Natural Deduction, Hybrid Systems and Modal Logics TRENDSINLOGIC StudiaLogicaLibrary VOLUME30 ManagingEditor RyszardWo´jcicki,InstituteofPhilosophyandSociology, PolishAcademyofSciences,Warsaw,Poland Editors VincentF.Hendricks,DepartmentofPhilosophyandScienceStudies, RoskildeUniversity,Denmark DanieleMundici,DepartmentofMathematics“UlisseDini”, UniversityofFlorence,Italy EwaOrłowska,NationalInstituteofTelecommunications, Warsaw,Poland KristerSegerberg,DepartmentofPhilosophy,UppsalaUniversity, Sweden HeinrichWansing,InstituteofPhilosophy,DresdenUniversityofTechnology, Germany SCOPEOFTHESERIES Trends in Logic is a bookseries covering essentially the same area as the jour- nalStudiaLogica–thatis,contemporaryformallogicanditsapplicationsand relations to other disciplines. These include artificial intelligence, informatics, cognitivescience,philosophyofscience,andthephilosophyoflanguage.How- ever,thislistisnotexhaustive,moreover,therangeofapplications,comparisons andsourcesofinspirationisopenandevolvesovertime. VolumeEditor HeinrichWansing Forfurthervolumes: http://www.springer.com/series/6645 Andrzej Indrzejczak Natural Deduction, Hybrid Systems and Modal Logics 123 Dr.AndrzejIndrzejczak UniversityofLo´dz Dept.Logic Kopcinskiego16/18 90-232Lo´dz Poland indrzej@filozof.uni.lodz.pl ISBN978-90-481-8784-3 e-ISBN978-90-481-8785-0 DOI10.1007/978-90-481-8785-0 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2010922895 (cid:2)c SpringerScience+BusinessMediaB.V.2010 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents Introduction xi 1 Preliminaries 1 1.1 Classical and Free Logic . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Basic Propositional Language . . . . . . . . . . . . . . 1 1.1.2 The Language of First-Order Logic . . . . . . . . . . . 4 1.1.3 Some Reasons for Introducing FQL . . . . . . . . . . . 6 1.1.4 Formalization of CQLI and FQLI . . . . . . . . . . . . 8 1.1.5 Important Derived Notions . . . . . . . . . . . . . . . 14 1.2 Deductive Systems, Rules, Proofs . . . . . . . . . . . . . . . . 17 1.2.1 Deductive Systems . . . . . . . . . . . . . . . . . . . . 17 1.2.2 Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2.3 Realization . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.4 Extensions and Simulations . . . . . . . . . . . . . . . 22 1.2.5 Semantical Side . . . . . . . . . . . . . . . . . . . . . . 24 1.2.6 Types of Deductive Systems . . . . . . . . . . . . . . . 25 2 Standard Natural Deduction 28 2.1 Origins of ND . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 Preliminary Characterization . . . . . . . . . . . . . . . . . . 31 2.3 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.1 F-Systems . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 S-Systems . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 Trees or Sequences? . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.1 Problems with Trees . . . . . . . . . . . . . . . . . . . 38 2.4.2 Problems with Linear Proofs . . . . . . . . . . . . . . 40 2.4.3 Suppes’ Format . . . . . . . . . . . . . . . . . . . . . . 43 2.5 System KM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.5.1 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 v vi CONTENTS 2.5.2 Realization . . . . . . . . . . . . . . . . . . . . . . . . 47 2.5.3 Derivations . . . . . . . . . . . . . . . . . . . . . . . . 50 2.5.4 The Original Formulation of KM . . . . . . . . . . . . 53 2.6 Adequacy of KM . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.7 ND for First-Order Logic . . . . . . . . . . . . . . . . . . . . 57 2.7.1 Gentzen Systems . . . . . . . . . . . . . . . . . . . . . 57 2.7.2 Kalish/Montague Rules for CQL . . . . . . . . . . . . 59 2.7.3 Gentzen’s Variant of KM . . . . . . . . . . . . . . . . 62 2.7.4 KM for Free Logic . . . . . . . . . . . . . . . . . . . . 64 2.7.5 Introduction of Parameters . . . . . . . . . . . . . . . 66 2.7.6 Gentzen’s Variant of KMP . . . . . . . . . . . . . . . 68 2.7.7 KM with Parameters for Free Logic . . . . . . . . . . 72 2.7.8 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3 Other Deductive Systems 75 3.1 Sequent Systems and Tableaux . . . . . . . . . . . . . . . . . 76 3.1.1 Sequent Calculus . . . . . . . . . . . . . . . . . . . . . 76 3.1.2 Tableau Systems . . . . . . . . . . . . . . . . . . . . . 82 3.2 Resolution and Davis/Putnam Procedure . . . . . . . . . . . 85 3.2.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2.2 Davis/Putnam System . . . . . . . . . . . . . . . . . . 88 3.3 Cut and Complexity of Proof . . . . . . . . . . . . . . . . . . 89 4 Extended Natural Deduction 95 4.1 Analytic and Universal Versions of ND . . . . . . . . . . . . . 96 4.1.1 Analyticity . . . . . . . . . . . . . . . . . . . . . . . . 98 4.1.2 KE and ND . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2 System AND1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2.1 Hintikka Sets . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 Proof Search Procedure for AND1 . . . . . . . . . . . 109 4.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . 114 4.3 System AND2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.4 Resolution and ND Combined . . . . . . . . . . . . . . . . . . 124 4.4.1 Clauses Introduced . . . . . . . . . . . . . . . . . . . . 125 4.4.2 System RND . . . . . . . . . . . . . . . . . . . . . . . 128 4.4.3 Simulation of Resolution and DP in RND . . . . . . . 131 4.4.4 RND for First-Order Logic . . . . . . . . . . . . . . . 135 CONTENTS vii 5 Survey of Modal Logics 137 5.1 Basic Modal and Tense Language . . . . . . . . . . . . . . . . 137 5.2 Modal Logics in General . . . . . . . . . . . . . . . . . . . . . 140 5.3 Axiomatic Approach to Modal Logics . . . . . . . . . . . . . 143 5.3.1 Deducibility . . . . . . . . . . . . . . . . . . . . . . . . 149 5.4 Relational Semantics . . . . . . . . . . . . . . . . . . . . . . . 150 5.4.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.2 Normal Logics . . . . . . . . . . . . . . . . . . . . . . 153 5.4.3 Expressive Strength of Ordinary Modal Language . . 155 5.4.4 Regular Logics . . . . . . . . . . . . . . . . . . . . . . 159 5.4.5 Weak Logics . . . . . . . . . . . . . . . . . . . . . . . 160 5.4.6 Entailment . . . . . . . . . . . . . . . . . . . . . . . . 162 5.5 Completeness, Decidability and Complexity . . . . . . . . . . 163 5.6 First-Order Modal Logics . . . . . . . . . . . . . . . . . . . . 167 5.6.1 Introductory Remarks . . . . . . . . . . . . . . . . . . 167 5.6.2 Identity . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.6.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 173 5.6.4 Some Logics . . . . . . . . . . . . . . . . . . . . . . . . 178 6 Standard Approach to Basic Modal Logics 182 6.1 Standard Sequent Calculi and Tableau Systems . . . . . . . . 183 6.1.1 Historical Remarks . . . . . . . . . . . . . . . . . . . . 183 6.1.2 Standard SC for Basic Modal Logics . . . . . . . . . . 184 6.1.3 SC for Weak Basic Logics . . . . . . . . . . . . . . . . 187 6.2 Some Standard ND for Modal Basic Logics . . . . . . . . . . 188 6.2.1 Modal Assumptions . . . . . . . . . . . . . . . . . . . 188 6.2.2 Modalization of Rules . . . . . . . . . . . . . . . . . . 192 6.3 Modalization of Reiteration Rule . . . . . . . . . . . . . . . . 195 6.4 Rules for Possibility . . . . . . . . . . . . . . . . . . . . . . . 203 6.4.1 Original Fitch’s System . . . . . . . . . . . . . . . . . 203 6.4.2 Fitch’s System Generalized . . . . . . . . . . . . . . . 205 6.4.3 Modal Assumptions . . . . . . . . . . . . . . . . . . . 209 6.5 Standard ND for Weak Logics . . . . . . . . . . . . . . . . . . 211 6.6 First-Order Modal Logics . . . . . . . . . . . . . . . . . . . . 217 7 Beyond Basic Logics and Standard Systems 221 7.1 Beyond Basic Normal Logics . . . . . . . . . . . . . . . . . . 222 7.1.1 Almost Basic Logics . . . . . . . . . . . . . . . . . . . 223 7.1.2 Provability Logics . . . . . . . . . . . . . . . . . . . . 224 viii CONTENTS 7.1.3 Logics with Branching TS Rules . . . . . . . . . . . . 224 7.1.4 Logics of Linear Frames . . . . . . . . . . . . . . . . . 226 7.1.5 Temporal Logics . . . . . . . . . . . . . . . . . . . . . 227 7.2 Limitations of Standard Approach . . . . . . . . . . . . . . . 230 7.3 Redundancy of Standard Systems . . . . . . . . . . . . . . . . 236 7.3.1 Admissibility of Proof Construction Rules . . . . . . . 236 7.3.2 Interdefinability Problem . . . . . . . . . . . . . . . . 241 7.4 RND for Modal Logics . . . . . . . . . . . . . . . . . . . . . . 244 7.4.1 RND Systems for M, R and K . . . . . . . . . . . . . 244 7.4.2 RND for Other Modal Logics . . . . . . . . . . . . . . 251 7.5 Nonstandard Deductive Systems . . . . . . . . . . . . . . . . 254 7.5.1 Semantic Tableaux of Kripke . . . . . . . . . . . . . . 255 7.5.2 Tableaux with Boxes . . . . . . . . . . . . . . . . . . . 256 7.5.3 Systems of Higher Level . . . . . . . . . . . . . . . . . 257 8 Labelled Systems in Modal Logics 259 8.1 Kinds of Labelling . . . . . . . . . . . . . . . . . . . . . . . . 260 8.2 Weak and Strong Labelling . . . . . . . . . . . . . . . . . . . 263 8.2.1 Some Weakly Labelled Systems . . . . . . . . . . . . . 263 8.2.2 Strong Labelling . . . . . . . . . . . . . . . . . . . . . 267 8.3 Medium Labelling – Fitting’s Approach . . . . . . . . . . . . 269 8.4 Labelled ND-K . . . . . . . . . . . . . . . . . . . . . . . . . . 273 8.4.1 LND System for K . . . . . . . . . . . . . . . . . . . . 273 8.5 Other Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 8.5.1 Basic Normal Logics . . . . . . . . . . . . . . . . . . . 278 8.5.2 Regular Basic Logics . . . . . . . . . . . . . . . . . . . 279 8.5.3 Temporal Logics . . . . . . . . . . . . . . . . . . . . . 280 8.5.4 Some Other Logics . . . . . . . . . . . . . . . . . . . . 282 8.6 LND for Weak Modal Logics . . . . . . . . . . . . . . . . . . 285 8.7 MRND Systems with Labels . . . . . . . . . . . . . . . . . . . 290 8.7.1 Local Labelling . . . . . . . . . . . . . . . . . . . . . . 290 8.7.2 Global Labelling . . . . . . . . . . . . . . . . . . . . . 293 9 Logics of Linear Frames 297 9.1 Deductive Systems for Logics of Linear Frames . . . . . . . . 298 9.1.1 Survey of Systems . . . . . . . . . . . . . . . . . . . . 298 9.1.2 A Comparison of System’s Properties and Strategies of Linearization . . . . . . . . . . . . . . . . . . . . . . 305 9.2 LND-System for S4.3 . . . . . . . . . . . . . . . . . . . . . . 312 CONTENTS ix 9.2.1 Characteristic Rule and Its Correctness . . . . . . . . 312 9.2.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 315 9.3 LND for Linear Temporal Logics . . . . . . . . . . . . . . . . 317 9.3.1 Formalization of Kt4.3 . . . . . . . . . . . . . . . . . . 317 9.3.2 Other Linear Logics . . . . . . . . . . . . . . . . . . . 319 9.4 Analytic Version of LND for Linear Logics . . . . . . . . . . . 320 9.5 Extensions and Limitations . . . . . . . . . . . . . . . . . . . 326 10 Analytic Labelled ND and Proof Search 332 10.1 Analytic LND . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 10.1.1 Labelled Hintikka Sets . . . . . . . . . . . . . . . . . . 334 10.1.2 Basic Procedures . . . . . . . . . . . . . . . . . . . . . 339 10.2 Logics K, D, T . . . . . . . . . . . . . . . . . . . . . . . . . . 342 10.2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . 345 10.3 Transitive Logics and Loop-Control . . . . . . . . . . . . . . . 348 10.4 Symmetric and Euclidean Logics . . . . . . . . . . . . . . . . 351 10.4.1 No Transitivity . . . . . . . . . . . . . . . . . . . . . . 351 10.4.2 Transitive Symmetric or Euclidean Logics . . . . . . . 354 10.5 Linear Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 10.5.1 Finite Chains . . . . . . . . . . . . . . . . . . . . . . . 357 10.5.2 Proof Search Algorithm . . . . . . . . . . . . . . . . . 359 10.5.3 Worst Case Analysis . . . . . . . . . . . . . . . . . . . 361 11 Modal Hybrid Logics 363 11.1 Hybrid Logic in Nutshell . . . . . . . . . . . . . . . . . . . . . 364 11.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 364 11.1.2 Historical Remarks . . . . . . . . . . . . . . . . . . . . 366 11.2 Basic Hybrid Logic . . . . . . . . . . . . . . . . . . . . . . . . 367 11.2.1 Basic Hybrid Language . . . . . . . . . . . . . . . . . 367 11.2.2 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . 369 11.2.3 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 11.3 Complete Hilbert Calculi for KH@ and KH . . . . . . . . . . 371 11.4 General Completeness Results . . . . . . . . . . . . . . . . . . 374 11.5 Hybrid Tense Logic . . . . . . . . . . . . . . . . . . . . . . . . 379 11.5.1 Impact of Past Operators . . . . . . . . . . . . . . . . 379 11.5.2 Tenses . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 11.6 Language Extensions . . . . . . . . . . . . . . . . . . . . . . . 381 11.6.1 Global Modalities . . . . . . . . . . . . . . . . . . . . 382 11.6.2 Difference Modality . . . . . . . . . . . . . . . . . . . 383
Description: