ebook img

Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds PDF

36 Pages·2017·1.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds

Journal of Fungi Review Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds MałgorzataBondaryk1,MonikaStaniszewska1,* ID,PaulinaZielin´ska2and ZofiaUrban´czyk-Lipkowska2,* 1 NationalInstituteofPublicHealth-NationalInstituteofHygiene,Chocimska24,00-791Warsaw,Poland; [email protected] 2 InstituteofOrganicChemistry,PolishAcademyofSciences,01-224Warsaw,Poland; [email protected] * Correspondence:[email protected](M.S.);zofi[email protected](Z.U.-L.); Tel.:+48-22-542-12-28(M.S.);+48-343-22-07(Z.U.-L.) Received:27July2017;Accepted:22August2017;Published:26August2017 Abstract: Invasivefungalinfectionsareassociatedwithhighmortalityrates,despiteappropriate antifungaltherapy. Limitedtherapeuticoptions,resistancedevelopmentandthehighmortalityof invasivefungalinfectionsbroughtaboutmoreconcerntriggeringthesearchfornewcompounds capableofinterferingwithfungalviabilityandvirulence. Inthiscontext,peptidesgainedattention as promising candidates for the antimycotics development. Variety of structural and functional characteristicsidentifiedforvariousnaturalantifungalpeptidesmakesthemexcellentstartingpoints fordesignnoveldrugcandidates. Currentreviewprovidesabriefoverviewofnaturalandsynthetic antifungalpeptides. Keywords: antifungalpeptides;fungalpathogens;Candidaspecies 1. Introduction The increased prevalence of fungal infections is a consequence of the advances in medicinal technologies and therapies applied in critically ill patients [1]. Expanding immunocompromised population due to multi-organ failure or critical illness along with other clinical factors (Table 1) can increase the incidence of invasive fungal infections (IFI) [2–6]. IFI are of great concern due to highmorbidityandmortalityrates[7]. Over90%ofIFI-relateddeathsresultfrominfectionsdueto Candidaspp.,Aspergillusspp.,Cryptococcusspp. andPneumocystisspp.[7,8]. Table1.Riskfactorsforthedevelopmentofinvasivefungalinfections(IFI). RiskFactors References Abdominalsurgery/recentmajorsurgery [3,5,9,10] Deepburns [11,12] Diabetesmellitus [9,10,12] Dialysis [12,13] Disturbanceofnaturalskinormucosalbarriers [10,12] Exposuretobroad-spectrumantibiotics [3,10,12] Extremesofage [5,10] HIV/AIDS [9,13] Immunedisorders [5,11] Localdisordersofthegastrointestinaltract [5,10,12] Long-termcatheterization [3,5,13] Malignancies [3,5] J.Fungi2017,3,46;doi:10.3390/jof3030046 www.mdpi.com/journal/jof J.Fungi2017,3,46 2of36 Table1.Cont. RiskFactors References Mechanicalventilation [10,13] Parenteralnutrition [5,10,13] Prematureverylowbirthweightinfants [11] Prolongedhospitalization [12] Renalfailure [9,11,12] Solidorganorbonemarrowtransplantation [5] Treatmentwithcorticosteroids [3,5] Useofimmunosuppressivedrugs [5,10,12] Currently available antifungal agents, based on their mode of action, can be divided to five classes: polyenes, azoles, echinocandins, pyrimidine analogs and allylamines [14–19]. Of these, allylamines are used against superficial infections, while the four remaining drug categories are effectiveagainstinvasivemycoses[19]. Onlytwoclassesofsystemicantifungalagentsareconsidered to be non-toxic: triazoles (fluconazole and voriconazole) and echinocandins (caspofungin and micafungin)[14]. Therefore,currentguidelinesofEuropeanSocietyforClinicalMicrobiologyand InfectiousDiseases(ESCMID)stronglyrecommendtheuseoffluconazoleempiricaltherapyagainst invasive candidiasis in patients who recently underwent abdominal surgery and had recurrent gastrointestinalperforations[20]. Moreover,ESCMIDstronglyrecommendstheuseofechinocandins forthetargetedinitialtreatmentofcandidaemia[20,21]. Widespread use of antifungal agents in therapy and prolonged treatment often leads to the resistancedevelopment[19]. Resistancemechanismsweredescribedforallcommerciallyavailable antifungal agents (Table 2). Rising antifungal resistance is a major problem especially in case of fluconazole, a drug of choice for candidiasis treatment in AIDS patients [22]. Recent surveillance studies from various medical centers worldwide have documented the rise in echinocandins’ resistance; especially among C. glabrata isolates [14,19,23]. The need for novel, safe and effective antifungal agents increases in parallel with the expanding number of resistant fungal isolates [23,24]. Recent reports[25,26] have demonstrated the success of the combination of antifungal therapy regimens that utilize new generation antifungals (third generation azoles and lipopeptides—echinocandins)againstseveremycoses.Ontheotherhand,caspofunginandpresumably otherechinocandinshavenotbeenfoundtobeaneffectivetreatmentforendemicmycoses,suchas Histoplasmacapsulatum[27,28],remainingoneofthemostfearedcomplicationsofimmunosuppression duetoitssignificantmorbidityandmortality[29,30]. Inthisregard,amphotericinB(AmB)remains highly active invitro against the fungi responsible for Histoplasma infections [31–33]. Itraconazole istheprimaryazoleformostendemicmycoseswithitsserumdruglevelmaintainedatthesteady stateof≥0.5mg/mL,whichisparticularlyimportantinpatientswithsevereinfections[31,32,34,35]. Alternativelytoitaconazole’slimitations(lackoftolerance,absorptionproblemsorgastrointestinal intolerability) other azoles (fluconazole, voriconazole or posaconazole) are recommended [31,32]. Asregardsthis,whilethethird-generationazoleshaveexcellentinvitroandinvivoactivityagainst Histoplasma [36,37], H. capsulatum develops resistance to fluconazole during therapy, leading to relapse[38,39]. Thus,H.capsulatum’santigenconcentrationsinserumandurineshouldbemonitored everythreetosixmonthstoprovideevidencethatthemaintenancetherapycontinuestosuppressthe progressionofinfection[38,39]. Standard antifungal therapies such as the azole family and AmB are not effective against Pneumocystispneumonia(PCP),duetoP.jiroveci(previouslyP.cariniif. sp. hominis),possiblydueto thelackofergosterolbiosynthesisbythesefungi[40]. WhilesomereportssuggestefficacyagainstPCP withtheuseofanidulafungin,caspofungin,ormicafunginaloneorincombinationwithastandard anti-PCPagent: trimethoprim-sulfamethoxazoleoratovaquoneonealone[41,42],othersdidnotreport sucheffects[43–46]. Asmuchasanidulafunginandcaspofunginaremoreeffectivethanmicafungin J.Fungi2017,3,46 3of36 inreducingcystcounts, theyhaveotherrestrictionsasdescribedbelow. FindingsofCushionand Collins[47]suggestthatthebiofilmformationinthemammalianlungisapotentialmechanismby whichthesefungimightresistthetherapeuticinterventions.Abrogationofechinocandins’activitywith theadditionofhumanserumhasbeenreportedforP.jiroveciaswellasC.glabrata[48]. Cushionand Collins[47]showedthatP.jiroveciismoresusceptibletotheechinocandinsinthesuspensionassay thaninthebiofilmsystems. Novel antifungal agent should have a broad-spectrum activity, target specificity, low toxicity, diverse mode of action, and no antagonistic effects with commercially available drugs [49,50]. Althoughsuchdrugmaybeunattainableinreality,thesepropertiesshouldbeusedasguidelinesin drugdiscovery[51]. Recently,thereisanincreasedinterestintopeptidesasapromisingapproach indiscoveryanddevelopmentofnovelantifungalagents. Thisreviewprovidesabriefoverviewof naturalandsyntheticantifungalpeptides. J.Fungi2017,3,46 4of36 Table2.Fivemajorgroupsofantifungalagents. GroupName GroupMember/s ModeofAction ResistanceMechanism References • Deficiencyinenzymesinvolvedinpyrimidinesalvage FluorinatedPyrimidine Flucytosine(5-FC) InhibitionofRNAand/orDNAsynthesis and5-FCmetabolism [15,52] Analogs • MutationsinFCA1,FUR1,FCY21,FCY22 • DefectsintheERG3gene(loweredergosterolcontent incellmembrane) Nystatin Alterationofthemembranefunctionbybindingof • Alteredmembranecomposition–substituted Polyenes Natamycin [18,52] ergosterol(depletingcellsofergosterol) nonergosterolcytoplasmicmembranesterolsand AmphotericinB lipids(e.g.,zymosterol,squalene) • CapsuleenlargementofC.neoformans Caspofungin Alterationofcellwallbiosynthesisbyinhibitionof • MutationintheFKS1andFKS2genes Echinocandins Micafungin [16,19] β(1,3)-glucansynthaseFks1porFks2p • Lackof1,3-β-glucaninthecellwallofC.neoformans Anidulafungin • Modificationofdrugtarget(missensemutationor Inhibitionoftheergosterolbiosynthesisby Terbinafine substitutionintheERG1) Allylamines inhibitionofsqualeneepoxidase(Erg1)and/or [16,19] Naftifine • Degradationofthenaphthaleneringcontained accumulationoftoxicsterolintermediates interbinafine • MutationsoroverexpressionofERG11 Fluconazole InhibitionofcytochromeP45014α-lanosterol • Reducedaccumulationoftheazolesinsidefungalcell Azoles Posoconazole demethylase(encodedbyERG11)inergosterol [16,19,52] (reduceduptakeofazoles,effluxviaABCtransporters) Voriconazole biosynthesispathway • TolerancetomethylatedsterolsviamutationinERG3 J.Fungi2017,3,46 5of36 2. AntifungalPeptides Development of novel antifungal compounds may overcome the problem of growing fungal resistance. Inthiscontext,peptideshavepromisingproperties,suchasmoderateimmunogenicity as described below, strong antimicrobial activity, high specificity and affinity for targets, distinct mechanisms of action, good organ and tissue penetration and broad-spectrum activity [49,50]. Antifungalpeptideshavediverseactionmechanisms, whichinclude: (1)inhibitionofDNA,RNA andproteinsynthesis;(2)bindingtoDNAorRNA;(3)membranepermeabilization;(4)inhibitionof thecellwallsynthesisandenzymeactivity;(5)inductionofapoptosis;and(6)repressionofprotein foldingandmetabolicturnover[49,53–55]. Antifungalpeptidescanbeclassifiedaccordingtotheir modeofactionandorigin[56]. Basedontheiractionmechanism,antifungalpeptidescanbedivided into: (1)membranetraversingpeptidesthatcancauseporeformationoractonspecifictargetsuch asβ-glucanorchitinsynthesis;and(2)nonmembranetraversingpeptidesthatinteractwiththecell membraneandcausecelllysis[56]. Accordingtotheirorigin,peptidescanbeclassifiedasnatural compoundsandsyntheticmoleculesisolatedfromgeneticorrecombinantlibrariesordiscoveredfrom chemicallibraries[56,57]. 2.1. NaturalPeptides In higher organisms, antimicrobial peptides are part of the first line of defense against pathogens, while in microorganisms they are used in competition for nutrient resources [58,59]. Naturalantimicrobialpeptidesusuallyshownoorlittletoxicityagainsthumancellsandarestablein variousconditions[60]. Theygenerallypossesscommonfeatures,suchassmallsize,overallpositive charge,cationicandamphipathicnature[50,59]. Antimicrobialpeptidescanbearrangedintodifferent groups based on their length, sequence and structure [50]. The first group is formed by α-helical peptides,whichmostlyexhibitarandomstructurebeforeinteractingwiththecellmembrane,and well-definedstructureafterwards[61]. Anotherlargegroupconsistsofpeptidesthatcontaincysteine residues,formdisulfidebondsandstableβ-structures(sheet,hairpin,andbarrel)[50,61]. Manyother antimicrobialpeptides(i.e.,defensins)havemixedstructureconsistingofacysteine-stabilizedαβ-motif (CSαβ)withα-helixandatriple-strandedantiparallelβ-sheetstabilizedbyfourdisulfidebonds[62]. The number of identified antimicrobial peptides exceeds 2700 and increases. Of these, over 900peptidesisolatedfrommicrobes,plantsandanimalsdisplayantifungalactivity[50,63]. Natural antifungalpeptidescanbederivatedfromdifferentsources,suchasbacteria,archea,protists,fungi, plantsandanimals(Table3). AsreviewedbyBasaketal.[64],antimicrobialpeptidesdisplayvariouslevelsoftoxicityagainst mammaliancells. Interestingly,theabilityofpeptidestoreactspecificallywiththefunctionalbinding siteofacomplementaryantibodyknownasantigenicityhasbeenwidelydescribed[65]. Thecytotoxic activity is related to the structural features of the peptide consisting of a cationic N-terminal sequencepredictedtoassumeanamphipathicα-helicalconformation(residues1–18)andaC-terminal hydrophobictail(residues19–27). Thehydrophobictailisresponsibleforthepeptideactivity,since itsanalog,BMAP28(1–18),whichcomprisesthe18N-terminalresidues,showedareductioninthe neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) effect. Furthermore, BMAP28’s cytotoxicity requires an active metabolism of the target cells [66]. The cathelicidin-like peptide (SMAP-29)derivedfrommyeloidsheepwasstronglyhemolyticagainsthumanerythrocytes[26,67]. Human cathelicidin (LL-37) was found to regulate the inflammatory response and chemo-attract the cells of the adaptive immune system into wound or infection sites, helping to neutralize the microorganismandpromotingre-epithelizationandwoundclosure[68,69]. Rondoninderivedfrom thespiderAcanthoscurriarondoniaewiththeantifungalactivityshowednodeleteriousactivitiesagainst humanerythrocytesorGram-positiveandGram-negativebacteria. Temporinsidentifiedintheskin secretion of the European red frog Rana temporaria [70], did not lyse human erythrocytes [71–75]. Bovinecathelicidins(BMAP-28)withthefungicidalactivitywastoxicforthemammaliantumorcells, J.Fungi2017,3,46 6of36 inducingtheirapoptosis,anditalsoinducedmitochondrialpermeability,formingtransitionpores (MPTP),resultinginthereleaseofcytochromec. Conventional antimicrobial agents (penicillin and beta-lactams), which are small organic molecules,areusuallynotimmunogenic,althoughtheextendedlongertreatmentperiodsinimmune compromised or critically ill patients can trigger an immune response [76]. Peptide (NZ2114), a40-residuelongvariantofplectasin,inducedimmuneresponses[8]. Contrariwise,smallerpeptide, a pediocin AcH (class IIa bacteriocin) isolated form of Pediococcus acidilactici, displayed weak immunogenicity[14,15]. Cyclopeptidecolistin(1155Da)activeagainstmultiresistantAcinetobacter baumanniiandadministereddespiteitsneuro-andnephrotoxiceffectsdidnotshowimmunogenic effects[17]. Moreover,insectderivedproline-richintermediate-size(i.e.,15–25residues)antimicrobial linear peptides (PrAMPs) were usually weak immunogens. It was shown that they have to be cross-linked,oligomerizedorcoupledtolargercarrierproteinsorpolymerstotriggerastrongimmune response[18,19]. Antimicrobial peptides (i.e., cathelicidins and β-defensins) either directly defend the pathogens[77]orstimulateinflammatoryresponses[78,79],leadingtopro-inflammatorycytokine signaling[80]andtoll-likereceptor(TLR)activation[81].Thiscouldendupinactivatingandrecruiting immunecellstothesiteofinfectionandthusboostingthehostimmunedefense. Manyoriginally isolatedantifungalpeptidespossessimmunosuppressiveactivityblockingtherecipient’simmune system,thuspreventingatransplantedorganrejection[82,83]. Theyarealsoemployedtoslowdown theimmuneresponseinpatientssufferingfromcertainimmunedisorders[84]. JJ.. FFuunnggii 22001177,, 33,, 4466 77 ooff 3355 TTaabbllee 33.. NNaattuurraall ppeeppttiiddeess aaccttiivvee aaggaaiinnsstt ffuunnggii 11.. J.Fungi2017,3,4NN6aammee OOrriiggiinn SSeeqquueennccee oorr MMoolleeccuullaarr FFoorrmmuullaa MMooddee ooff AAccttiioonn RReeffeerreennccee 7of36 BBaacctteerriiaall PPeeppttiiddeess MMSSLLQQAANNTTAAPPVVFFAATDDaEEbQQleQQ3TT.DDNAAaPPtuTTrWWalPPpDDeRRpAAtiAdAeDDsPPaSScVVtiRRvLLeSSaLLgLLaAAinTTsGGtNfNuSSnLLgPPiVV1.VVIIEEPPTTAADDGGLLDDPPVVQQ SSyyrriinnggoommyycciinn WWAASSAARRRREEAAIIEETTLLLLCCRRHHGGAAVVLLFFRRGGFFDDLLPPSSVVAAAAFFEEGGFFAAEEAALLSSPPGGLLHHGGTTYYGGDDLLPPKKKKEEGGGGRRNN Name Origin SequenceorMolecularFormula ModeofAction Reference PPsseeuuddoommoonnaass VVYYRRSSTTPPYYPPEERREEMMIILLYYHHNNEESSSSHHLLEESSWWPPRRKKQQWWFFFFCCEEQQPPSSRRVVGGGGAATTPPLLAADDIIRRQQVVLLAAYYLLPPKKEEVV BacterialPeptides ssyyrriinnggaaee ppvv.. VVMEESRRLFFQEEASSKKNGGTLALLLPYYVSSFRRATTDFFETTQAAQGGTVVDEEAPPSSPWWTWEESSPFFDFFRGGATTSASEEDRRPSSSVVVIIREEQLQSRRLCCLRRAEETQQGGGNTTSDDLFPFEEVWWVILLEDDPGGTADDDTTLGLQQLDLLRRPTTVQQQCC CCeellll llyyssiiss [[8855––8899]] SSyyrrPP pprrootteeiinn ssyyrriinnggaaee PPWAAAVVSIIATTHRHRPPEFFTATGGIEEETRRLCCLFFCFFRNNHQQGVVAQQVLLLHHFHRHGPPYFYDCCLMMPGGSVEEAEELLARRFEEEDDGLLFLALDDEMAMLFFSGGPPPGDDLRRHLLGPPTRRYLLGVVSDSYYLGGPDKDGKGESSAGAIGIEERDDNPP VYRSTPYPEREMILYHNESSHLESWPRKQWFFCEQPSRVGGATPLADIRQVLAYLPKEV Syringomycin Pseudomonassyringae VVVMMERAAFLLEIISGGKEEGAALYYLEEYAASCRCTAAFVVTRRAFFGEEVWWERRPKKSWGGDDESVVFVVFMMGTLLSDDENNRMMSVLLIAAEAQAHRHCAARRREDDQPPGYYTEEDEEPFPRERWLLIIVLVDVVGAADMMTGGLEEQMMLTRTATAQRRGCG Celllysis [84–88] pv.syringae DDPAVVVWWITQQHPPPAAF TGERCFFNQVQLHHPYCMGEELREDLLDMFGPDRLPRLVSYGDGSAIEDP VMALIGEAYEACAVRFEWRKGDVVMLDNMLAAHARDPYEEPRLIVVAMGEMTARG SyrPprotein KKDIIVYYWGGVVQYYPMMADDRRPPLLSSAAGGEEEEVVRRMMMMAAAAVVSSAAEEKKRREEKKCCRRRRFFYYHHKKEEDDAAHHRRTTLLIIGGDDMMLLIIRRTTAAAAAAKKAA IIttuurriinn AA BBaacciilllluuss ssuubbttiilliiss YYKGGIYLLGDDVPPYAAMGGIDISSRFFGPGLVVSQQAEEGYYEGGEKKVPPRYYMIIPPMAAALLAPPDVDSMMAHHEFFKNNRIIESSKHHCSSRGGRRRFWWYIHIVVKCCEAADVVADDHSSRKKTPPLIIGGIGIIDDDIIMEEKKLMIMRKTKAPPGAGTATIIKDDAII CCeellll llyyssiiss [[8877,,8899,,9900]] IturinA Bacillussubtilis AAYKGKRRLFDFFFPSSAPPGTTIEESYYFSSGDDVLLQQQEAAYKKGHHKPPPDDYIQQPQAQTLTDPDDYYMFFYYHHHFLLNWWISSSHMMSKKGEERSSWFFIIIKKVQQCAAAVGGDKKSGGKLLPSSILLGPPILLDDDIESSKFFSSMVVKRRPLLGKKTDDIDDDGIG Celllysis [86,88,89] AKRFFSPTEYSDLQAKHPDQQTDYFYHLWSMKESFIKQAGKGLSLPLDSFSVRLKDDG HHHVVVSSSIIIEEELLL SSttrreeppttoommyycceess IInnhhiiIbbniithtiiioobnnit ooioff n cchhoiifttiinn NikkomNNyciikiknkkoommyycciinn Streptomycesspp. chitin [[9911––9933]] [90–92] sspppp.. bbiioossbyyinnottshhyeensstiihss esis Inhibitionof SSttrreeppttoommyycceess IInnhhiibbiittiioonn ooff PepstatiPnPeeAppssttaattiinn AA Streptomycesspp. aspartic [[9933]] [92] sspppp.. aassppaaprrrttoiicct epparrsooettseeaasseess FFuunnggaall PPeeppttiiddeess J.Fungi2017,3,46 8of36 Table3.Cont. Name Origin SequenceorMolecularFormula ModeofAction Reference J. Fungi 2017, 3, 46 8 of 35 FungalPeptides Inhibition of Aspergillus Inhibitionof AculeaciAncAuleacin A Aspergillusaculeatus 1,3-β1,-3D--βg-ldu-cgalnu can [93,94] [92,93] aculeatus synthase synthase PlantPeptides Plant Peptides Defensins Rs-AFP1Defensins QKLCERPSGTWSGVCGNNNACKNQCINLEKARHGSCNYVFPAHKCICYFPC Membrane Raphanussativus [62,88,94–96] Rs-AFP2Rs-AFP1 Raphanus QQKKLLCCEQRRPPSSGGTTWWSSGGVVCCGGNNNNNNAACCKKNNQQCCIINRLLEEKKAAWRHGGSCSCNNYYVVFFPAPAHHKKCCICICYYFPFCPC Mempebrrmaneea bilization [62,89,95–97] ThioninRss-AFP2 sativus QKLCQRPSGTWSGVCGNNNACKNQCIRLEKAWGSCNYVFPAHKCICYFPC permeabilization KEICCKVPTTPFLCTNDPQCKTLCSKVNYEDGHCFDILSKCVCMNRCVQDAKTLAAEL Membrane CaThi Thionins Capsicumannuum IEEEFLKQ permeabilization [88,97,98] Thaumatin-like(TL)proteiCnaspsicum KEICCKVPTTPFLCTNDPQCKTLCSKVNYEDGHCFDILSKCVCMNRCVQDAKTLAAEL Membrane CaThi [89,98,99] annuum IAETEIEEFVLRKNQN CPYTVWAASTPIGGGRRLDRGQTWVINAPRGTKMARVWGRTNCNFNAA permCeeallbwiliazlaltion GRGTCQTGDCGGVLQCTGWGKPPNTLAEYALDQFSGLDFWDISLVDGFNIPMTFAPT Osmotin Nicotianatabacum perturbations; Thaumatin-like (TL) proteins NPSGGKCHAIHCTANINGECPRELRVPGGCNNPCTTFGGQQYCCTQGPCGPTFFSKFF sporelysis KQRCPDAYSYPQDDPTSTFTCPGGSTNYRVIFCPNGQAHPNFPLEMPGSDEVAK [86,88,99,100] ATIEVRNNCPYTVWAASTPIGGGRRLDRGQTWVINAPRGTKMARVWGRTNCNFNAA AAVFTVVNQCPFTVWAASVPVGGGRQLNRGESWRITAPAGTTAARIWARTGCKFDA Cell wall Nicotiana GSGRRGGTCSCQRTTGGDDCCGGGGVVLLQQCCTTGGWYGGKRAPPPNNTTLLAAEEYYAALLDKQQFFNSGNLLDDFFWFDDIISSLLIVDDGGFFNNVIPPMMSTFFLAPPDT Zeamatin Zeamays Celllysis Osmotin GGSGCSRGPRCAVDVNARCPAELRQDGVCNNACPVFKKDEYCCVGSAANDCHPTN perturbations; tabacum NPSGGKCHAIHCTANINGECPRELRVPGGCNNPCTTFGGQQYCCTQGPCGPTFFSKFF YSRYFKGQCPDAYSYPKDDATSTFTCPAGTNYKVVFCP spore lysis KQRCPDAYSYPQDDPTSTFTCPGGSTNYRVIFCPNGQAHPNFPLEMPGSDEVAK [87,89,100,101] AAVFTVVNQCPFTVWAASVPVGGGRQLNRGESWRITAPAGTTAARIWARTGCKFDA SGRGSCRTGDCGGVLQCTGYGRAPNTLAEYALKQFNNLDFFDISLIDGFNVPMSFLPD Zeamatin Zea mays Cell lysis GGSGCSRGPRCAVDVNARCPAELRQDGVCNNACPVFKKDEYCCVGSAANDCHPTN YSRYFKGQCPDAYSYPKDDATSTFTCPAGTNYKVVFCP Insect Peptides J.Fungi2017,3,46 9of36 Table3.Cont. Name Origin SequenceorMolecularFormula ModeofAction Reference InsectPeptides Cecropins Stomoxyn Stomoxyscalcitrans RGFRKHFNKLVKKVKHTISETAHVAKDTAVIAGSGAAVVAAT Celllysis [54,88,101] Proapoptotic Melittin Apismellifera GIGAVLKVLTTGLPALISWIKRKRQQ-CONH2 activity [102,103] Defensins Drosophila Drosomycin DCLSGRYKGPCAVWDNETCRRVCKEEGRSSGHCSPSLKCWCEGC Celllysis [86,88,104] melanogaster DHHDGHLGGHQTGHQGGQQGGHLGGQQGGHLGGHQGGQPGGHLGGHQGGIGG Tenecin3 Tenebriomolitor Unknown TGGQQHGQHGPGTGAGHQGGYKTHGH YGPGDGHGGGHGGGHGGGHGNGQGGGHGHGPGGGFGGGHGGGHGGGGRGGGG [71,88,105] Holotricin3 Holotrichiadiomphalia SGGGGSPGHGAGGGYPGGHGGGHHGGYQTHGY Growth Pseudacanthotermes inhibition Termicin ACNFQSCWATCQAQHSIYFRRAFCDRSQCKCVFVRG spiniger AmphibianPeptides Disrubtionof Magainin2 Xenopuslaevis GIGKFLHSAKKFGKAFVGEIMNS plasma [106–108] membrane BuforinI Bufobufogaragriozans AGRGKQGGKVRAKAKTRSSRAGLQFPVGRVHRLLRKGNY Celllysis [55,106] BuforinII TRSSRAGLQFPVGRVHRLLRK TemporinA Ranatemporaria FLPLIGRVLSGIL Celllysis [56,88,109] Phyllomedusa Membrane Dermaseptin-1 GLWSTIKNVGKEAAIAAGKAALGAL [86,88,110,111] hypochondrialis permeabilization J.Fungi2017,3,46 10of36 Table3.Cont. Name Origin SequenceorMolecularFormula ModeofAction Reference AvianPeptides Avianβ-defensins Gallinacins GRKSDCFRKSGFCAFLKCPSLTLISGKCSRFYLCCKRIWG Gallusgallus β-defensin-4 IVLLFVAVHGAVGFSRSPRYHMQCGYRGNFCTPGKCPHGNAYPGLCRPKYSCCRW THP-1 Meleagrisgallopavo GKREKCLRRNGFCAFLKCPTLSVISGTCSRFQVCC Celllysis [86,88,112–115] Aptenodytes Spheniscin-1 SFGLCRLRRGFCAHGRCRFPSIPIGRCSRFVQCCRRVW patagonicus Cathelicidins Cathelicidin-2 Gallusgallus LVQRGRFGRFLRKIRRFRPKVTITIQGSARFG Celllysis [88,116] MammalianPeptides α-defensins HNP-1 ACYCRIPACIAGERRYGTCIYQGRLWAFCC Homosapiens HNP-2 CYCRIPACIAGERRYGTCIYQGRLWAFCC Celllysis [86,88,117,118] MSSRHSPYPRKTSGDTTGSKTSWASSGSRENKGNHKNPSFSTASRPFLTRQQKKEILKPR ALRKDPPKVFCATHRADSPDAPAVCGFFWHSNRIAGKGTDWIFTRGKQLFQERAKNN NP-1 Rabbitbocaparvovirus VIDWDMARDLLFSFKRECDQWYRNMLYHFRLGEPCDKCNYWDGAYRKYCARVNAD YEKEINATSASQELTDEEAAAALDAAMADASH β-defensins HBD-1 DHYNCVSSGGQCLYSACPIFTKIQGTCYRGKAKCCK HBD-2 Homosapiens TCLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP Celllysis [88,118–120] HBD-3 GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKK HBD-4 ELDRICGYGTARCRKKCRSQEYRIGRCPNTYACCLRK

Description:
Limited therapeutic options, resistance development and the high mortality of . 900 peptides isolated from microbes, plants and animals display antifungal cytotoxicity requires an active metabolism of the target cells [66]. Capsicum annuum fruits induces oxidative stress in C. tropicalis, which
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.