Nuclear Science 2010 2010 N ational Programmes in Chemical Partitioning N ational Programmes in Many countries have been performing a wide range of research on the partitioning and transmutation (P&T) of minor actinides and fission products. The aim is to provide greater flexibility in terms of Chemical Partitioning radioactive waste management strategies and deploying advanced nuclear fuel cycles. This report N describes recent and ongoing national research programmes related to chemical partitioning in the a t Czech Republic, France, Italy, Japan, Korea, the Russian Federation, Spain, the United Kingdom and the io n United States. European Commission research programmes are also included. a l P r o g r a m m e s in C h e m A Status Report ic a l P a r t it io n in g OECD Nuclear Energy Agency ISBN 978-92-64-99096-8 Le Seine Saint-Germain – 12, boulevard des Îles -:HSTCQE=^^U^[]: F-92130 Issy-les-Moulineaux, France Tel.: +33 (0)1 4524 1015 – Fax: +33 (0)1 4524 1112 E-mail: [email protected] – Internet: www.nea.fr N U C L E A R E N E R G Y A G E N C Y Nuclear Science ISBN 978-92-64-99096-8 National Programmes in Chemical Partitioning A Status Report © OECD 2010 NEA No. 5425 NUCLEAR ENERGY AGENCY Organisation for Economic Co-operation and Development ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. This work is published on the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of the Organisation or of the governments of its member countries. NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1st February 1958 under the name of the OEEC European Nuclear Energy Agency. It received its present designation on 20th April 1972, when Japan became its first non-European full member. NEA membership today consists of 28 OECD member countries: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Luxembourg, Mexico, the Netherlands, Norway, Portugal, Republic of Korea, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities also takes part in the work of the Agency. The mission of the NEA is: – to assist its member countries in maintaining and further developing, through international co- operation, the scientific, technological and legal bases required for a safe, environmentally friendly and economical use of nuclear energy for peaceful purposes, as well as – to provide authoritative assessments and to forge common understandings on key issues, as input to government decisions on nuclear energy policy and to broader OECD policy analyses in areas such as energy and sustainable development. Specific areas of competence of the NEA include safety and regulation of nuclear activities, radioactive waste management, radiological protection, nuclear science, economic and technical analyses of the nuclear fuel cycle, nuclear law and liability, and public information. The NEA Data Bank provides nuclear data and computer program services for participating countries. In these and related tasks, the NEA works in close collaboration with the International Atomic Energy Agency in Vienna, with which it has a Co-operation Agreement, as well as with other international organisations in the nuclear field. Corrigenda to OECD publications may be found on line at: www.oecd.org/publishing/corrigenda. © OECD 2010 You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to [email protected]. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at [email protected] or the Centre français d'exploitation du droit de copie (CFC) [email protected]. Cover credits: NRI Rez, Czech Republic and KAERI, Republic of Korea. FOREWORD Foreword Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) was established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flow sheets, development and performance of fuel and materials, and accelerators and spallation targets. The WPFC has established several expert groups to address these issues. The Expert Group on Chemical Partitioning was created in 2001 to: i) perform a thorough technical assessment of separation processes as applied to a broad set of partitioning and transmutation (P&T) operating scenarios; ii) identify important research, development and demonstrations necessary to bring preferred technologies to a deployable stage; and iii) recommend collaborative international efforts for further technology development. This report describes ongoing and planned national research programmes related to chemical partitioning in the Czech Republic, France, Italy, Japan, Korea, the Russian Federation, Spain, the United Kingdom and the United States. European Commission research programmes are also included. The programmes continue to evolve so as to take national strategies into account. 3 NATIONAL PROGRAMMES IN CHEMICAL PARTITIONING – © OECD/NEA 2010 ACKNOWLEDGEMENTS Acknowledgements The NEA Secretariat expresses its sincere gratitude to Mr. Byung-Chan Na and Mr. Isao Yamagishi for their efforts in initiating this report. 4 NATIONAL PROGRAMMES IN CHEMICAL PARTITIONING – © OECD/NEA 2010 TABLE OF CONTENTS Table of contents Foreword.......................................................................................................................................................... 3 Executive summary ....................................................................................................................................... 11 Introduction .................................................................................................................................................... 15 1 Czech Republic ....................................................................................................................................... 19 1.1 Pyrometallurgical technologies for MSTR fuel cycle ................................................................ 19 1.2 International R&D co-operation .................................................................................................. 22 2 France ...................................................................................................................................................... 23 2.1 Hydrometallurgy programme ...................................................................................................... 23 2.1.1 Strategy................................................................................................................................ 23 2.1.2 Methodology: General objectives ..................................................................................... 24 2.1.3 R&D topics ........................................................................................................................... 25 2.1.3.1 Establishing the process flow sheets ................................................................. 25 2.1.3.2 Process implementation ..................................................................................... 26 2.1.3.3 Overall validation ................................................................................................. 27 2.1.3.4 Transposition to industrial scale ....................................................................... 27 2.1.3.5 Cost assessment of an industrial facility .......................................................... 27 2.1.4 Separation of Np, Tc and I by modified PUREX process ................................................ 28 2.1.4.1 Neptunium separation ........................................................................................ 28 2.1.4.2 Iodine separation ................................................................................................. 28 2.1.4.3 Technetium separation ....................................................................................... 29 2.1.5 Separation of Am, Cm and Cs by new solvent extraction processes .......................... 30 2.1.5.1 Americium and curium separation ................................................................... 30 2.1.5.2 Americium-curium splitting............................................................................... 32 2.1.5.3 Caesium separation ............................................................................................. 32 2.1.6 Conclusion – perspectives ................................................................................................. 33 2.2 Pyrochemical applications foreseen in France .......................................................................... 33 2.2.2 Research programme ......................................................................................................... 34 2.2.3 Main experimental results ................................................................................................ 34 2.2.3.1 Actinide electro-recovery assessment .............................................................. 34 2.2.3.2 Actinide recovery by salt/metal extraction ...................................................... 35 2.2.3.3 Integration studies ............................................................................................... 35 2.2.3.4 Actinide recovery ................................................................................................. 36 2.2.3.5 Apparatus development and waste confinement studies.............................. 36 2.2.4 Conclusions and prospects ............................................................................................... 37 References............................................................................................................................................... 37 3 Italy .......................................................................................................................................................... 39 3.1 Hydrometallurgy ........................................................................................................................... 39 3.2 Pyrometallurgy .............................................................................................................................. 41 References............................................................................................................................................... 43 5 NATIONAL PROGRAMMES IN CHEMICAL PARTITIONING – © OECD/NEA 2010 TABLE OF CONTENTS 4 Japan ....................................................................................................................................................... 45 4.1 Aqueous processes ........................................................................................................................ 45 4.1.1 NEXT process ...................................................................................................................... 45 4.1.1.1 Crystallisation of U .............................................................................................. 45 4.1.1.2 Co-recovery of U-Np-Pu ...................................................................................... 47 4.1.1.3 Recovery of Am and Cm ...................................................................................... 47 4.1.2 Development of innovative extractants and adsorbents ............................................. 48 4.1.2.1 Selective extraction of U ..................................................................................... 48 4.1.2.2 Total recovery of TRU .......................................................................................... 48 4.1.2.3 Separation of MA and rare earths ...................................................................... 49 4.1.2.4 Separation of Sr-Cs .............................................................................................. 49 4.1.2.5 Four-group partitioning process ........................................................................ 50 4.2 Pyrochemical processes ............................................................................................................... 50 4.2.1 CRIEPI ................................................................................................................................... 50 4.2.1.1 Thermodynamic properties ................................................................................ 51 4.2.1.2 Separation of actinides from lanthanides ........................................................ 51 4.2.1.3 U and Pu electrorefining process ....................................................................... 52 4.2.1.4 Reduction process for oxide fuel ........................................................................ 52 4.2.1.5 Chlorination process of high-level liquid waste .............................................. 53 4.2.1.6 Reductive extraction process for recovering transuranic elements ............. 53 4.2.1.7 Waste treatment process development for pyroprocess wastes ................... 53 4.2.1.8 Process flow diagram and design study ............................................................ 53 4.2.1.9 Integrated process developments ...................................................................... 53 4.2.2 JAEA...................................................................................................................................... 54 4.2.2.1 Pyrochemical process for oxide fuel .................................................................. 54 4.2.2.2 Pyrochemical process for metal fuel ................................................................. 54 4.2.2.3 Pyrochemical process for nitride fuel................................................................ 54 References............................................................................................................................................... 56 5 Korea (Republic of) ................................................................................................................................ 59 5.1 Current status of pyroprocessing R&D in Korea ....................................................................... 59 5.1.1 DUPIC ................................................................................................................................... 59 5.1.2 Pyrometallurgical process ................................................................................................. 62 5.1.2.1 Electroreduction of oxide into metal ................................................................. 62 5.1.2.2 Pyropartitioning using an electrorefining process .......................................... 63 5.1.2.3 Treatment of waste salts .................................................................................... 64 5.2 Future R&D activities .................................................................................................................... 66 5.3 Conclusion ...................................................................................................................................... 66 References............................................................................................................................................... 67 6 Russian Federation ............................................................................................................................... 69 6.1 Review of Russian national programmes in partitioning ........................................................ 69 References............................................................................................................................................... 72 7 Spain ....................................................................................................................................................... 73 7.1 Hydrometallurgical separation .................................................................................................... 74 7.2 Pyrochemical separation .............................................................................................................. 75 7.3 Conclusion ...................................................................................................................................... 76 References............................................................................................................................................... 77 8 United Kingdom .................................................................................................................................... 79 8.1 Aqueous-based separations studies ........................................................................................... 79 8.1.1 Advanced PUREX development ........................................................................................ 80 8.1.2 Head-end process development ...................................................................................... 80 6 NATIONAL PROGRAMMES IN CHEMICAL PARTITIONING – © OECD/NEA 2010 TABLE OF CONTENTS 8.1.3 Solvent extraction development ...................................................................................... 81 8.1.3.1 Process chemistry ................................................................................................ 82 8.1.3.2 Flow sheet development/modelling and simulation ...................................... 83 8.1.3.3 Flow sheet testing ................................................................................................ 84 8.1.3.4 Equipment development ..................................................................................... 85 8.1.4 Future PUREX development .............................................................................................. 86 8.1.5 Other aqueous (non-PUREX) separation processes ....................................................... 86 8.1.6 Trivalent actinide separations ......................................................................................... 86 8.1.6.1 Selective ligand development for DIAMEX/SANEX processes ....................... 86 8.1.6.2 GANEX process development ............................................................................. 87 8.1.7 Conclusions regarding aqueous separations ................................................................. 87 8.2 Pyrochemical separations studies .............................................................................................. 87 8.2.1 Background to the UK pyrochemical separation programme ...................................... 87 8.2.2 Current pyrochemical separations programme............................................................. 88 8.2.3 NNL actinide electrorefining and partitioning study .................................................... 89 8.2.4 Design and cost studies ..................................................................................................... 91 8.2.5 Design of pilot-scale uranium electrorefiner ................................................................. 92 8.2.6 Molten salts dynamics rig ................................................................................................. 93 8.2.7 Other experimental facilities for the NNL pyrochemistry programmes .................... 93 8.2.8 Recent international collaborative studies in pyrochemistry ...................................... 93 8.2.9 Pyrochemical separations R&D work at UK universities .............................................. 94 8.2.10 Conclusions regarding pyrochemical separations ........................................................ 94 References............................................................................................................................................... 95 9 United States of America ..................................................................................................................... 99 9.1 Separable components of used nuclear fuels ............................................................................ 99 9.2 Partitioning requirements and strategy ..................................................................................... 100 9.3 Current flow sheet development ................................................................................................ 100 9.3.1 Dry head-end treatment ................................................................................................... 101 9.3.2 Oxide fuel powder dissolution ......................................................................................... 102 9.3.3 Recovery and purification of uranium, plutonium and neptunium ........................... 103 9.3.4 Co-conversion (denitration) of the U-Pu-Np product via the Modified Direct Denitration (MDD) process .................................................................................... 104 9.3.5 Americium-curium recovery ............................................................................................ 105 9.3.6 Electrochemical reduction of oxide recycle fuel ............................................................ 105 9.4 Development of non-aqueous alternative flow sheet for metallic fast reactor fuel ............ 106 References............................................................................................................................................... 107 10 European Commission ......................................................................................................................... 