LPV Modeling and Control for Active Flutter Suppression of a Smart Airfoil AliM.H.Al-Hajjar∗andAliKhudhairAl-Jiboory† MichiganStateUniversity,EastLansing,MI48823,USA SeanShan-MinSwei‡ NASAAmesResearchCenter,MoffettField,CA94035,USA GuomingZhu§ MichiganStateUniversity,EastLansing,MI48823,USA Inthispaper,anoveltechniqueoflinearparametervarying(LPV)modelingandcontrolofasmartairfoil foractivefluttersuppressionisproposed, wherethesmartairfoilhasagroovealongitschordandcontains a moving mass that is used to control the airfoil pitching and plunging motions. The new LPV modeling techniqueisproposedthatusesmasspositionasaschedulingparametertodescribethephysicalconstraint of themoving mass, in addition thehard constraint at theboundaries is realizedby proper selection ofthe parameter varying function. Therefore, the position of the moving mass and the free stream airspeed are considered the scheduling parameters in the study. A state-feedback based LPV gain-scheduling controller with guaranteed H performance is presented by utilizing the dynamics of the moving mass as scheduling ∞ parameteratagivenairspeed. ThenumericalsimulationsdemonstratetheeffectivenessoftheproposedLPV controlarchitecturebysignificantlyimprovingtheperformancewhilereducingthecontroleffort. Nomenclature b Typicalsectionsemi-chord(thelengthofthegroove). c Typicalsectionchord. C Liftcoefficient. L C (dCL),C =2π. Lα dα Lα e Elasticaxis(e.a)fromelasticaerodynamiccenter,aftpositive. e¯ Nondimensionale(e/b). F (t) Aerodynamicloadsinducedbyairfoilmotion. a g Gravityconstant. g¯ Nondimensionalg( g ). ωα2b h Plungingdisplacement. h¯ Nondimensionalplungingdisplacement(h). b I Massmomentofinertiaaboute.a. perunitspan. α K Springconstantforplungingmode. h K Springconstantforpitchingmode. α M Massperunitspaofthetypicalsection. m Massofthecontroldevice. q Dynamicpressure(ρV2). p 2 (cid:113) r Radiusofgyrationaboute.a. ( Iα ). α Mb2 t Time. ∗PhD.Student,MechanicalEngineering,[email protected] †Post-doc,[email protected] ‡SeniorResearchScientist,IntelligentSystemsDivision,[email protected]. §Professor,MechanicalEngineering,[email protected] 1of15 AmericanInstituteofAeronauticsandAstronautics u Controlinput. u¯ Nondimensionalcontrolinput( u ). Mωα2b V Freestreamairspeed. V¯ Nondimensionalfreestreamairspeed( V ). ωαb x Staticunbalance,distancefrome.a. toinertiaaxis,aftpositive. α x¯ Nondimensionalstaticunbalance(xα). α b y Displacement,travelingdistanceofcontrolmassm. y¯ Nondimensionaldisplacement(y). b α Angelofincidence,positivenoseup. α α forsmallI.C. S α α forlargeI.C. L β Massratio,Controldevicetotheairfoil(m). M θ Firstschedulingparameter. 1 θ Secondschedulingparameter,freestreamairspeed(V¯). 2 θ Thirdschedulingparameter,freestreamairspeedsquared(V¯2). 3 µ Massratioofthetypicalsectiontotheapparentmass( M ). πρb2 ω Uncoupledplungingnaturalfrequency. h ω Uncoupledpitchingnaturalfrequency. α ρ Airdensity. τ Nondimensionaltime(ω t). α I. Introduction ACTIVEfluttersuppressionhasbeenacriticalresearchtopicinaerospaceapplicationsformanydecades,especially, astheemergingairvehiclestructuresbecomehighlyflexible,activefluttersuppressionbecomesakeytechnical designrequirement. Decreasingtheaircraftweight,improvingtheaerodynamicefficiency,andincreasingthecritical flight speed continue to be the main thrusts for future aeronautical research. There are many methods and designs inliteratureconcerningsuppressionofflutterphenomena. Passivemethodshavebeenusedtosolvethisproblemfor many years, however, these methods lead to increased aircraft mass that is undesirable; see references.?,?,?,? It is clearthatpassivemethodsarenotprolific. Ontheotherhand,activecontroltechniquescanprovidecrucialandliable solutions that not only increase the aircraft critical speed and suppress the oscillations but also decrease the aircraft weightwithenhancedefficiencyandperformance. There are many active control techniques in literature for suppressing and reducing flutter. Using piezoelectric actuationtocontrolflutterwasgivenbyHanetal.,? wherenumericalandexperimentalinvestigationwereconducted foractivefluttersuppressionofasweptbackcantileveredliftingsurface. Finiteelementanalysis,panelaerodynamics, and the minimum statespace realization were used to develop the equation of motion that is used for system anal- ysis and control design. H and µ-synthesized control laws were designed and the flutter suppression performance 2 wasevaluatedinwindtunneltesting. Electro-hydraulicmechanicalactuationofcontrolsurfaces,? reactionjets,? jet flaps, micro-flaps? were also introduced as active flutter suppression techniques. C. De Marqui et al.? developed a flexiblemountingsystemforfluttertestswithrigidwingsinawindtunnel. Thisflexiblemountsystemrepresentsa two-degree-of-freedomsystemwithrigidwingsencounteringflutter.Anaeroelasticmodelwasformulatedtosimulate theaeroelasticbehaviorofthecorrespondingsystemandastatefeedbackcontrolwasdesignedforthismodel. The wind tunnel test model was a rectangular wing with an NACA 0012 airfoil section and with a trailing edge control surfaceactuator. Themaingoalwastosuppressflutterandtomaintainthestabilityoftheclosed-loopsystem. Zhang and Behal? introduced a continuous-time controller to suppress the aeroelastic vibrations of the wing section model in an unsteady aerodynamic incompressible flow. The flap hinge torque of a trailing-edge flap surface was used as the control input. Their control design was based on the choice of the pitching angle as the output variable. The closed-loop system was shown to be robust to external disturbances. Also, numerical simulation results showed the efficacyofthemethodinsuppressingaeroelasticvibrationsinbothpre-andpost-flutterflightregimesundermultiple externaldisturbances. A special attention was given to linear parameter-varying (LPV) modeling and control of airfoils. For example, 2of15 AmericanInstituteofAeronauticsandAstronautics Wingerden et al.? exploited a system identification algorithm for an LPV aeroelastic system equipped with trailing edge flaps, where a factorization was used to form predictors based on past inputs, outputs, and known aeroelastic data, and these predictors were used to estimate the state sequence and to form LPV aeroelastic system matrices. Since the algorithm can be used in a closed-loop setting it can be applied to flutter suppression problems. Barker andBalas? designedtwo-parameter(LPV)gain-scheduledcontrollersforactivefluttersuppressionoftheBenchmark ActiveControlTechnology(BACT)wingsectionatNASALangleyResearchCenter. Theresultswerecomparedto apreviouslydesignedgain-scheduledcontroller. TheBACTwingsectiondynamicschangessignificantlyasafunc- tion of Mach number and dynamic pressure. The two-parameter LPV gain-scheduled controllers incorporate these changesaswellasboundsontherateofchangeofMachnumberanddynamicpressure. Theinclusionofratebounds inthedesignprocessallowsforimprovedperformanceoveralargerrangeofoperationalconditionsthanpreviously designedgain-scheduledcontrollerbasedonlinearfractionaltransformation. TheseLPVcontrollersreducecoupling amongthetrailing-edgeflap,thepitchandplungemodes,andoptimizewindgustattenuation. Closed-loopstability andimprovedperformanceweredemonstratedviatime-domainsimulationswithvaryingMachnumberanddynamic pressure. LauandKerner? utilizedastandardlinearmodelforthecontrolofathinairfoilundersubsonicflow. The two-dimensionalsectionairfoilwasmodeledwiththreedegreesoffreedoms: plunge,pitchandflapangle,resultinga sixdimensionallinearsystem. Thesystemhasthreeinputs: thetorqueappliedattheflaphinge,theliftandmoment generatedbytheairflowingoverthewing. Theonedimensionalcontrolistheadditionaltorquethatcanbeapplied at the hinge through a motor. The goal was to use feedback to stabilize the airfoil at or above its flutter speed with several control strategies. Chen et al.? developed LPV aeroservoelastic model with nonlinear aerodynamics based on adaptive method. The LPV controller was then designed to suppress flutter with good accuracy and robustness. It turns out that the LPV controller also provides a good tool for virtual flutter flight experiments. Balas et al.? de- signed aeroservoelastic controllers using H and LPV control design techniques for a Body Freedom Flutter (BFF) ∞ aircraftandcomparedtheperformancesofthecontrollersinbothfrequencyandtimedomainsimulations. Thoughthe performance was acceptable, the designed LPV controller was not able to achieve the same level of performance as fromindividualH controller. Fromtheliteraturereview,onecanseethattheconventionalLPVmodelconsidersthe ∞ schedulingparameterasaphysicalparameterofthesystemmatricesthatchangeswithtime,?,?,? whereasthequasi- LPVmodel?,?,?considerssystemswithoneormorestatesinthesystemmatrices. ThesmartairfoilmodelproposedbySweiandJiang? isstudiedinthispaper;seeFig.1. Thesmartairfoilisatwo dimensional airfoil with a groove along its chord that contains a moving light mass. The mass is allowed to move alongthegroovetocontrolandsuppressthepitchingandplungingmotionoftheairfoil. Theairspeedandpositionof themovingmassareconsideredasschedulingparametersintheLPVmodelandthemasspositionisusedincontrol designastheschedulingparameter. Inthispaper,weproposetoutilizetheschedulingparameteraspartofascaling factorforthesmartairfoilmodel. Inparticular,thepositionofmovingmassisscaledandparametrizedsuchthatitis confined within the length of groove. According to the authors knowledge, this integration of scheduling parameter with scaling of control effector is novel that has never reported in the LPV control literature in the past. The main contribution of this paper is to develop a novel LPV modeling and control technique of the smart airfoil for flutter suppression,withguaranteedH performance. ∞ Thispaperisorganizedasfollows. SectionIIpresentsthenonlinearmodelofthesmartairfoil, andthebaseline LPVmodel(LPV-0)andLPVmodelwithparameterscaling(LPV-1). SectionIIIcontainsproblemformulationand controllerdesign. ComparisonsandsimulationresultsarepresentedinSectionIV.Conclusionsandfutureworkare giveninSectionV. II. LPVModelingofaSmartAirfoil II.A. Nonlinearmodel In this section, the mathematical model of the smart airfoil is presented. The linearized equations of motion of the airfoilaeroservoelasticmodelcanbewrittenas? (cid:34) (cid:35)(cid:34) (cid:35) (cid:34) (cid:35)(cid:34) (cid:35) (cid:34) (cid:35) m+M Mx h¨(t) K 0 h(t) 0 α + h = y(t)+F (t) (1) a Mx I α¨(t) 0 K α(t) mg α α α 3of15 AmericanInstituteofAeronauticsandAstronautics Figure1: Typicalsmartairfoilsection my¨(t)=mgα(t)+u(t) (2) where F (t) denotes the aerodynamic loading, m and M the moving mass and airfoil mass, respectively, additional a variablesandparametersusedin(1)and(2)canbefoundinFig.1.? Itisimportanttonotethatthepositionofmoving mass y(t) in (1) can be considered as the control input to the airfoil, whereas u(t) in (2) can be considered as the controlinputtothemovingmassm. Theairfoilwithsuchacontroldeviceiscalled”SmartAirfoil”.? Thefollowing quasi-steadyaerodynamicloadmodel?forF (t)isadaptedinthisstudy, a (cid:32)(cid:34) (cid:35)(cid:34) (cid:35) (cid:34) (cid:35)(cid:34) (cid:35)(cid:33) −1 0 h˙(t) 0 −1 h(t) F (t)=P V + , P=q cC (3) a e 0 α˙(t) 0 e α(t) p Lα V Now,substituting(3)into(1)andperformingnondimensionalizationforallthephysicalparameters,weobtainthe nondimensionalizedequationsofmotionforthesmartairfoilmodelasfollows, (cid:34)1+β x¯ (cid:35)(cid:34)h¨¯(τ)(cid:35) (cid:34) 2V¯ 0(cid:35)(cid:34)h˙¯(τ)(cid:35) ωh2 2V¯2 (cid:34)h¯(τ)(cid:35) (cid:34) 0 (cid:35) x¯α r¯α2α α¨(τ) + −2µµV¯e¯ 0 α˙(τ) +ω0α2 −2µV¯2eµ¯+r¯α2 α(τ) = βg¯ y¯(τ) (4) y¨¯(τ)=g¯α(τ)+u¯(τ):=u˜(τ) (5) where τ =ω t is the nondimensional time. Note that to simplify the notation, the overhead ”dot” in (4) and (5) α represents the time derivative with respect to τ. When the flutter occurs, the plunging displacement h and pitching angleα arefedbackinordertoproperlypositionthemovingmassm,whichgeneratesadampingeffecttotheairfoil, resultinginreducedflutterandincreasedthecriticalflutterspeed. II.B. ProposedLPVplantmodel: LPV-0 Rearranging(4)and(5)yieldsthefollowing (cid:34)αh¨¯¨((ττ))(cid:35)+(cid:34)2−x¯V2q¯rµ¯2+V¯ 2−V¯e¯2(V1¯q+eµ¯x¯βα) 00(cid:35)(cid:34)αh˙¯˙((ττ))(cid:35)+−x¯qrα¯ωα2ωαω2h2h2 2x¯α−V¯22qr¯αµ+V¯22V−¯2e¯2(V1¯+q2µeβ¯x¯)α++r¯r2¯2(qx1¯α+β)(cid:34)αh¯((ττ))(cid:35)=(cid:34)(1−+x¯αβqβ)βgg¯(cid:35)y¯(τ) (6) qµ qµ qωα2 qµ qµ q q y¨¯(τ)=g¯α(τ)+u¯(τ) (7) 4of15 AmericanInstituteofAeronauticsandAstronautics whereq=−(r¯2(1+β)−x¯2). Now,wedefinetheaugmentedstatexas α α (cid:34) (cid:35) x¯ x= , (8) x u where h¯ (cid:34) (cid:35) α y¯ x¯= andx = . (9) h˙¯ u y˙¯ α˙ Then,(6)and(7)canbedescribedinthestate-spacerepresentationasfollows, x˙(t)=A(θ(t))x(t)+B (θ(t))u¯(t) u (10) y(t)=C(θ(t))x(t)+D (θ(t))u¯(t) u wherex(t)istheaugmentedstate,y(t)thecontrolledoutput,andthesystemmatrices(A(θ),B (θ),C(θ),D (θ))are u u givenby 0 0 1 0 0 0 0 A(θ)=−r¯qqxα2¯ωω0αωααω22h2h2 −2qx¯µα2θr¯q3α2µθ−3 +2θ32e¯θq(q03µ1µe+¯x¯αβ)−−r¯α2r¯αq2x¯(α1q+β) −q22xµ¯r¯qθα2µ2θ2−+02θ22θe¯qq2(µeµ1¯x¯+αβ) 100 β−(1x¯0qq+αββ) 000, Bu(θ)=0000 (11) 0 0 0 0 0 1 b 0 g¯ 0 0 0 0 6 (cid:104) (cid:105) C(θ)= 0 0 0 0 1 0 , Du(θ)=0, where θ and θ are the scheduling parameters representing, respectively, the normalized airspeedV¯ and its square 2 3 V¯2. Inthisstudy,weconsiderθ ∈[0.5,2.92],henceθ ∈[0.25,8.526]. Furthermore,b istheparameterutilizedto 2 3 6 properlyconstrainingthepositionofthemovingmassattheboundaries. ToformulateanLPV-0plantmodelwithout apositionconstraint, wesettheparameterb =1. ThisLPV-0modelwillbeusedtoassesstheclosed-loopsystem 6 performance. II.C. ProposedLPVcontroldesignmodel: LPV-1 Now, we present the LPV control design model, namely, the LPV-1 model, which will be used to develop the LPV controllers. TheproposedLPV-1modelisbasedontheLPV-0modeldescribedin(10)and(11),butwithθ =b as 1 6 anadditionalschedulingparametertoconstrainthemovingmass. Inparticular,θ isafunctionofy¯,i.e. θ = f(y¯), 1 1 anditisdevisedsuchthat θ1=1, ify¯∈[−0.35,0.35] θ y¯=0.35, ify¯>0.35 1 θ y¯=−0.35, ify¯<−0.35 1 Itisclearfromthefirstconditiongivenabovethatwheny¯∈[−0.35,0.35]andθ =1, theLPV-1modelwillbe 1 equivalenttotheLPV-0model. Thepurposeofthesecondandthirdconditionistoimposeaconstraintonthemoving mass when it travels beyond ±0.35, by modulating the control gains through θ . The variation of θ as function of 1 1 thepositionofthemovingmassisillustratedinFig.2. Thisapproachmayintroduceaslightconservativenesstothe controldesign,itisintuitivelyappealingandprovedtobeeffective. 5of15 AmericanInstituteofAeronauticsandAstronautics Figure2: Saturationfunction III. LPVControllerFormulation Inthissection, wedevelopastate-feedbackbasedgainschedulingLPVcontrollerforLPV-0andLPV-1models withaddeddisturbanceinput. WeconsiderthefollowingLPVstate-spacesystems, x˙(t)=A(θ(t))x(t)+B (θ(t))u¯(t)+B (θ(t))w(t) u w (12) y(t)=C(θ(t))x(t)+D (θ(t))u¯(t)+D (θ(t))w(t) u w where (A(θ),B (θ),C(θ),D (θ)) are as defined in (11), w(t) denotes the disturbance input, B =[000000.1]T, u u w andD =0. TheparametersusedinthisstudyareshowninTable1. w Table1: Parametersusedinthepaper Parameter Value Parameter Value µ 152 β 0.01 e¯ 0.35 h(0) 0 x¯ 0.25 α (0), rad 0.01 α S r¯2 0.388 α (0), rad 0.6 α L b, in 5 h˙(0) 0 ω , rad/sec 64.1 α˙(0) 0 α ω , rad/sec 55.9 flutterairspeedV¯ 2.92 h Notethatα andα denotesmallandlargeinitialpitchangles,respectively. S L III.A. ProblemFormulation TheLPVmodeldescribedin(12)isassumedtohaveaffineparameters. Forinstance,thematrixA(θ)canberepre- sentedby q A(θ(t))=A +∑θ(t)A (13) 0 i i i=1 whereA andA areconstantmatrices,andqdenotesthenumberofschedulingparameters. Theschedulingparameter 0 i vectorθ(t)isdefinedas θ(t)=[θ (t),θ (t),θ (t),...,θ (t)]T (14) 1 2 3 q andeachθ isboundedby i η ≤θ ≤η , (15) 1,i i 2,i 6of15 AmericanInstituteofAeronauticsandAstronautics where η and η denote the upper and lower bound. Furthermore, these scheduling parameters also have the rate 1,i 2,i boundgivenby µ ≤θ˙ ≤µ . (16) 1,i i 2,i TheproposedLPVcontrolistodesignastate-feedbackcontrolleroftheform u¯(t)=K(θ(t))x(t), (17) whereK(θ)asymptoticallystabilizestheclosed-loopsystemsubjecttotheH normconstraintfromthedisturbance ∞ inputwtotheperformanceoutputyovertheentireparametervariationrange. Substitutingthecontroller(17)into(12)yieldstheclosed-loopsystemrepresentationdescribedby x˙(t)=A (θ(t))x(t)+B (θ(t))w(t) c w (18) y(t)=C (θ(t))x(t)+D (θ(t))w(t) c w where A (θ(t))=A(θ(t))x(t)+B (θ(t))K(θ(t)) c u (19) C (θ(t))=C(θ(t))x(t)+D (θ(t))K(θ(t)) c u Beforeproceedingfurther,weintroducethefollowingdefinitions. Definition1:?,? AunitsimplexΘ isapolytopeofrverticesdefinedas r (cid:40) (cid:41) r Θ = a=[a ,a ,···,a ]: ∑a =1, a ≥0,i=1,2,...,r r 1 2 r i i i=1 wherevariablea variesinsideaunitsimplexΘ . i r Forexample,thesystemmatrixA(θ)canbeexpressedas r A(θ)=∑aA =A(a), a∈Θ i i r i=1 Definition2:? Amulti-simplexΘistheCartesianproductofafinitenumberofsimplexes. Forinstance,ifthereareq simplexes,then q Θ=Θ ×Θ ×Θ ×···Θ =∏Θ , N1 N2 N3 Nq Ni i=1 wherethedimensionofmulti-simplexΘistheindexN=(N ,...,N ),suchthatainΘrepresents(a ,a ,...,a )and 1 q 1 2 q eacha inΘ represents(a(1),a(2),...,a(r)). i Ni i i i III.A.1. Transferringfromaffinetomulti-simplex Toformulateaconvexcontroldesignproblem,wefirstneedtoperformatransformationonthesystemmatrices,from theaffineparameterspaceθ tothemulti-simplexconvexspaceΘ. Eachaffineschedulingparameterθ istransferred i overaunitsimplexa asfollows,? i θ +η i 2,i a(1)= −→θ =2η a(1)−η i i 2,i i 2,i 2η 2,i θi+η2,i η2,i−θi (20) a(2)=1−a(1)=1− = i i 2η 2η 2,i 2,i a =(a(1),a(2))∈Θ ,∀i=1,2,···,q. i i i 2 Withthistransformation,theaffineschedulingparametersin(12)canbeconvertedintoasystemwithmulti-simplex parameters,wherethemulti-simplexvariablesaredefinedas a∈Θ=Θ ×Θ ×···Θ . 2 2 2 In the case of two scheduling parameters, i.e. q=3, the homogeneous term in the multi-simplex variable can be writtenas a =(a (1),a (2)),a =(a (1),a (2)) and a =(a (1),a (2)). 1 1 1 2 2 2 3 3 3 7of15 AmericanInstituteofAeronauticsandAstronautics Afterapplyingthetransformation,Eq.12andEq.17willbeintermsofmultisimplexvariables. Thentheclosed-loop systemcanbedescribedby (cid:40) x˙(t)=A (a(t))x(t)+B (a(t))w(t) c w (21) y(t)=C (a(t))x(t)+D (a(t))w(t) c w where A (a(t))=A(a(t))x(t)+B (a(t))K(a(t)) c u (22) C (a(t))=C(a(t))x(t)+D (a(t))K(a(t)) c u Inaddition,thetimeratechangeoftheschedulingparametersintheunitsimplexcanalsobedescribedby a˙(1)+a˙(2)=0, i=1,2,...,q. (23) i i From Eqs. (16) and (20) we can derive the rate bounds between affine scheduling parameters and multi-simplex variables,andtheyaregivenby µ µ 1,i 2,i ≤a˙(1)≤ (24) i 2η 2η 2,i 2,i where µ and µ arerateboundsgivenin(16),andη istheupperboundofθ givenin(15). Furthermore,from 2,i 1,i 2,i i (23),weobtaina˙(2)=−a˙(1). i i III.A.2. H controlproblem ∞ TheproposedLPVcontrolproblemcanbestatedasfollows: Designagainschedulingstate-feedbackcontrolleroftheformu¯(t)=K(a)x(t),suchthatforagivenγ >0andany ∞ givenpair(α,α˙),theclosed-loopsystem(21)isstabilizedandsatisfiesthefollowingH performanceconstraint, ∞ (cid:107)z(cid:107) sup sup 2 <γ (cid:107)w(cid:107) ∞ (25) (ai,a˙i)w∈l2 2 w(cid:54)=0 TosynthesizetheH controlproblem,weneedthefollowingtheorem. ∞ Theorem1:? ThegainschedulingcontrollerK(a)=Z(a)G(a)−1 stabilizestheclosed-loopwithguaranteedH per- ∞ formance bound γ for any given pair (a,a˙), if there exist a scalar ε >0, a continuously differentiable symmetric ∞ i i and positive-definite matrix P(a), and matrices G(a) and Z(a) satisfying the following parameterized linear matrix inequality(PLMI), X(a) ∗ ∗ ∗ P(a)−G(a)+ε(A(a)G(a)+B (a)Z(a))(cid:48) −ε(G(a)G(a)(cid:48)) ∗ ∗ u <0 (26) C(a)G(a)+Du(a)Z(a) εC(a)G(a)+εDu(a)Z(a) −Ip ∗ B (a)(cid:48) 0 D (a)(cid:48) −γ2I w r×n w ∞ r whereX(a)=A(a)G(a)+B (a)Z(a)+G(a)(cid:48)A(a)(cid:48)+Z(a)(cid:48)B (a)(cid:48)+∂P(a)a˙. u u ∂a It should be noted that PLMI is an infinite dimensional linear matrix inequality (LMI), which is in general dif- ficult to solve. Many efficient solvers are available in dealing with this problem; for instance, see references.?,?,?,? This paper adapts the relaxation method for PLMIs relaxation,? where it treats PLMIs with multi-simplex parame- ters. Numerically,theROLMIPpackage? alongwithYALMIP? usingsolverSeDuMi,? areusedtosolvetheconvex optimizationproblem. Forthreeschedulingparameters,theparametersZ(θ)andG(θ)inaffineθ domaincanbedescribedby Z(θ)=Z +θ Z +θ Z +θ Z , G(θ)=G +θ G +θ G +θ G (27) 0 1 1 2 2 3 3 0 1 1 2 2 3 3 where (Z , G ) and (Z, G), i=1,2,3, are constant matrices to be determined in the sequel. Moreover, given Z(θ) 0 0 i i andG(θ),theaffinegainmatrixK(θ)inEq.(17)willthenbegivenby K(θ)=Z(θ)G−1(θ). (28) 8of15 AmericanInstituteofAeronauticsandAstronautics Therefore,itisclearthatthecontrolgainK(θ)isnotanaffinefunctionofθ. Forthreeschedulingparameters,there are8polytopicsolutionsforZ(a)andG(a)inEq.(26). LetZ andG ,i,j,k=1,2,todenotethesesolutions,then ijk ijk Z(a)andG(a)canberepresentedas X(a)=a (1)a (1)a (1)X +a (1)a (1)a (2)X 1 2 3 111 1 2 3 112 +a (1)a (2)a (1)X +a (1)a (2)a (2)X 1 2 3 121 1 2 3 122 +a (2)a (1)a (1)X +a (2)a (1)a (2)X (29) 1 2 3 211 1 2 3 212 +a (2)a (2)a (1)X +a (2)a (2)a (2)X 1 2 3 221 1 2 3 222 =X(θ) where(X,X)represents(Z,Z)or(G,G). Hence,itfollowsfromtheinversetransformationprocessgivenin?that 1 2 2 2 2 X0= 22q ∑ ... ∑ ∑ ... ∑ Xj1,...,jq,k1,...,kq, (30) j1=1 jq=1ki=1 kq=1 1 2 2 2 2 Xi= 22qθ¯ ∑ ... ∑ ∑ ... ∑(−1)ji+iXj1,...,jq,k1,...,kq. (31) i j1=1 jq=1ki=1 kq=1 wherethematrices(X ,X)represents(Z ,Z)or(G ,G),andX denotesthepolytopicsolutionsZ orG 0 i 0 i 0 i j1j2j3 j1j2j3 j1j2j3 fromTheorem1. Now,substituting(Z ,Z)and(G ,G)intoEq.(27)yieldsZ(θ)andG(θ),hencethefeedbackgain 0 i 0 i matrixK(θ)canbeobtainedfromEq.(28) IV. SimulationInvestigation The baseline LPV-0 controller and the proposed LPV-1 controller are designed based upon their corresponding models,withγ chosentobe0.0055inTheorem1. Inthissimulationanalysis,theairspeedisvaryingfrom4m/sto ∞ 23.8m/s. ThegainmatricesoftheresultingLPV-0controller(Z ,G )and(Z ,G )are: 00 00 i0 i0 Z =[−0.051788000, 0.2853700,−0.261390, 0.476160, 0.045888,−8.81260], 00 Z =[−0.000028579, 0.0095015,−0.036397, 0.083472,−0.018931,−0.63590], (32) 20 Z =[ 0.008960500,−0.1393600, 0.006209,−0.042522,−0.117880, 0.31722]. 30 1.0292e−05 −7.0926e−06 −2.0329e−07 3.6702e−06 7.1505e−09 −9.4204e−05 −7.032e−06 3.6004e−05 −2.4069e−06 −2.6686e−06 −4.575e−06 3.9664e−04 −4.1334e−07 −2.1419e−06 1.0487e−05 −1.3243e−05 9.1849e−05 4.0045e−05 G = (33) 00 3.9355e−06 −3.5161e−06 −1.3181e−05 4.2533e−05 −3.7746e−04 −1.4701e−04 −1.6558e−06 2.3264e−06 9.6502e−05 −3.961e−04 4.9923e−02 −3.2631e−01 −9.4264e−05 3.9815e−04 1.1691e−05 −3.0011e−05 −3.288e−01 104.92e−01 1.0241e−05 −6.8766e−06 −1.9139e−07 3.642e−06 −7.7403e−08 −9.4036e−05 −6.8168e−06 3.54e−05 −2.4457e−06 −2.648e−06 −3.9416e−07 3.8971e−04 −4.0415e−07 −2.17e−06 1.063e−05 −1.3519e−05 9.2068e−05 2.5043e−05 G = (34) 20 3.9103e−06 −3.5054e−06 −1.3456e−05 4.2983e−05 −3.792e−04 −9.1409e−05 −2.0406e−06 7.7154e−06 9.6801e−05 −3.982e−04 5.1528e−02 −2.3771e−01 −9.4179e−05 3.9065e−04 4.2126e−06 −5.6076e−06 −2.52e−01 29.561e−01 1.0241e−05 −6.8766e−06 −1.9139e−07 3.6419e−06 3.0065e−08 −9.4368e−05 −6.8168e−06 3.54e−05 −2.4457e−06 −2.648e−06 −8.4001e−07 3.9108e−04 −4.0415e−07 −2.17e−06 1.063e−05 −1.3519e−05 9.2005e−05 2.5621e−05 G = (35) 30 3.9103e−06 −3.5054e−06 −1.3456e−05 4.2983e−05 −3.7894e−04 −9.4228e−05 −2.0393e−06 7.7183e−06 9.681e−05 −3.9823e−04 5.2281e−02 −2.4613e−01 −9.4195e−05 3.9049e−04 3.9802e−06 −4.9266e−06 −2.6559e−01 30.102e−01 9of15 AmericanInstituteofAeronauticsandAstronautics andthegainmatricesoftheresultingLPV-1controller(Z ,G )and(Z ,G )are: 01 01 i1 i1 Z =[ 0.548420,−0.00019372,−0.15522000, 0.71419000, 1.08060000,−109.9000], 01 Z =[ 0.553410,−0.00019562,−0.13229000, 0.70671000, 1.08980000,−110.8800], 11 (36) Z =[−0.014035,−0.03191200, 0.08397600,−0.05061400,−0.00059914,−0.048978], 21 Z =[−0.287940,−0.00022911, 0.00022877,−0.00082886, 0.02613200,−0.121390]. 31 7.8896e−06 −4.88e−06 −2.1003e−07 3.0824e−06 −4.144e−05 −3.9649e−05 −4.8329e−06 2.7367e−05 −1.6313e−06 −3.1912e−06 1.3371e−04 2.3919e−04 −3.6471e−07 −1.4518e−06 7.9214e−06 −9.6416e−06 8.1299e−05 −5.8287e−05 G = (37) 01 3.2593e−06 −3.784e−06 −9.5948e−06 3.2516e−05 −3.6529e−04 7.8805e−05 −4.2384e−05 1.3887e−04 8.1301e−05 −3.6761e−04 1.8855e−02 −5.0645e−01 −2.8195e−05 1.7853e−04 −5.6427e−05 1.6936e−04 −5.1254e−01 507.95e−01 7.8884e−06 −4.8753e−06 −2.0747e−07 3.0788e−06 −4.1397e−05 −3.9695e−05 −4.8288e−06 2.7344e−05 −1.6295e−06 −3.1935e−06 1.3359e−04 2.3879e−04 −3.6188e−07 −1.4515e−06 7.9138e−06 −9.6322e−06 8.1284e−05 −5.8183e−05 G = (38) 11 3.2555e−06 −3.7846e−06 −9.5862e−06 3.2506e−05 −3.6529e−04 7.8771e−05 −4.2359e−05 1.388e−04 8.1281e−05 −3.6761e−04 1.8855e−02 −5.0643e−01 −2.8291e−05 1.7829e−04 −5.63e−05 1.6924e−04 −5.1253e−01 507.95e−01 7.8555e−06 −4.7094e−06 −2.0663e−07 3.0568e−06 −4.0963e−05 −2.6925e−06 −4.6633e−06 2.6788e−05 −1.6547e−06 −3.1241e−06 1.3399e−04 8.7094e−05 −3.6405e−07 −1.4649e−06 8.0632e−06 −9.8762e−06 8.1091e−05 −6.0543e−05 G = (39) 21 3.2368e−06 −3.726e−06 −9.8281e−06 3.2861e−05 −3.6601e−04 1.9392e−04 −4.1803e−05 1.3851e−04 8.111e−05 −3.6749e−04 1.398e−02 −1.305e−02 −2.1645e−06 8.5489e−05 −6.2007e−05 1.9973e−04 −1.3281e−02 2.3088e−02 7.8543e−06 −4.7047e−06 −2.0406e−07 3.0532e−06 −4.092e−05 −2.7393e−06 −4.6591e−06 2.6765e−05 −1.6529e−06 −3.1264e−06 1.3387e−04 8.6695e−05 −3.6122e−07 −1.4646e−06 8.0557e−06 −9.8668e−06 8.1075e−05 −6.0439e−05 G = (40) 31 3.2329e−06 −3.7267e−06 −9.8195e−06 3.2851e−05 −3.66e−04 1.9388e−04 −4.1778e−05 1.3845e−04 8.109e−05 −3.6748e−04 1.398e−02 −1.3033e−02 −2.2601e−06 8.525e−05 −6.188e−05 1.9961e−04 −1.3264e−02 2.305e−02 Simulation results are compared with those obtained from the nonlinear controller presented in Ref.? Figure 4 shows a comparison between the proposed LPV-1 controller and the nonlinear controller,? with small initial pitch angle, i.e. α =0.01rad. It can be clearly observed that the proposed LPV-1 control can significantly improve the S overallclosed-loopperformanceoverthenonlinearcontrolstrategyproposedinRef.? As mentioned, the control mass m is confined to move within the groove between -0.5 and 0.5. In the proposed LPV-1controldesigntechnique,theschedulingparameterθ isusedtoconstrainthemassmovement. Figure5shows 1 the same comparisons but with larger initial pitch angle at α =0.6rad. It is apparent that the nonlinear controller L fromRef.? cannothandlethelargeangleofattack, whiletheproposedLPV-1controldesignhandlesthiscondition veryeffectively,withfastconvergenceandsmallcontroleffort. Figure6showsacomparisonbetweentheLPV-1controllerandthebaselineLPV-0controller.RecallthatinLPV-0 controldesign,nopositionlimitationisimposedonthemovingmassm. Therefore,ascanbeseeninFig.6,forLPV-0 controllertobeeffectiveinsuppressingairfoilvibration,thecontrolmassneedsaverylargedisplacement. Aquantitativestudyoftheresults,byconsideringthe(cid:107).(cid:107) and(cid:107).(cid:107) normsofthesignals,arepresentedinTables2, ∞ 2 3,and4.Table2showsthecomparisonbetweenthe(cid:107).(cid:107) normsoftheproposeddesigntechniqueandRef.? withsmall ∞ 10of15 AmericanInstituteofAeronauticsandAstronautics