ebook img

Nature-Inspired Algorithms For Engineers and Scientists PDF

327 Pages·2023·20.885 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nature-Inspired Algorithms For Engineers and Scientists

Nature-Inspired Algorithms This comprehensive reference text discusses nature-inspired algorithms and their applications. It presents the methodology to write new algorithms with the help of MATLAB® programs and instructions for a better understanding of concepts. It covers well-known algorithms including evolutionary algorithms, genetic algorithms, particle swarm optimization, differential evolution, and recent approaches, including grey wolf optimization. A separate chapter discusses test case generation using techniques such as particle swarm optimization, genetic algorithms, and differential evolution algorithms. The book • discusses in detail various nature-inspired algorithms and their applications; • provides MATLAB programs for the corresponding algorithm; • presents a methodology to write new algorithms; • examines well-known algorithms like the genetic algorithm, particle swarm optimization and differential evolution, and recent approaches like grey wolf optimization; • provides conceptual linking of algorithms with theoretical concepts. The text will be useful for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. Discussing nature-inspired algorithms and their applications in a single volume, this text will be useful as a reference text for graduate students in the field of electrical engineering, electronics engineering, computer science and engineering. It discusses important algorithms including deterministic algorithms, randomized algorithms, evolutionary algorithms, particle swarm optimization, Big Bang–Big Crunch algorithm, genetic algorithm, and grey wolf optimization algorithm. Nature-Inspired Algorithms For Engineers and Scientists Krishn Kumar Mishra MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742 and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN CRC Press is an imprint of Taylor & Francis Group, LLC © 2023 Taylor & Francis Group, LLC Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that are not available on CCC please contact [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging‑in‑Publication Data Names: Mishra, K. K. (Professor of Computer Science), author. Title: Nature-inspired algorithms : for engineers and scientists / K.K. Mishra. Description: First edition. | Boca Raton : CRC Press, [2023] | Includes bibliographical references and index. Identifiers: LCCN 2022009541 (print) | LCCN 2022009542 (ebook) | ISBN 9780367750497 (hbk) | ISBN 9781032322643 (pbk) | ISBN 9781003313649 (ebk) Subjects: LCSH: Nature-inspired algorithms. | Engineering—Data processing. | Science—Data processing. Classification: LCC QA76.9.N37 M57 2023 (print) | LCC QA76.9.N37 (ebook) | DDC 571.0284—dc23/eng/20220527 LC record available at https://lccn.loc.gov/2022009541 LC ebook record available at https://lccn.loc.gov/2022009542 ISBN: 978-0-367-75049-7 (hbk) ISBN: 978-1-032-32264-3 (pbk) ISBN: 978-1-003-31364-9 (ebk) DOI: 10.1201/9781003313649 Typeset in Times by Apex CoVantage, LLC Contents Preface .......................................................................................................................xi Acknowledgments ...................................................................................................xiii About the Author ......................................................................................................xv Chapter 1 Introduction ..........................................................................................1 1.1 Introduction ...............................................................................1 1.2 Optimization Problems ..............................................................5 1.2.1 Classification of Optimization Problems ......................5 1.2.1.1 Classification Based on the Number of Points in the Search Space ............................6 1.2.1.2 Classification Based on the Number of Objective Functions ......................................7 1.2.1.3 Classification Based on the Availability of Objective Functions ..................................8 1.2.1.4 Classification Based on the Number of Global Optimal Solutions .............................9 1.3 Methods for Solving Optimization Problems ..........................10 1.3.1 Mathematical Methods ...............................................10 1.3.2 Programming Methods ...............................................11 1.3.2.1 Deterministic Algorithm .............................11 1.3.2.2 Randomized Algorithms .............................16 Chapter 2 Binary Genetic Algorithms .................................................................25 2.1 Introduction .............................................................................25 2.2 GAs ..........................................................................................25 2.2.1 Some Basic Requirements for Designing Optimization Algorithms ............................................26 2.2.2 Solving Optimization Problems Using a GA .............27 2.2.3 Encoding Techniques Used in GAs ............................27 2.3 Detailed Implementation of Binary GAs .................................29 2.3.1 Types of Selection Operators .....................................31 2.3.1.1 Fitness Proportionate Selection/ Roulette Wheel Selection ............................31 2.3.1.2 Tournament Selection .................................33 2.3.1.3 Rank Selection ............................................33 2.3.1.4 Sharing Fitness Method ..............................34 2.3.2 Types of Crossover Operator ......................................36 2.3.2.1 Single-Point Crossover ...............................36 2.3.2.2 Two-Point Crossover ..................................37 2.3.2.3 Uniform Crossover .....................................37 2.3.2.4 Arithmetic Crossover ..................................38 v vi Contents 2.3.3 Types of Mutation Operator .......................................38 2.3.3.1 One-Bit Mutation ........................................39 2.3.3.2 Multibit Mutation ........................................39 2.4 