NATURAL FIBERS, PLASTICS AND COMPOSITES NATURAL FIBERS, PLASTICS AND COMPOSITES editedby Frederick T. Wallenberger Fiberglass Science and Technology PPG Industries, Inc. Pittsburgh, PA Norman E. Weston Consultant Lewes, DE KLUWERACADEMICPUBLISHERS Boston/Dordrecht/NewYork/London DistributorsforNorth, Central andSouth America: KluwerAcademic Publishers 101Philip Drive Assinippi Park Norwell, Massachusetts02061 USA Telephone(781)871-6600 Fax(781)871-6528 E-Mail <[email protected]> Distributorsforallother countries: KluwerAcademic PublishersGroup Post Office Box322 3300 AHDordrecht,THE NETHERLANDS Telephone31786576000 Fax31786576 474 E-Mail <[email protected]> ~. " ElectronicServices <http://www.wkap.nl> LibraryofCongress Cataloging-in-Publication Natural Fibers,PlasticsandComposites. Edited byFrederickT.WallenbergerandNorman E.Weston ISBN:1402076436 Copyright ©2004byKJuwerAcademic Publishers All rights reserved. No part of this publicationmaybe reproduced,stored in a retrieval systemortransmitted inanyformorbyanymeans,electronic,mechanical,photo-copying, microfilming, recording,orotherwise, withoutthepriorwrittenpermissionofthepublisher, withtheexceptionofanymaterialsupplied specificallyforthepurposeofbeingentered and executedonacomputersystem,forexclusiveusebythepurchaserofthework. Permissions forbookspublishedintheUSA:[email protected] Permissionsforbooks publishedinEurope:[email protected] Printedonacid-free paper. PrintedintheUnitedStates ofAmerica Contents Contents v ContributingAuthors xiii SECTIONI.OVERVIEW 1 1 SCIENCE AND TECHNOLOGY 3 FREDERICKT.WALLENBERGERANDNORMANE. WESTON 1. MATERIALS FROMNATURAL SOURCES 3 2. VALUE-IN-USEOF NATURALMATERIALS 4 3. OVERVIEWOF NATURALMATERIALS 4 3.1 CommercialTechnologies 5 3.2 CommercialDevelopments 6 3.3 RecentResearchAdvances 7 REFERENCES 7 SECTIONII.NATURAL FIBERS: PROPERTIESAND APPLICATIONS 9 2 ADVANCED SPIDERSILKFIBERS BY BIOMIMICRY 11 JEFFREYTURNERANDCOSTASKARA1ZAS 1. INTRODUCTION 11 2. SPIDERSILKAS A BIOMATERIAL 12 3. SPIDERSILK GENETICS 13 4. SILK PROTEINPRODUCTIONINVITRO 14 5. SILK PROTEINPRODUCTIONVIA LACTATION 16 6. SPIDERSILKPROTEIN CHARACTERIZATION 17 7. SPINNING SILK PROTEINS INTO FIBERS 18 VI 7.1 Fiber Properties and Morphology 20 8. POTENTIAL USES FOR SPIDER SILK FIBERS 22 ACKNOWLEDGEMENT 23 REFERENCES 23 3 ENGINEERING PROPERTIES OF SPIDER SILKFIBERS 27 FRANKK. Ko 1. INTRODUCTION 27 2. TENSILE PROPERTIES 29 3. TRANSVERSECOMPRESSION PROPERTIES 31 4. TORSIONALPROPERTIES 33 5. VISCOELASTIC PROPERTIES 34 5.1 Elastic Response inSimple Elongation 35 5.2 Hysteresis inCyclic Loading 36 5.3 Stress Relaxation atConstant Strain 36 5.4 Creep atConstant Load 37 5.5 Low FrequencySinusoidal Stretching 38 6. A CONSTITUTIVEMODEL FOR SPIDER SILK 38 6.1 The Elastic Response inSimpleElongation 39 6.2 The History DependentResponse 40 6.3 The Continuous Relaxation Spectrum 40 6.4 ComputationMethods 41 7. SUMMARY ANDOBSERVATIONS 45 ACKNOWLEDGEMENTS 47 REFERENCES 47 4 MICROCRYSTALLINEAVIAN KERATIN PROTEIN FIBERS 51 WALTERF. SCHMIDTANDSHALINIJAYASUNDERA 1. MICROCRYSTALLINE STRUCTURE 51 1.1 Feather Keratin Structure 51 1.2 Wool Chemical Structure 52 1.3 OrientedMolecularOrdering 52 1.4 Evidence for Peptide Secondary Structure 54 2. MORPHOLOGICAL STRUCTURE 56 2.1 Uniformity ofKeratin Monomers 57 2.2 Non-Uniformityin Polymeric Forms 59 3. FEATHERS INTO FIBER 60 4. FIBER INTO FIBER COMPOSITES 63 REFERENCES 65 5 KERATIN FIBER NONWOVENS FOREROSION CONTROL 67 BRIAN R. GEORGE, ALIMOHAMMAD EVAZYNAJAD, ANNE BOCKARIE, HOLLY MCBRIDE. TETYANA BUNIK AND ALISONSCUTTI 1. INTRODUCTION 67 2. FIBERS ANDNONWOVEN FABRICS 68 Vll 2.1 Fiber Characterization 69 2.2 Fabric Production and Characterization 69 2.3 ProductionandCharacterization ofFabricControls 71 2.4 In-Use CharacterizationofNonwoven Fabrics 76 3. EROSION CONTROL 76 3.1 Fabric Selection 77 3.2 Product Installation 79 3.3 Soil Evaluation 80 3.4 Product Evaluation 80 ACKNOWLEDGEMENTS 81 REFERENCES 81 6 KERATIN FillERSTRUCTURES FORNANOFILTRATION 83 M MISRA ANDP. KAR 1. INTRODUCTION 83 2. CHARACTERIZATION OFAVIAN FillERS 84 3. REMOVAL OFMETAL IONSFROM SOLUTIONS 86 3.1 Removal ofCopper 87 3.2 Removal ofLead 88 3.3 Removal ofChromium 89 3.4 Removal ofMercury 90 3.5 Removal ofCadmium 90 3.6 Removal ofMetals fromMixed MetalSolution 90 4. REMOVALOFURANIUM FROM SOLUTIONS 91 5. EFFECT OF FillERSURFACE TREATMENT 91 6. SUMMARY 92 REFERENCES 93 7 ALGINATE ANDCHITOSAN FillERS FORMEDICAL USES 95 HENRYKSTRUSZCZYK 1. INTRODUCTION 95 2. EXPERIMENTALDETAILS 97 3. CHITOSAN AND ALGINATE FillEREVALUATION 99 3.1 Chitosan Fibers 100 3.2 Alginate Fibers 102 4. CONCLUSIONS 103 ACKNOWLEDGMENTS 104 REFERENCES 104 8 NATURALFillERS WITH LOW MOISTURE SENSITIVITY 105 GERARDT.Port 1. INTRODUCTION 105 2. CHARACTERISTICSOF BAST FillERS 106 3. SWELLING OF BAST FillERS 107 4. METHODS TO REDUCE FillERSWELL 109 4.1 Acetylation 109 Vlll 4.2 Hydrothenna1Treatment 110 5. THEDURALIN®PROCESS III 5.1 Decortication 111 5.2 TheFeedstock 112 6. DURALIN®PROCESS-MOLECULARASPECTS 113 7. Duralin®fibersandduralin®flaxshives 116 7.1 Duralin®Fibers 116 7.2 Duralin®FlaxShives 117 8. THERMALDEGRADATIONOFFLAXFillERS 118 9. SUMMARYANDCONCLUSIONS 119 REFERENCES 120 9 ENVIRONMENTALLYFRIENDLYLYOCELLFillERS 123 K. CHRISTIAN SCHUSTER, CHRISTIAN ROHRER, DIETER EICHINGER, JOSEFSCHMIDTBAUER, PETER ALDRED, AND HEINRICHFIRGO 1. INTRODUCTION 123 1.1 CellulosicFibers 126 1.1.1 Tradenames 126 1.1.2 StructuralProperties 126 2. RAWMATERIALS ANDPULPING 129 3. VISCOSEANDMODALFillER PROCESS 131 4. LENZINGLYOCELLFillERPROCESS 132 4.1 AnIntrinsicallyCleanProcess 132 4.2 LyocellFiberStructure 133 4.3 Fibrillation- CauseandEffects 135 4.4 LenzingLyocellTechnologyandProducts 136 4.5 LenzingLyocell'"LF 136 4.5.1 FibrillationProtection 137 4.5.2 MechanicalProperties 137 4.5.3 FiberMorphology 138 4.5.4 TheChemicalStabilityofLyocell LF 138 4.5.5 ToxicologicalTests 139 4.5.6 LyocellLFBlends 139 4.6 LenzingLyocell®FILL 140 4.6.1 Bulkiness 140 4.6.2 Elasticity 140 4.6.3 CigaretteBurnTest 141 4.6.4 Washability 142 4.6.5 Comfort- Physiology 142 4.6.6 Lyocell®FILLBlends 143 5. ENVIRONMENTALAWARDS TOLENZING 143 5.1 Oeko-TexStandard100 143 5.2 EUAwardfortheEnvironment 144 5.3 EuropeanEco-Labe12002 144 ix ACKNOWLEDGEMENTS 145 