109 10.1 European Framework Programme projects ............................................................................... 109 10.1.1 EUROPART ........................................................................................................................... 109 10.1.2 ACSEPT ................................................................................................................................ 111 10.2 Partitioning research at the Joint Research Centre-Institute for Transuranium Elements (JRC-ITU) ........................................................................................................................ 111 10.2.1 Aqueous reprocessing ....................................................................................................... 112 10.2.2 Pyroreprocessing ................................................................................................................ 112 Conclusions and recommendations ............................................................................................................ 115 List of contributors ......................................................................................................................................... 117 Members of the Expert Group ....................................................................................................................... 119 7 NATIONAL PROGRAMMES IN CHEMICAL PARTITIONING – © OECD/NEA 2010 TABLE OF CONTENTS List of figures 1.1 Simplified scheme of MSTR fuel cycle ............................................................................................. 20 1.2 Conceptual flow sheet of MSR on-line reprocessing designed by NRI Rez plc ........................... 21 1.3 Equipment of the fluoride volatility technology in the NRI Rez plc ............................................. 21 2.1 Processes selected for technical feasibility demonstration .......................................................... 24 2.2 Iodine behaviour in industrial operations at AREVA La Hague .................................................... 29 2.3 Flow sheet of the first PUREX extraction cycle at AREVA La Hague............................................. 29 2.4 Flow sheet of the DIAMEX-SANEX process tested on genuine solution in 2000 ........................ 30 2.5 Principle of the improved DIAMEX-SANEX process flow sheet .................................................... 31 2.6 Flow sheet of the DIAMEX process implemented in CBP .............................................................. 31 2.7 Flow sheet of the DIAMEX-SANEX process implemented ............................................................. 32 2.8 Flow sheet for system 2: 1,3 [(2-4-diethyl-heptylethoxy)oxy]-2,4-crown-6-calix[4]arene 0.062 M, methyloctyl-2-dimethyl-butanamide 1 M in TPH ........................................................... 33 2.9 Actinide and lanthanide partitioning in LiF-AlF /AlCu (78-22 mol%) system at 830°C ............. 36 3 3.1 Molecular structure of the triazine BADPTZ ................................................................................... 40 3.2 Molecular structure of the α-CNC acid .......................................................................................... 40 10 3.3 Molecular structure of the diamide C ............................................................................................ 40 14 3.4 SANEX tri-synergistic process flow sheet ........................................................................................ 41 3.5 General view of the Pyrel II plant; schematic of the electrorefiner .............................................. 42 3.6 Block diagram related to the on-line reprocessing of fuel from a molten salt reactor (MSR-Th breeder) ................................................................................................................... 43 4.1 Schematic flow of the NEXT process ................................................................................................ 46 4.2 Continuous crystallisation apparatus and obtained UNH crystals .............................................. 46 4.3 Centrifugal contactor bank for U-Np-Pu co-recovery experiment ............................................... 47 4.4 Molecular structure of DGA ............................................................................................................... 48 4.5 Molecular structure of PDA ................................................................................................................ 49 4.6 Schematic of the four-group partitioning process ......................................................................... 50 4.7 CRIEPI pyrochemical process for the recycle of actinides ............................................................. 51 4.8 Overview of uranium and plutonium collected on a solid cathode and in a cadmium cathode, respectively, by electrorefining ....................................................................... 52 4.9 Glove box facility at JAEA for the demonstration of metal electrorefining of simulant oxide fuel ............................................................................................................................. 53 4.10 Double-strata fuel cycle proposed by JAEA ..................................................................................... 55 4.11 Appearance of TRU-HITEC for pyrochemical study of MA ............................................................ 55 5.1 A long-term plan for partitioning and transmutation of long-lived nuclides ............................ 60 5.2 A strategy of a partitioning and a transmutation to be developed at KAERI .............................. 60 5.3 The basic concept of the DUPIC fuel cycle....................................................................................... 60 5.4 Flow sheet for the fabrication of DUPIC fuel ................................................................................... 61 5.5 Overview of the Advanced Conditioning Process Facility (ACPF) ................................................. 63 5.6 Electrorefiner system and the received uranium dendrite and uranium ingot ......................... 64 5.7 A schematic diagram for removal of fission products ................................................................... 65 5.8 Treatment system for a waste salt minimisation .......................................................................... 66 6.1 Principal flow sheet of the RT-1 reprocessing plant at the Mayak plant .................................... 69 6.2 Flow sheet for the combined PUREX-TRUEX process ..................................................................... 70 6.3 DOVITA fuel cycle ............................................................................................................................... 71 7.1 Schematic flow sheet for the pyrochemical processes .................................................................. 76 8 NATIONAL PROGRAMMES IN CHEMICAL PARTITIONING – © OECD/NEA 2010
Description: