ebook img

Natural Deduction, Hybrid Systems and Modal Logics PDF

516 Pages·2010·2.12 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Natural Deduction, Hybrid Systems and Modal Logics

Natural Deduction, Hybrid Systems and Modal Logics TRENDSINLOGIC StudiaLogicaLibrary VOLUME30 ManagingEditor RyszardWo´jcicki,InstituteofPhilosophyandSociology, PolishAcademyofSciences,Warsaw,Poland Editors VincentF.Hendricks,DepartmentofPhilosophyandScienceStudies, RoskildeUniversity,Denmark DanieleMundici,DepartmentofMathematics“UlisseDini”, UniversityofFlorence,Italy EwaOrłowska,NationalInstituteofTelecommunications, Warsaw,Poland KristerSegerberg,DepartmentofPhilosophy,UppsalaUniversity, Sweden HeinrichWansing,InstituteofPhilosophy,DresdenUniversityofTechnology, Germany SCOPEOFTHESERIES Trends in Logic is a bookseries covering essentially the same area as the jour- nalStudiaLogica–thatis,contemporaryformallogicanditsapplicationsand relations to other disciplines. These include artificial intelligence, informatics, cognitivescience,philosophyofscience,andthephilosophyoflanguage.How- ever,thislistisnotexhaustive,moreover,therangeofapplications,comparisons andsourcesofinspirationisopenandevolvesovertime. VolumeEditor HeinrichWansing Forfurthervolumes: http://www.springer.com/series/6645 Andrzej Indrzejczak Natural Deduction, Hybrid Systems and Modal Logics 123 Dr.AndrzejIndrzejczak UniversityofLo´dz Dept.Logic Kopcinskiego16/18 90-232Lo´dz Poland indrzej@filozof.uni.lodz.pl ISBN978-90-481-8784-3 e-ISBN978-90-481-8785-0 DOI10.1007/978-90-481-8785-0 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2010922895 (cid:2)c SpringerScience+BusinessMediaB.V.2010 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents Introduction xi 1 Preliminaries 1 1.1 Classical and Free Logic . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Basic Propositional Language . . . . . . . . . . . . . . 1 1.1.2 The Language of First-Order Logic . . . . . . . . . . . 4 1.1.3 Some Reasons for Introducing FQL . . . . . . . . . . . 6 1.1.4 Formalization of CQLI and FQLI . . . . . . . . . . . . 8 1.1.5 Important Derived Notions . . . . . . . . . . . . . . . 14 1.2 Deductive Systems, Rules, Proofs . . . . . . . . . . . . . . . . 17 1.2.1 Deductive Systems . . . . . . . . . . . . . . . . . . . . 17 1.2.2 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.3 Realization . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.4 Extensions and Simulations . . . . . . . . . . . . . . . 22 1.2.5 Semantical Side . . . . . . . . . . . . . . . . . . . . . . 24 1.2.6 Types of Deductive Systems . . . . . . . . . . . . . . . 25 2 Standard Natural Deduction 28 2.1 Origins of ND . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Preliminary Characterization . . . . . . . . . . . . . . . . . . 31 2.3 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 F-Systems . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 S-Systems . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Trees or Sequences? . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.1 Problems with Trees . . . . . . . . . . . . . . . . . . . 38 2.4.2 Problems with Linear Proofs . . . . . . . . . . . . . . 40 2.4.3 Suppes’ Format . . . . . . . . . . . . . . . . . . . . . . 43 2.5 System KM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5.1 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 v vi CONTENTS 2.5.2 Realization . . . . . . . . . . . . . . . . . . . . . . . . 47 2.5.3 Derivations . . . . . . . . . . . . . . . . . . . . . . . . 50 2.5.4 The Original Formulation of KM . . . . . . . . . . . . 53 2.6 Adequacy of KM . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.7 ND for First-Order Logic . . . . . . . . . . . . . . . . . . . . 57 2.7.1 Gentzen Systems . . . . . . . . . . . . . . . . . . . . . 57 2.7.2 Kalish/Montague Rules for CQL . . . . . . . . . . . . 59 2.7.3 Gentzen’s Variant of KM . . . . . . . . . . . . . . . . 62 2.7.4 KM for Free Logic . . . . . . . . . . . . . . . . . . . . 64 2.7.5 Introduction of Parameters . . . . . . . . . . . . . . . 66 2.7.6 Gentzen’s Variant of KMP . . . . . . . . . . . . . . . 68 2.7.7 KM with Parameters for Free Logic . . . . . . . . . . 72 2.7.8 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3 Other Deductive Systems 75 3.1 Sequent Systems and Tableaux . . . . . . . . . . . . . . . . . 76 3.1.1 Sequent Calculus . . . . . . . . . . . . . . . . . . . . . 76 3.1.2 Tableau Systems . . . . . . . . . . . . . . . . . . . . . 82 3.2 Resolution and Davis/Putnam Procedure . . . . . . . . . . . 85 3.2.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2.2 Davis/Putnam System . . . . . . . . . . . . . . . . . . 88 3.3 Cut and Complexity of Proof . . . . . . . . . . . . . . . . . . 89 4 Extended Natural Deduction 95 4.1 Analytic and Universal Versions of ND . . . . . . . . . . . . . 96 4.1.1 Analyticity . . . . . . . . . . . . . . . . . . . . . . . . 98 4.1.2 KE and ND . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 System AND1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.1 Hintikka Sets . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 Proof Search Procedure for AND1 . . . . . . . . . . . 109 4.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . 114 4.3 System AND2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4 Resolution and ND Combined . . . . . . . . . . . . . . . . . . 124 4.4.1 Clauses Introduced . . . . . . . . . . . . . . . . . . . . 125 4.4.2 System RND . . . . . . . . . . . . . . . . . . . . . . . 128 4.4.3 Simulation of Resolution and DP in RND . . . . . . . 131 4.4.4 RND for First-Order Logic . . . . . . . . . . . . . . . 135 CONTENTS vii 5 Survey of Modal Logics 137 5.1 Basic Modal and Tense Language . . . . . . . . . . . . . . . . 137 5.2 Modal Logics in General . . . . . . . . . . . . . . . . . . . . . 140 5.3 Axiomatic Approach to Modal Logics . . . . . . . . . . . . . 143 5.3.1 Deducibility . . . . . . . . . . . . . . . . . . . . . . . . 149 5.4 Relational Semantics . . . . . . . . . . . . . . . . . . . . . . . 150 5.4.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.2 Normal Logics . . . . . . . . . . . . . . . . . . . . . . 153 5.4.3 Expressive Strength of Ordinary Modal Language . . 155 5.4.4 Regular Logics . . . . . . . . . . . . . . . . . . . . . . 159 5.4.5 Weak Logics . . . . . . . . . . . . . . . . . . . . . . . 160 5.4.6 Entailment . . . . . . . . . . . . . . . . . . . . . . . . 162 5.5 Completeness, Decidability and Complexity . . . . . . . . . . 163 5.6 First-Order Modal Logics . . . . . . . . . . . . . . . . . . . . 167 5.6.1 Introductory Remarks . . . . . . . . . . . . . . . . . . 167 5.6.2 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.6.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.6.4 Some Logics . . . . . . . . . . . . . . . . . . . . . . . . 178 6 Standard Approach to Basic Modal Logics 182 6.1 Standard Sequent Calculi and Tableau Systems . . . . . . . . 183 6.1.1 Historical Remarks . . . . . . . . . . . . . . . . . . . . 183 6.1.2 Standard SC for Basic Modal Logics . . . . . . . . . . 184 6.1.3 SC for Weak Basic Logics . . . . . . . . . . . . . . . . 187 6.2 Some Standard ND for Modal Basic Logics . . . . . . . . . . 188 6.2.1 Modal Assumptions . . . . . . . . . . . . . . . . . . . 188 6.2.2 Modalization of Rules . . . . . . . . . . . . . . . . . . 192 6.3 Modalization of Reiteration Rule . . . . . . . . . . . . . . . . 195 6.4 Rules for Possibility . . . . . . . . . . . . . . . . . . . . . . . 203 6.4.1 Original Fitch’s System . . . . . . . . . . . . . . . . . 203 6.4.2 Fitch’s System Generalized . . . . . . . . . . . . . . . 205 6.4.3 Modal Assumptions . . . . . . . . . . . . . . . . . . . 209 6.5 Standard ND for Weak Logics . . . . . . . . . . . . . . . . . . 211 6.6 First-Order Modal Logics . . . . . . . . . . . . . . . . . . . . 217 7 Beyond Basic Logics and Standard Systems 221 7.1 Beyond Basic Normal Logics . . . . . . . . . . . . . . . . . . 222 7.1.1 Almost Basic Logics . . . . . . . . . . . . . . . . . . . 223 7.1.2 Provability Logics . . . . . . . . . . . . . . . . . . . . 224 viii CONTENTS 7.1.3 Logics with Branching TS Rules . . . . . . . . . . . . 224 7.1.4 Logics of Linear Frames . . . . . . . . . . . . . . . . . 226 7.1.5 Temporal Logics . . . . . . . . . . . . . . . . . . . . . 227 7.2 Limitations of Standard Approach . . . . . . . . . . . . . . . 230 7.3 Redundancy of Standard Systems . . . . . . . . . . . . . . . . 236 7.3.1 Admissibility of Proof Construction Rules . . . . . . . 236 7.3.2 Interdefinability Problem . . . . . . . . . . . . . . . . 241 7.4 RND for Modal Logics . . . . . . . . . . . . . . . . . . . . . . 244 7.4.1 RND Systems for M, R and K . . . . . . . . . . . . . 244 7.4.2 RND for Other Modal Logics . . . . . . . . . . . . . . 251 7.5 Nonstandard Deductive Systems . . . . . . . . . . . . . . . . 254 7.5.1 Semantic Tableaux of Kripke . . . . . . . . . . . . . . 255 7.5.2 Tableaux with Boxes . . . . . . . . . . . . . . . . . . . 256 7.5.3 Systems of Higher Level . . . . . . . . . . . . . . . . . 257 8 Labelled Systems in Modal Logics 259 8.1 Kinds of Labelling . . . . . . . . . . . . . . . . . . . . . . . . 260 8.2 Weak and Strong Labelling . . . . . . . . . . . . . . . . . . . 263 8.2.1 Some Weakly Labelled Systems . . . . . . . . . . . . . 263 8.2.2 Strong Labelling . . . . . . . . . . . . . . . . . . . . . 267 8.3 Medium Labelling – Fitting’s Approach . . . . . . . . . . . . 269 8.4 Labelled ND-K . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8.4.1 LND System for K . . . . . . . . . . . . . . . . . . . . 273 8.5 Other Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 8.5.1 Basic Normal Logics . . . . . . . . . . . . . . . . . . . 278 8.5.2 Regular Basic Logics . . . . . . . . . . . . . . . . . . . 279 8.5.3 Temporal Logics . . . . . . . . . . . . . . . . . . . . . 280 8.5.4 Some Other Logics . . . . . . . . . . . . . . . . . . . . 282 8.6 LND for Weak Modal Logics . . . . . . . . . . . . . . . . . . 285 8.7 MRND Systems with Labels . . . . . . . . . . . . . . . . . . . 290 8.7.1 Local Labelling . . . . . . . . . . . . . . . . . . . . . . 290 8.7.2 Global Labelling . . . . . . . . . . . . . . . . . . . . . 293 9 Logics of Linear Frames 297 9.1 Deductive Systems for Logics of Linear Frames . . . . . . . . 298 9.1.1 Survey of Systems . . . . . . . . . . . . . . . . . . . . 298 9.1.2 A Comparison of System’s Properties and Strategies of Linearization . . . . . . . . . . . . . . . . . . . . . . 305 9.2 LND-System for S4.3 . . . . . . . . . . . . . . . . . . . . . . 312 CONTENTS ix 9.2.1 Characteristic Rule and Its Correctness . . . . . . . . 312 9.2.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 315 9.3 LND for Linear Temporal Logics . . . . . . . . . . . . . . . . 317 9.3.1 Formalization of Kt4.3 . . . . . . . . . . . . . . . . . . 317 9.3.2 Other Linear Logics . . . . . . . . . . . . . . . . . . . 319 9.4 Analytic Version of LND for Linear Logics . . . . . . . . . . . 320 9.5 Extensions and Limitations . . . . . . . . . . . . . . . . . . . 326 10 Analytic Labelled ND and Proof Search 332 10.1 Analytic LND . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 10.1.1 Labelled Hintikka Sets . . . . . . . . . . . . . . . . . . 334 10.1.2 Basic Procedures . . . . . . . . . . . . . . . . . . . . . 339 10.2 Logics K, D, T . . . . . . . . . . . . . . . . . . . . . . . . . . 342 10.2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . 345 10.3 Transitive Logics and Loop-Control . . . . . . . . . . . . . . . 348 10.4 Symmetric and Euclidean Logics . . . . . . . . . . . . . . . . 351 10.4.1 No Transitivity . . . . . . . . . . . . . . . . . . . . . . 351 10.4.2 Transitive Symmetric or Euclidean Logics . . . . . . . 354 10.5 Linear Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 10.5.1 Finite Chains . . . . . . . . . . . . . . . . . . . . . . . 357 10.5.2 Proof Search Algorithm . . . . . . . . . . . . . . . . . 359 10.5.3 Worst Case Analysis . . . . . . . . . . . . . . . . . . . 361 11 Modal Hybrid Logics 363 11.1 Hybrid Logic in Nutshell . . . . . . . . . . . . . . . . . . . . . 364 11.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 364 11.1.2 Historical Remarks . . . . . . . . . . . . . . . . . . . . 366 11.2 Basic Hybrid Logic . . . . . . . . . . . . . . . . . . . . . . . . 367 11.2.1 Basic Hybrid Language . . . . . . . . . . . . . . . . . 367 11.2.2 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . 369 11.2.3 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 11.3 Complete Hilbert Calculi for KH@ and KH . . . . . . . . . . 371 11.4 General Completeness Results . . . . . . . . . . . . . . . . . . 374 11.5 Hybrid Tense Logic . . . . . . . . . . . . . . . . . . . . . . . . 379 11.5.1 Impact of Past Operators . . . . . . . . . . . . . . . . 379 11.5.2 Tenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 11.6 Language Extensions . . . . . . . . . . . . . . . . . . . . . . . 381 11.6.1 Global Modalities . . . . . . . . . . . . . . . . . . . . 382 11.6.2 Difference Modality . . . . . . . . . . . . . . . . . . . 383

Description:
This volume provides an extensive treatment of Natural Deduction and related types of proof systems, with a focus on the practical aspects of proof methods. The book has two main aims: Its first aim is to provide a systematic and historical survey of the variety of Natural Deduction systems in Class
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.