REFERENCES 145 SECTIONIII. NATURAL PLASTICS& MATRIX MATERIALS 147 10 PLASTICS ANDCOMPOSITES FROMPOLYLACTIC ACID 149 KRISTllNA OKSMANANDJOHAN-FREDRIKSELIN 1. INTRODUCTION 149 2. POLYLACTICACID 150 2.1 Polymerization 151 2.2 MechanicalProperties 151 2.3 PolymerDegradation 152 3. FLAXFIBERS 152 3.1 GenericPropertiesofNaturalFibers 152 3.2 SelectedPropertiesofFlaxFibers 153 4. POLYLACTICACIDCOMPOSITES 153 4.1 MatrixMaterials 154 4.2 ExtrusionofCompositeandCompressionMolding 154 4.3 Mechanicaltesting 154 4.4 ScanningElectronMicroscopy 158 4.5 GelPermeationChromatography 159 4.6 DynamicMechanicalThermalAnalysis 160 5. APPLICATIONS OFPOLYLACTICACID 163 6. SUMMARYANDCONCLUSIONS 163 REFERENCES 164 11 PLASTICSANDCOMPOSITES FROMSOYBEANOIL 167 ZORANS.PETROVIC, ANDREWGUo,IVANJAVNIAND WEI ZHANG 1. INTRODUCTION 167 2. VEGETABLEOILBASEDRESINS 168 2.1 Compositions 169 2.2 DirectPolymerizationofVegetableOils 169 2.3 EpoxyResinsFromVegetableOils 170 2.4 UnsaturatedPolyestersFromVegetableOils 173 2.5 PolyurethanesFromVegetableOils 176 2.5.1 PolyolsFromVegetableOils 176 2.5.2 PolyurethaneResinsFromVegetableOils 178 2.5.3 DistributionofHydroxylGroups,CrosslinkDensity 179 2.5.4 EffectoftheStructureofIsocyanates 182 2.6 CompositesfromSoyPolyo1s andReinforcements 186 2.6.1 Materials 186 2.6.2 FabricationandPropertiesofComposites 186 2.6.3 EffectofCureTimeonPropertiesofComposites 187 2.6.4 EffectofReinforcementonCompositeProperties 187 2.6.5 PropertiesofGlassFiberReinforcedComposites 188 x 2.6.6 HydrolyticStabilityofSoyBasedComposites 189 2.6.7 PropertiesofCompositesReinforcedwithE-Glass 189 3. CONCLUSIONS 190 REFERENCES 190 12 PLASTICSANDCOMPOSITES FROMLIGNOPHENOLS 193 ELISABETEFROLLlNI, JANEM F.PAIVA, WANDERSON G. TRINDADE, ILCEA. TANAKARAZERA ANDSANDRAP. TITA 1. INTRODUCTION 193 2. LIGNOCELLULOSIC MATERIALS 194 3. THERMOSETMATRICES 196 3.1 LignophenolicandPhenolicResins 197 3.2 LignophenolicandPhenolicPrepolymerResins 199 3.3 LignophenolicResinsinThermosetMatrices 203 4. LIGNOCELLULOSIC FIBERSINCOMPOSITES 204 5. IMPACTSTRENGTH 206 5.1 PhenolicMatrixComposites 208 5.2 LignophenolicMatrixComposites 210 5.3 EffectofFiberTreatments 211 6. WATERABSORPTION 213 7. LIGNOPHENOLICS INCLOSEDCELLFOAMS 218 ACKNOWLEDGEMENTS 219 REFERENCES 219 13 CHITOSANBIOPOLYMER-SILICAHYBRID AEROGELS 227 WILLIAMM RISEN,JR. ANDXIPENGLIU 1. INTRODUCTION 227 2. FORMATIONOFBIOPOLYMERS 232 2.1 GenericApproaches 232 2.2 SynthesisofX-Si02 andX-Si02-M Aerogels 233 2.3 CharacterizationofX-Si02 andX-Si02-M Aerogels 233 2.3.1 SANSandTEMSizeMeasurements 234 2.3.2 MagneticProperties 234 2.3.3 AbsorptionSpectroscopy 234 2.3.4 ChemicalReactionswithX-Si02-M Aerogels 234 2.4 ReactionsandModifications 235 2.4.1 ReactionwithSuccinicAnhydride(SA) 235 2.4.2 HMDIandSynthesisofX-Si02-NCO 235 2.4.3 ReactionwithIsocyanateTerminatedPrepolymer 235 2.4.4 ModificationwithIsocyanatoethyl Methacrylate 236 2.4.5 AminePendantSiloxaneCopolymer 236 2.4.6 ReactionofX-Si02-NCOwithHEMAMonomer 236 2.4.7 Chitosan-SilicaAerogelHybridComposite 237 3. STRUCTURES ANDPROPERTIES 237 3.1 X-Si02andX-Si02-M Aerogels 237 3.2 ModificationofX-Si02 Aerogel 240