gas in the hyper- HCN(4-3)towardthecenterofW51e2-E(Figure4(c)),wede- compact core or the ionized disk (if it exists) and is less sen- terminedthepeaklineintensity∆I =- 1.3±0.1Jybeam- 1,the L sitive to the lower-density outflow which produces the broad linecentervelocityV =56.4±0.2kms- 1andthelinewidth HCN wingsinthelineprofiles.Theturbulentand/ordynamicalbroad- of ∆V =9.5±0.4km s- 1. The infall velocity of the gas is HCN ening becomes dominant in the H53α and H66α lines, and theoffsetbetweenthecentervelocityandthesystematicveloc- theselowerfrequencyRRLs(H53αandH66α)bettertracethe ity, i.e., V =V - V ≈2.5 km s- 1. The peak continuum in HCN sys lower-densityelectrongasintheionizedoutflow. intensityof W51e2-Eat 0.85mm is I =1.2±0.01Jy beam- 1 C Inshort,W51e2-Wconsistsofahyper-compactHIIcore(< (correspondingtoabrightnesstemperatureof144±1K).The 310AU)withanemissionmeasureofEM>7×1010pccm- 6 ratio of - ∆I /I ∼1 suggests thatthe absorptionline is satu- L C andanionizedoutflow. Anearly-typestarequivalenttoanO8 rated. Thus, a lower limit on the optical depth (see Qinetal. star (or a cluster of B-type stars) is postulatedto have formed 2008) is τ >3. Assuming that the excitation temperature HCN withinthehyper-compactHIIcore. Thebroadeningoftheline ofHCN(4-3)equalsthedusttemperature,100K,weobtaineda profilesisdominatedbytheDopplerbroadeningincludingboth lowerlimitofHCNcolumndensityof7.9×1015cm- 2. Taking thermalandturbulence/dynamicalmotions. Pressurebroaden- [H ]/[HCN]∼0.5×108(Irvineetal.1987)andthesizeofthe 2 ing becomes significant only for the H66α line and the lines infallregionas0.75′′ (∼4000AU, see Figure4(a)),we found withalargerprincipalquantumnumber. that the hydrogen volume density N ∼6.9×106cm- 3. The H2 infallrateofthegascanbeestimatedby 3.2. W51e2-E:Amassiveproto-stellarcore θ 2 D 2 V W51e2-Eislocated∼0.9′′eastoftheUCHIIregionW51e2- dM/dt =2.1×10- 5M⊙yr- 1 arcisnec kpc kmins- 1 × W. It is the brightest source in the 0.85mm continuumimage (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) N (Figure1). Theflux densitydropsdrasticallyat7mm (Figure H2 , (12) 2(b)).Itcannotbedetectedatlongerwavelengths.TheSEDof 106cm- 3 the continuum emission from W51e2-E (Figure 5(b)) appears where 2θi(cid:18)n =0.75′′ i(cid:19)s the diameter of the infalling region, D toarisefromadustcoreassociatedwithproto-stars. is the distance to the source,Vin is the infall velocity, and the denWsiittyhfthroemRaayhleoimgho-gJeenaenosuasp,pisrootxhiemrmatiaolnd,uthsteccoorneticnaunumbeflduex- rmivoeldecpualraarmmeatessrsraatlioowmer/mlimH2it=o1f.i3n6failslraastseu1m.3ed×.1W0-i3thMth⊙eydr-e1- scribedas(Launhardt&Henning1997) isinferred,suggestingthatW51e2-Eistheaccretioncenterof theW51e2complex. β κ ν ν 2 Sd(ν)=6.41×10- 6Jy cm20g- 1 ν GHz × 3.3. W51e2-NWandW51e2-N M T (cid:18) D -(cid:19)2 (cid:18) 0(cid:19) (cid:16) (cid:17) W51e2-NWwasclearlydetectedbyTangetal.(2009)inthe d d , (11) continuumemissionat0.87mm. Theyalsofoundasignificant M⊙ K kpc concentrationofBfieldsatthee2-NW.Genzeletal.(1981)and (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) where κ is the dust opacity at frequency ν , β is the power- Imaietal.(2002)detectedbrightandcompactH Omasersnear 0 0 2 law indexof the dustemissivity, M is the mass of dust, T is thissource. Wealsodetectedlocalenhancedcontinuumemis- d d the dusttemperatureinK, andD isthedistancetothe source. sion at 0.85 and 1.3mm. No significant continuum emission Weadoptthedustopacityvalueofκ(λ=1.3mm)=0.8cm2g- 1 has been detected at 7 and 13mm (Figure1 and 2), and there (Ossenkopf&Henning1994;Launhardt&Henning1997)and arenosignificantabsorptionlinesofHCN(4-3)andCO(2-1)in havethreefreeparametersforthedustcore(M ,T ,andβ). this region. We fitted the SED of continuum emission with a d d ThesolidlineinFigure5(b)showsthebestleast-squaresfit- thermaldustmodelas shownin Figure 5(c). A lowerlimit of ting to the observed data. The index of β =0.26±0.08 de- β ≥0.35 is derived from the fitting, which leads to an upper rivedfromourfittingindicatesthatemissionfromthee2-Ecore limit of M T ≤39M K. Assuming the dust temperature in d d ⊙ mightbedominatedbylargegrainsofdust(Miyake&Nakagawa thisregiontobe∼100K,weinferredanupperlimitof40M ⊙ 1993; Chenetal. 1995; Andrews&Williams 2007). In addi- in the total gas mass if the ratio of H gas to dust is equal to 2 tion, becauseofa lackoffluxdensitymeasurementsathigher 100. W51e2-NWappearsto be a massivecoreata veryearly frequenciesorshorterwavelengths,thedustmassandtempera- phaseofstarformation. turearedegenerateinourbestfitting,i.e.,M T =142±9M K. Located ∼ 2′′ north from W51e2-E, W51e2-N is detected d d ⊙ Remijanetal.(2004)derivedthekinetictemperatureinW51e2 incontinuumemissionfromourlower-resolution(1.4′′×0.7′′) tobe153±21Kfromthehigh-resolutionobservationsofCH CN, image at 1.3mm (Figure 2(a)). This source appears to be re- 3 whichisclosetothedusttemperatureT =100KusedinZhangetal. solvedoutwith a high angularresolution(0.3′′×0.2′′) obser- d (1998). AdoptingthatT =100Kandassumingthattheratioof vationat0.85mm. Nosignificantcontinuumemissionwasde- d H gastodustis100,wefoundthatthetotalmassof∼140M tected at the longer wavelengths. The SED consisting of the 2 ⊙ is in the W51e2-E core. Emission from the W51e2-E region fluxdensityat1.3mmandtheupperlimitsat7,13,and36mm has been slightly resolved, so that the dust core of W51e2-E is also fitted with a thermal dust model. From the fitted val- might host a number of proto-stellar cores which accrete the uesoftheparametersβ≥0.75andMdTd≤68M⊙K,wefound NATUREOFW51e2:MASSIVECORESATDIFFERENTPHASESOFSTARFORMATION 9 anupperlimitofM .70M ifT ∼100KandtheH gasto HCNmolecularlineinabsorptionagainstthecompactHIIre- d ⊙ d 2 dustratiois100. Nomaseractivitieshavebeendetectedfrom gion indicates that the significant accretion onto this core has W51e2-N, suggesting that W51e2-N is probably a primordial been stopped. The line ratios between the H26α, H53α, and molecularclumpinW51e2. H66αshowthatboththeH26αandH53αlinesfromW51e2- W are in an optically thin, LTE condition. The emission of 3.4. ApropagatingscenarioofstarformationinW51e2 the H66α line from the hyper-compactcore appears to be at- tenuated mainly due to the self-absorption in this HII region. Apparently,inthemassivemolecularcoreW51e2,thegravi- The line profile of the H26α appears to be dominated by the tationalcollapseoccurredfirstatW51e2-WwhereanO8staror Dopplerbroadeningduetothethermalmotionsofthehotelec- aclusterofB-typestarswereformed. Basedontheabsorption tronswhilethelinebroadeninginboththeH53αandH66αis spectrumofthe HCN line, thereappearstobelittle molecular dominatedbytheDopplereffectduetothedynamicalmotions gas presentin the immediate environs. The accretion appears of the ionized outflow. The pressure broadening in both the to be pausedby the intensiveradiationpressure fromthe cen- tral ionized star(s). Most of the surrounding gas (∼0.02M ) H26αandH53αlinesisnegligibleandbecomessignificantfor ⊙ theH66αlinecorrespondingto∆V ∼7kms- 1. has been ionized. The thermal pressure in the UC HII region P 2. W51e2-Eisamassive(∼140M )dustcoreassuggested drives an ionized outflow from the ionized core. The submil- ⊙ based onthe SED analysis. No hydrogenrecombinationlines limeter observations of dust emission and molecular line ab- andnoradiocontinuumemission(λ>1cm)havebeendetected sorptionshowthatthemajoraccretionnowhasbeenre-directed toW51e2-E,0.9′′ (∼4600AU)eastfromW51e2-W.W51e2-E from this region, which suggests that W51e2-E is the major corehostingmassiveproto-stellarobjects.Boththeabsorptions becomesthenewdominantgravitationalcenteraccretingmass from the surroundingswith a rate of 10- 3 M yr- 1. Star for- of HCN(4-3) and CO(2-1) are redshifted with respect to the ⊙ systematic velocity, 53.9±1.1km s- 1, indicating that a large mation activities take place in this massive core, as shown by amountofmoleculargasmovestowardthemassivecore.From maseractivities,outflow,andorganizedB-fieldstructure.Since no free- free emission and no RRLs have been detected, the theratiosoftheabsorptionlinetocontinuum,alargeinfallrate massivecoreW51e2-Elikelyhostsoneormoremassiveproto- of >1.3×10- 3M⊙yr- 1 is inferred from the HCN absorption line,correspondingtotheaccretionradiusof2000AU. stars. Theoffsetoftheradialvelocitiesbetweenthetwocores, W51e2-E and W51e2-W, is δV =59.1- 53.9=5.2km s- 1. If 3. W51e2-NW appears to be a massive (. 40M⊙) core at an earlier phase of star formation. Given its location in the W51e2-WandW51e2-EaregravitationallyboundandW51e2- projectedpathofthemolecularoutflowfromW51e2-E,thestar W is circularlyorbitingaroundW51e2-E,W51e2-Ehasa dy- formationactivitiesofW51e2-NWarelikelytobetriggeredby namicalmassof>140M⊙,ingoodagreementwiththemass theoutflowimpactonthemediumintheW51e2complex. derivedfromtheSEDanalysis. 4. W51e2-Nappearstobearelativelylessdensebutmassive A bipolar outflow from W51e2-E has been suggested from clump (. 70M ) from which no obvious evidence has been theobservationsofmolecularlines. Theimpactoftheoutflow ⊙ foundforstarformationactivities. onthemediuminits pathmaytriggerthecollapseofthesub- core W51e2-NW and induce further star formation activities there. W51e2-N represents a gas clump with a considerable We thank the referee for helpful comments, Dr. S.-L. Qin amount of mass for the star formation. This speculative sce- for providing help with the data reduction and analysis, and narioappearsto reasonablyexplainwhatwehaveobservedin Professor Y.-F. Wu for helpful discussions. H. Shi and J.-L. theW51e2complex. HanaresupportedbytheNationalNaturalScienceFoundation (NNSF) of China (10773016, 10821061, and 10833003) and 4. SUMMARY AND CONCLUSIONS theNationalKeyBasicResearchScienceFoundationofChina (2007CB815403). Wehavepresentedhigh-resolutionimagesoftheW51e2re- gionat0.85,1.3,7,and13mmforcontinuumandhydrogenre- combinationlines(H26α,H53α,andH66α)andthemolecular lines(HCN(4-3)andCO(2-1)). TheW51e2complexhasbeen resolved into four distinct components, W51e2-W, W51e2-E, REFERENCES W51e2-NW,andW51e2-N.Wehavecarriedoutacomprehen- Andrews,S.M.&Williams,J.P.2007,ApJ,659,705 siveanalysisofthecontinuumSED,theRRLs,andthemolecu- Brocklehurst,M.&Leeman,S.1971,Astrophys.Lett.,9,35 Chen,H.,Zhao,J.-H.,&Ohashi,N.1995,ApJ,450,L71+ larabsorptionlinesandfoundthatthefourcoresareatdifferent Fish,V.L.&Reid,M.J.2007,ApJ,670,1159 phasesofmassivestarformation. Gaume,R.A.,Johnston,K.J.,&Wilson,T.L.1993,ApJ,417,645 Genzel,R.,Becklin,E.E.,Moran,J.M.,Reid,M.J.,Jaffe,D.T.,Downes,D., 1. W51e2-W,associatedwiththeUCHIIregion,istheonly &Wynn-Williams,C.G.1982,ApJ,255,527 sourcefromwhichtheH26α,H53α,andH66αlineshavebeen Genzel, R.,Downes, D.,Schneps, M.H.,Reid, M.J.,Moran, J.M.,Kogan, detected. The Lyman continuum flux inferred from the SED L.R., Kostenko, V.I., Matveenko, L.I., &Ronnang, B.1981, ApJ,247, 1039 analysissuggeststhata massiveO8starora clusterofB-type Gordon, M. A. & Sorochenko, R. L., eds. 2002, Astrophysics and Space starshavebeenformedwithintheHIIregion. Theunresolved Science Library, Vol.282, RadioRecombination Lines.TheirPhysicsand H26αlineemissionregionsuggeststhepresenceofahot(T∗= AstronomicalApplications e Ho,P.T.P.&Young,L.M.1996,ApJ,472,742 12,000±2,000K), hyper-compactionizedcorewith a veloc- Imai,H.,Watanabe,T.,Omodaka,T.,Nishio,M.,Kameya,O.,Miyaji,T.,& ityof59.1±0.2kms- 1,alinearsizeof<310AU,andalarge Nakajima,J.2002,PASJ,54,741 emission measure EM> 7×1010pc cm- 6 (or a high density Irvine,W.M.,Goldsmith,P.F.,&Hjalmarson,A.1987,inAstrophysicsand SpaceScienceLibrary,Vol.134,InterstellarProcesses,ed.D.J.Hollenbach Ne >7×106 cm- 3). The H53α and H66α line images show &H.A.Thronson,Jr.,561–609 an SW elongation from the hyper-compactionized core, sug- Keto,E.&Klaassen,P.2008,ApJ,678,L109 Keto,E.,Zhang,Q.,&Kurtz,S.2008,ApJ,672,423 gesting either an expansion or an outflow of the ionized gas Kundu,M.R.&Velusamy,T.1967,Annalesd’Astrophysique,30,59 with relatively lower density. No significant detection of the Launhardt,R.&Henning,T.1997,A&A,326,329 10 SHI,ZHAO,&HAN Martin,A.H.M.1972,MNRAS,157,31 Matsakis,D.N.,Evans,II,N.J.,Sato,T.,&Zuckerman,B.1976,AJ,81,172 Mehringer,D.M.1994,ApJS,91,713 Mezger,P.G.&Henderson,A.P.1967,ApJ,147,471 Miyake,K.&Nakagawa,Y.1993,Icarus,106,20 Ossenkopf,V.&Henning,T.1994,A&A,291,943 Panagia,N.1973,AJ,78,929 Qin,S.-L.,Zhao,J.-H.,Moran,J.M.,Marrone,D.P.,Patel,N.A.,Wang,J.-J., Liu,S.-Y.,&Kuan,Y.-J.2008,ApJ,677,353 Remijan, A., Sutton, E.C., Snyder, L.E.,Friedel, D.N.,Liu, S.-Y.,&Pei, C.-C.2004,ApJ,606,917 Rubin,R.H.1968,ApJ,154,391 Rudolph,A.,Welch,W.J.,Palmer,P.,&Dubrulle,B.1990,ApJ,363,528 Sault,R.J.,Teuben,P.J.,&Wright,M.C.H.1995,inAstronomicalSocietyof thePacificConferenceSeries,Vol.77,AstronomicalDataAnalysisSoftware andSystemsIV,ed.R.A.Shaw,H.E.Payne,&J.J.E.Hayes,433–+ Scott,P.F.1978,MNRAS,183,435 Sollins,P.K.,Zhang,Q.,&Ho,P.T.P.2004,ApJ,606,943 Tang,Y.,Ho,P.T.P.,Koch,P.M.,Girart,J.M.,Lai,S.,&Rao,R.2009,ApJ, 700,251 Westerhout,G.1958,Bull.Astron.Inst.Netherlands,14,215 Xu, Y., Reid, M. J., Menten, K. M., Brunthaler, A., Zheng, X. W., & Moscadelli,L.2009,ApJ,693,413 Young,L.M.,Keto,E.,&Ho,P.T.P.1998,ApJ,507,270 Zhang,Q.&Ho,P.T.P.1997,ApJ,488,241 Zhang,Q.,Ho,P.T.P.,&Ohashi,N.1998,ApJ,494,636

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.