Theoretical Foundation of GAs (Schemata Theory) ...............39 2.4.1 Effect of Selection on a Schema .................................40 2.4.2 Effect of Crossover on a Schema ...............................41 2.4.3 Effect of Mutation on the Survival of a Schema ........42 2.5 MATLAB® Program for a GA .................................................43 2.5.1 Writing Program for a Binary GA ..............................43 2.5.1.1 Generating the Initial Population ................46 2.5.1.2 Implementing Selection Operator in a BGA Using MATLAB ................................50 2.5.1.3 Implementing One-Point Crossover in MATLAB ....................................................53 2.5.1.4 Implementing Mutation Operator in MATLAB ....................................................54 Chapter 3 Real-Parameter Genetic Algorithm ....................................................59 3.1 Introduction .............................................................................59 3.1.1 Problems with Binary Encoding ................................59 3.1.1.1 Poor Coverage of Search Space ..................60 3.1.1.2 More Computational Requirements ............61 3.1.1.3 Longer Computational Time and Lower Accuracy .....................................................61 3.1.1.4 Hamming Cliff Problem with Binary Encoding .....................................................61 3.2 Real-Parameter GA ..................................................................62 3.2.1 Detailed Implementation of a Real-Parameter GA ....63 3.2.2 Operators of a Real-Parameter GA ............................65 3.2.2.1 Selection Operator ......................................65 3.2.2.2 Crossover Operator .....................................65 3.2.2.3 Type of Mutation Operator .........................68 3.3 MATLAB® Program for a Real-Parameter GA .......................69 3.3.1 Generating the Initial Population ...............................71 3.3.2 Implementing Selection Operator in Real- Parameter GA using MATLAB ..................................73 3.3.3 Implementing Crossover in a Real-Parameter GA using MATLAB ..........................................................75 3.3.3.1 Implementing a Crossover Operator ...........76 3.3.4 Mutation Operation ....................................................85 Chapter 4 Differential Evolution .........................................................................91 4.1 Introduction .............................................................................91 4.2 DE Algorithms .........................................................................91 4.2.1 Mutation Operator ......................................................92 Contents vii 4.2.2 Crossover Operator .....................................................93 4.2.3 Selection Operator ......................................................93 4.2.4 Control Parameters .....................................................94 4.3 More on DE Algorithms ..........................................................95 4.4 MATLAB® Implementation of a DE Algorithm ......................98 4.4.1 Defining the Initial Population ...................................98 4.4.2 Updating Solutions by Using Mutation and a Crossover Operator .....................................................99 4.4.3 Selecting the Population for the Next Iteration ........101 Chapter 5 Particle Swarm Optimization ...........................................................105 5.1 Introduction ...........................................................................105 5.2 PSO Algorithms .....................................................................105 5.2.1 Natural Phenomena Used for Designing the Algorithm .................................................................105 5.2.2 Understanding the Relevance of Phenomena with Optimization .............................................................106 5.3 Detailed Implementation of a PSO Program .........................109 5.3.1 Defining Velocities and Positions of Particles ..........109 5.3.2 Calculating gbest and pbest ......................................110 5.3.3 Clamping Velocity and the Position of Each Particle ......................................................................111 5.3.4 Termination PSO Program .......................................111 5.3.5 Parameter Tuning .....................................................111 5.3.6 Pseudocode of a PSO Algorithm ..............................111 5.4 MATLAB® Implementation of a PSO Program ....................112 5.4.1 Population Initialization ...........................................115 5.4.2 Calculating gbest and pbest ......................................117 5.4.3 Updating Velocity and Position Vectors ...................118 5.4.4 Clamping Velocity and Position Vectors ..................121 5.5 Improving the Performance of a PSO Algorithm ..................129 5.6 Real-Life Applications of a PSO Algorithm ..........................129 Chapter 6 Grey Wolf Optimization ...................................................................131 6.1 Introduction ...........................................................................131 6.2 GWO Algorithms ...................................................................131 6.2.1 Natural Phenomena Used for Designing the Algorithm .................................................................131 6.2.2 Understanding the Relevance of Phenomena with Optimization .............................................................132 6.3 Detailed Implementation of a GWO Program .......................133 6.3.1 Generating Initial Population ...................................133 6.3.2 Identification of Alpha, Beta, Delta, and Omega Solutions ...................................................................134 6.3.3 Updating Position of Each Wolf and Producing Output .......................................................................134 viii Contents 6.3.4 Clamping ..................................................................136 6.3.5 Parameter Tuning .....................................................137 6.4 MATLAB® Implementation of a GWO Program ..................137 6.4.1 Defining the Initial Population .................................137 6.4.2 Updating Alpha, Beta, and Delta Solutions ..............139 Chapter 7 Environmental Adaptation Method ..................................................145 7.1 Introduction ...........................................................................145 7.2 EAM ......................................................................................146 7.2.1 Natural Phenomena Used for Designing EAM ........146 7.3 Detailed Description of an EAM Program ............................146 7.3.1 Binary EAM .............................................................146 7.3.1.1 Adaptation Operator .................................146 7.3.1.2 Alteration Operator ...................................148 7.3.1.3 Selection Operator ....................................148 7.3.1.4 Explaining EAM with One Numerical Example ....................................................148 7.3.2 Understanding the Relevance of Phenomena with Optimization .............................................................152 7.3.3 Real-Parameter EAM ...............................................152 7.4 Improved Environmental Adaptation Method .......................153 7.4.1 Binary Version of IEAM ..........................................153 7.4.2 Real-Parameter IEAM ..............................................153 7.5 MATLAB® Implementation of EAM and IEAM ..................154 7.5.1 Generating Binary Solutions ....................................154 7.5.2 Solutions Generated after the Adaption Operator ....156 7.5.3 Selection Operator in IEAM.....................................157 7.6 Writing MATLAB Program for a Real-Parameter Version of IEAM .................................................................................158 7.6.1 Defining Initial Population .......................................158 7.6.2 Adaption Operator ....................................................159 7.6.3 Selection Operator ....................................................160 Chapter 8 Other Important Optimization Algorithms .......................................163 8.1 Methods for Creating an Optimization Algorithm ................163 8.1.1 Mathematical Methods .............................................163 8.1.1.1 Gradient-Based Methods ..........................164 8.1.1.2 Derivation-Free Method ............................164 8.1.2 Search-Based Methods .............................................165 8.1.2.1 Heuristic Search-Based Method ...............165 8.1.2.2 Metaheuristic Search-Based Method ........165 8.1.3 Special Search-Based Methods (Nature-Inspired Algorithms) ..............................................................165 8.1.3.1 Point-to-Point-Based Algorithm ...............167 8.1.3.2 Population-Based Algorithms ...................170 Contents ix Chapter 9 Application of Genetic Algorithms, Partial Swarm Optimization, and Differential Evolution in Software Testing ................................193 9.1 Introduction ...........................................................................193 9.2 Introduction of Software Testing ...........................................194 9.3 Test Case Generation Techniques ..........................................195 9.3.1 Random Test Data Generation Technique ................196 9.3.2 Symbolic Test Data Generation Technique ..............197 9.3.3 Dynamic Test Data Generation Technique ...............197 9.3.4 Metaheuristic Techniques .........................................197 9.3.5 Test Case Coverage Tools .........................................197 9.3.5.1 Gcov ..........................................................197 9.3.5.2 Trucov .......................................................198 9.4 Test Case Generation Using a GA for White-Box Testing ....198 9.4.1 Test Suite Generator .................................................199 9.4.2 Initiator .....................................................................199 9.4.3 Test Case Generator Module ....................................200 9.4.4 Code Coverage Checker ...........................................200 9.4.5 The Triangle Program ...............................................201 9.4.6 Initial Population Generation for a GA ....................201 9.4.7 Selection Operator ....................................................202 9.4.8 Crossover Operator ...................................................204 9.4.9 Mutation Operator ....................................................205 9.4.10 Generation of a New Population by a GA ................205 9.5 Application of PSO in Test Case Generation ........................206 9.5.1 Particle Initialization in PSO ....................................207 9.5.1.1 Rule for Updating .....................................207 9.6 Application of DE in Test Case Generation ..........................213 9.6.1 Initialization Population Generation in DE ..............213 9.6.2 Mutation ...................................................................214 9.6.3 Crossover ..................................................................215 9.6.4 Selection Operator ....................................................215 9.7 Conclusion .............................................................................216 Chapter 10 Application of Genetic Algorithms, Partial Swarm Optimization, and Differential Evolution in Regression Testing ............................219 10.1 Introduction ...........................................................................219 10.2 Regression Testing .................................................................219 10.2.1 Test Suite Minimization Problem .............................220 10.2.2 Test Case Selection ...................................................221 10.2.2.1 Test Case Selection Problem.....................221 10.2.3 Test Case Prioritization ............................................221 10.2.3.1 Test Case Prioritization Problem ..............222 10.2.4 Application of a Genetic Algorithm in Test Suite Minimization ............................................................222 10.2.4.1 Minimization of Pre-Prioritized Test Suite Using a GA ......................................222

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.