FIELD INVESTIGATION OF FUNDAMENTAL FREQUENCY OF BRIDGES USING AMBIENT VIBRATION MEASUREMENTS by Arden Reisham Pradeep Heerah Department of Civil Engineering and Applied Mechanics McGill University Montréal, Canada August 2009 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of MASTER OF ENGINEERING. © Arden Reisham Pradeep Heerah, 2009. All Rights Reserved. ABSTRACT The transient nature of forces induced in structures during earthquakes requires the use of dynamic analyses to fully characterise their behaviour. A modal analysis describes the dynamic response of the structural system through modal descriptors: natural frequencies, mode shapes and damping ratios. Efficiently estimating these modal parameters for bridges allows for better structural integrity assessments and structural health monitoring of these structures. Using ambient vibration measurements to estimate modal parameters is time-saving and efficient. This research reviews the literature on the application of ambient vibration testing to the modal characterisation of bridges. Natural frequencies from ambient vibration measurements are obtained for a typical bridge in the City of Montréal in Canada. The MATLAB computing platform is used to execute spectral analyses of the field measurements. Linear, analytical models of the bridges are constructed with the SAP2000 structural analysis programme and Eigenvalue analyses are performed. The experimental and analytical results are compared and discussed, followed by recommendations for the application of this procedure to other bridges in the Montréal region. - i - RÉSUMÉ Du fait de la nature transitoire des forces se créant au sein des structures lors des tremblements de terre, la caractérisation complète de leur comportement nécessite l’utilisation d’analyses dynamiques. Une analyse modale décrit la réponse dynamique de la structure à travers ses modes de vibration : les fréquences naturelles, la forme des modes et le facteur d’amortissement. Une estimation efficace des paramètres modaux des ponts permet alors une meilleure évaluation, et donc un meilleur suivi, de leur intégrité structurale. L’utilisation des mesures de vibrations ambiantes pour estimer les paramètres modaux est donc une méthode efficace et économique. Cette étude passe en revue la littérature sur l’application de l’analyse des mesures de vibrations ambiantes pour la caractérisation modale des ponts. Les fréquences naturelles ont été obtenues sur un pont typique de la ville de Montréal. La plate-forme informatique MATLAB a été utilisée pour effectuer des analyses spectrales de ces mesures. Des modèles analytiques linéaires ont ensuite été construits avec le programme d’analyse structurel SAP2000 pour effectuer des analyses d’Eigenvalue. Les résultats expérimentaux et analytiques sont ensuite comparés et discutés, et des recommandations énoncées, pour appliquer ce procédé à d’autres ponts de la région de Montréal. - ii - ACKNOWLEDGEMENTS I extend sincere appreciation to the following, among others: My supervisor, Professor Luc E. Chouinard, for his invariable and multifaceted support and guidance throughout our research activities at McGill University and my stay in the City of Montreal. Salman Saeed, Dr. Myriam Belvaux, Dr. Alejandro de la Puente Altez, Dr. Philippe Rosset, Damien Gilles, Kuei-hua Rebecca Huang and Wendy Itagawa; their assistance throughout my research has been consequential. The Ministère des Transports du Québec, for assisting our research efforts. Lennartz electronic and LEAS électronique, manufacturers of the equipment used in this research, for their guidance and clarification. Fédon Honoré, for translating the abstract into French. Professors Saeed Mirza, Ghyslaine McClure and Colin Rogers, for their invaluable contributions toward my development throughout graduate studies. C.E.P. Ltd, to whom I am timelessly grateful. Peter and Michelle Santlal, for their friendship and limitless generosity. Staff of the Department of Civil Engineering and Applied Mechanics: Franca Della-Rovere, Anna Tzagournis, Sandy Shewchuk-Boyd, Dr. William Cook, Jorge Sayat and Ronald Sheppard, among others; and staff of the Schulich Library of Science and Engineering. My colleagues at McGill University, for their stimulating, earnest and sometimes inebriated discussions: Adriana Parada, Ali Ghafari, Hilary Ingram, Joe Mattar, John-Edward Franquet, Lai Wai Tan, Li Li, Ling Zhang, Miguel Nunes, Nabil Elias Saliba, Nicolas Desramaut, Nisreen Balh, Reza Erfani, Tatiana Tobar Valencia, Stephane Villemain, among others. I also convey gratitude to my friends and their families for their thoughts and involvement; especially to Andre Bagoo, Anuradha Gobin, Beena John, Binta Trotter, Charline Augustine, Dwayne Dubarry, Fadil Sahajad, Fédon Honoré, Navin Seebaran, Shalu Bujun, Suzette Parillon, Suzanne Seepersad, Vijay Mohan, Vince Ramlochan, Xue Zeng. - iii - ACKNOWLEDGEMENTS My mum, Gemma, and my brother, Arundel, to whom I am grateful for their unwavering support, patience and encouragement during my research efforts and for fostering the resolve within me to strive for more than only what seems possible. ”Be the change you want to see in the world.” - from Mahatma Gandhi “The art of directing the great sources of power in Nature for the use and convenience of man.” - from Institution of Civil Engineers’ Royal Charter of 1828. “Plagiarize, Let no one else’s work evade your eyes.” - from the song Lobachevsky by Tom Lehrer, Harvard Mathematics lecturer. “If we do not maintain our infrastructure, do not upgrade it, we’ll continue to have spectacular collapses.” - from Professor Saeed Mirza, McGill University. “One shall have to undergo suffering to reach truth. That is why it is said that truth is eternally victorious.” - from Rig Veda. - iv - TABLE OF CONTENTS Section Page ABSTRACT i RÉSUMÉ ii ACKNOWLEDGEMENTS iii LIST OF FIGURES viii LIST OF TABLES xii LIST OF APPENDICES xiii CHAPTER 1 - INTRODUCTION 1 1.1 Developments 3 1.2 Objectives 4 1.3 Organisation of the thesis 5 CHAPTER 2 - LITERATURE REVIEW 7 2.1 Dynamical behaviour of structures 7 2.2 Experimental modal analysis 12 2.2.1 Frequency response function (FRF) 14 2.2.2 Impulse response function (IRF) 15 2.2.3 Vibration tests 18 2.2.4 Modal testing of civil engineering structures 21 2.2.5 Ambient vibration testing of bridges 22 2.3 Modal parameter estimation 24 2.3.1 Fourier spectral analysis (FSA) 25 2.3.2 Power Spectral Density (PSD) and Cross-power 28 Spectral Density (CSD) Analysis 2.3.3 Auto-regressive moving-average (ARMA) method 30 2.4 Signal processing issues in AVT 32 2.4.1 Sampling 32 2.4.2 Averaging 33 - v - TABLE OF CONTENTS Section Page 2.4.3 Spectral leakage 33 2.4.4 Resolution 38 CHAPTER 3 - CASE STUDY 40 3.1 Bridge structure 40 3.2 Construction materials 47 3.3 Equipment 49 3.3.1 Testing 52 3.3.2 Test locations 55 3.3.3 Sampling parameters 55 3.3.4 Tests 57 3.3.5 Synchronisation 57 3.4 Analysis of experimental results 60 3.4.1 Fourier method 60 3.4.2 Welch’s PSD method 61 3.4.3 Welch’s CSD method 61 3.4.4 Auto-regressive, Modified Covariance method 62 3.5 Analysis of analytical models 62 3.5.1 Models 63 CHAPTER 4 - DISCUSSION AND RECOMMENDATIONS 69 4.1 Notes on the experimental analysis 69 4.2 Notes on the analytical analysis 79 4.3 Fundamental frequency estimates 80 4.4 Reviewing the analysis 83 4.5 Recommendations for ambient vibration testing of bridges 84 - vi - TABLE OF CONTENTS Section Page CHAPTER 5 - CONCLUSIONS AND FUTURE 88 RECOMMENDATIONS 5.1 Conclusions 88 5.2 Reviewing the analysis 90 5.3 Recommendations for ambient vibration testing of bridges 90 5.4 Proposal for future research 91 5.5 Fulfillment of objectives 93 REFERENCES APPENDICES - vii - LIST OF FIGURES Figure Content Page 1-1 Approximate distribution of seismic risk across Canada’s 2 urban population. (Adams et al., 2002) 1-2 Map of Canada showing delimitation of the eastern and 2 western seismic regions and the stable central region. (Adams and Halchuk, 2007) 2-1 Mechanical models of a multi-story building structure. 10 (Tedesco et al., 1999) 2-2 Mechanical model for a SDOF system. (Tedesco et al., 10 1999) 2-3 Coupling theoretically and experimentally derived 13 dynamic modelling. (Maia and Silva, 1997) 2-4 Definition of the unit impulse forcing function. (Maia and 17 Silva, 1997) 2-5 Definition of an arbitrary, non-periodic forcing function. 17 (Maia and Silva, 1997) 2-6 Devices used in FVT. (Cunha and Caetano, 2006) 19 2-7 Shaker devices used to excite. (Cunha and Caetano, 19 2006) 2-8 Random signals. (Ewins, 2000) 28 2-9 Description of Welch PSD analysis. (Trauth, 2007) 30 2-10 Interpretations of multi-sample averaging. (Ewins, 2000) 35 2-11 Finite-length sample and spectral leakage. (Ewins, 2000) 35 2-12 Window functions used frequently in spectral analysis. 36 (Stoica and Moses, 1997) 2-13 The effect of the window functions from Figure 2-15 in 37 the frequency domain. (Stoica and Moses, 1997) 2-14 Demonstration of how original time histories are treated 38 with select windows. (Ewins, 2000) - viii - LIST OF FIGURES Figure Content Page 3-1 Views of the monitored bridge. 41 3-2 Sketch views of the bridge deck framing system. 43 3-3 Sketch view of the bridge deck framing system: plan 44 view. 3-4 Sketch views of the moment-resisting, reinforced 44 concrete frame. (De La Puente Altez, 2005) 3-5 Sketch sections through a typical column in the moment- 45 resisting, reinforced concrete frame. (De La Puente Altez, 2005) 3-6 Sketch views of the girders’ connection to the top of the 46 moment-resisting, reinforced concrete frame.(De La Puente Altez, 2005) 3-7 Profile view (transverse direction) sketch of the beam 46 connected to the top of the abutment. (Ministry of Transport of Quebec) 3-8 Assumed stress-strain plots for the steel and concrete at 48 the time of construction of the bridge. (De La Puente Altez, 2005) 3-9 (a) Experimental equipment: seismometer and DAS. 49 3-9 (b) Experimental equipment: RCS antenna attached to DAS 50 and GPS sensor mounted on railing. 3-10 Extract from a data file indicating record details followed 50 by five rows of data points. 3-11 Typical measurement time history describing motion in 53 each orthogonal direction (Record 6: File 27 from DAS 28 on November 30th 2007). - ix -
Description: