ebook img

NASA Technical Reports Server (NTRS) 20180000681: Development of an Integrated Nonlinear Aeroservoelastic Flight Dynamic Model of the NASA Generic Transport Model PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20180000681: Development of an Integrated Nonlinear Aeroservoelastic Flight Dynamic Model of the NASA Generic Transport Model

Development of an Integrated Nonlinear Aeroservoelastic Flight Dynamic Model of the NASA Generic Transport Model NhanNguyen∗ NASAAmesResearchCenter,MoffettField,CA94035 EricTing† NASAAmesResearchCenter,MoffettField,CA94035 Thispaperdescribesarecentdevelopmentofanintegratedfullycoupledaeroservoelasticflightdynamic modeloftheNASAGenericTransportModel(GTM).Theintegratedmodelcouplesnonlinearflightdynamics toanonlinearaeroelasticmodeloftheGTM.Thenonlinearityincludesthecouplingoftherigid-bodyaircraft states in the partial derivatives of the aeroelastic angle of attack. Aeroservoelastic modeling of the control surfaceswhicharemodeledbytheVariableCamberContinuousTrailingEdgeFlapisalsoconducted. The R. T. Jones’ method is implemented to approximate unsteady aerodynamics. Simulations of the GTM are conductedwithsimulatedcontinuousanddiscretegustloads. I. Introduction Theaircraftindustryhasbeenrespondingtotheneedforenergy-efficientaircraftbyemployinglight-weightma- terialsforaircraftstructuresandincorporatingmoreenergy-efficientaircraftengines. Reducingairframeoperational emptyweight(OEW)usingadvancedcompositematerialsisoneofthemajorconsiderationsforimprovingenergyef- ficiency. Modernlight-weightmaterialscanprovidelessstructuralrigiditywhilemaintainingsufficientload-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments can alter aircraftaerodynamicsandflightdynamicssignificantly,therebypotentiallydegradingaerodynamicefficiency,stability andcontrol. Thegeneralmotionofarigid-bodyaircraftisunconstrainedinthree-dimensionalspaceastheaircraftpossesses allsixdegreesoffreedomintranslationandrotation. Thismotionishighlyinfluencedbyalltheaerodynamicforces andmomentsaswellasthepropulsiveandgravityforces. Themotioncanexhibitstabilitywhichenablestheaircraft toreturntoitsequilibriumortrimstate,orinstabilityifthemotiondivergeswhenitissubjectedtoadisturbance. The generalequationsofmotionarenonlinear,eventhoughtheaerodynamiccharacteristicsoftheaircraftaremodeledas linear. Itisimportanttorecognizethataflightdynamicmodelisonlyamathematicalrepresentationofapproximate dynamicsofanaircraftinflight. Manyfactorscancauseaflightdynamicmodeltodeviatefromanobservedmodel ofanaircraft. Someofthesefactorsare: • Nonlinearaerodynamics-Manyassumptionsareusuallybuiltinthederivationofaerodynamicforceandmo- ment parameters such as coefficients and derivatives. A linear approximation is usually employed in most aerodynamic models of an aircraft. In reality, aerodynamic coefficients are not always linear and can exhibit nonlinearity at high angle of attack and sideslip angle. The linear aerodynamic approximation can provide a reasonable prediction of aircraft flight dynamics. However, in certain flight regimes, such an approximation maynolongerbevalid. • Aeroelasticity - Aircraft is an elastic body which experiences stresses and strains under applied aerodynamic, propulsive, and gravity forces and moments. Elastic deformation of an aircraft results in changes in aerody- namiccharacteristics. Therefore,aeroelasticityisasignificanteffectthatcontributestoaircraftflightdynamics. ∗NASAAmesResearchCenter,ResearchScientist,AIAAAssociateFellow,[email protected] †NASAAmesResearchCenter,ResearchEngineer,[email protected] 1of32 AmericanInstituteofAeronauticsandAstronautics Arigid-bodyflightdynamicmodelisusuallyaninitialaircraftmodelthatananalystdevelopstoprovideapre- liminaryunderstandingofaircraftdynamics. Whenastructuraldesigniscarriedout,theeffectofaeroelasticity mustbeincorporatedintotherigid-bodyflightdynamicmodelinordertoproperlypredictappliedloads. • Atmosphericdisturbances-Atmosphericturbulence, windgust, andlocalizedweatherphenomenacansignif- icantly affect aircraft dynamics. The angle of attack depends not only on the aircraft velocity vector but also thewindvelocityvector. Changesinthewindvelocityvectorcanalsoaffectaircraftaccelerationandapplied loadingwhichcancauseaeroelasticresponses. The notion of a rigid-body aircraft is idealized. When aircraft structures are designed to maintain their intended aerodynamic shapes in-flight without significant deformation under aerodynamic loading, aircraft is thought of as being a rigid body and its flight characteristics are described by a six degrees of freedom flight dynamic model. As aircraftstructuresbecomeincreasinglymoreflexible,theinfluenceofaeroelasticitybecomesmorepronounced.Flight control under aeroservoelastic interactions can be challenging. The mishap of the NASA Helios aircraft illustrates the complex aeroservoelasticity of flexible flight vehicles. Flight dynamics of flexible flight vehicles are intimately coupledwithstructuraldynamicsoftheaircraft. This paper describes the development of an aeroservoelastic (ASE) flight dynamic model of the NASA Generic Transport Model (GTM).1 The GTM represents a notional single-aisle, mid-size, 200-passenger transport aircraft genericallyapproximatingaBoeing757,asshowninFig. 1. TheGTMhadbeenextensivelytestedinthe14-foot–by- 22-footwindtunnelatNASALangleyResearchCenter. Thus,windtunneltestdataareavailablethatcanbeusedto validatecomputationalmodels. TheGTMmodelalsohasbeenusedextensiveinflightcontrolresearch. Figure1. NASAGenericTransportModel The aircraft has a mid-cruise weight of 210,000 lbs for a typical operating load (gear up, flap up) that includes cargo, fuel, and passengers. Fuel weighs about 50,000 lbs for a range of about 3,000 nautical miles. At the design cruiseconditionofMach0.797at36,000ft,thedesignliftcoefficientis0.51. UndertheAdvancedAirVehiclesProgramoftheNASAAeronauticsResearchMissionDirectorate,theAdvanced AirTransportTechnology(AATT)Projectisconductingmultidisciplinaryresearchtoinvestigateadvancedconcepts andtechnologiesforfutureaircraftsystems. ANASAstudyentitled“ElasticallyShapedFutureAirVehicleConcept” was conducted in 20102,3 to examine new concepts that can enable active control of wing aeroelasticity to achieve dragreduction. Thisstudyshowedthathighlyflexiblewingaerodynamicsurfacescanbeelasticallyshapedin-flight byactivecontrolofwingtwistandbendingdeflectioninordertooptimizethelocalanglesofattackofwingsections toimproveaerodynamicefficiencythroughdragreductionduringcruiseandenhanceliftperformanceduringtake-off 2of32 AmericanInstituteofAeronauticsandAstronautics andlanding. OneconceptresultingfromthisstudyistheVariableCamberContinuousTrailingEdgeFlap(VCCTEF) developedinitiallybyNASA.2 InitialstudyresultsindicatethattheVCCTEFsystemmayofferapotentialpay-offin dragreductionthatcouldprovidefuelsavings. NASAandBoeinghavejointlydevelopedtheVCCTEFfurtherunderaresearchprogramfrom2012to2014.5,6,16 This research program was built upon the initial development of the VCCTEF system for the NASA GTM in 2010. The resulting VCCTEF system developed under this program employs light-weight Shape Memory Alloy (SMA) technologyforactuationandthreeseparatechordwisesegmentsshapedtoprovideavariablecambertotheflap. This camberedflaphasgreaterpotentialfordragreductionascomparedtoaconventionalstraight, plainflap. Theflapis alsomadeupofindividual2-footspanwisesections,whichenabledifferentflapsettingsateachflapspanwiseposition. This results in the ability to actively control the wing twist shape as a function of span, resulting in a change to the wingtwisttoestablishthebestlift-to-dragratioL/Datanyaircraftgrossweightormissionsegment. Wingtwiston traditional commercial transport designs is dictated by the aeroelastic deflection of a fixed “jig twist” shape applied at manufacture. The design of this jig twist is set for one cruise configuration, usually for a 50% fuel loading or mid-pointonthegrossweightschedule. TheVCCTEFoffersdifferentwingtwistsettings,hencedifferentspanwise loadings, for each gross weight condition and also different settings for climb, cruise and descent, a major factor in obtaining best L/D conditions. The second feature of VCCTEF is a continuous trailing edge flap. The individual 2-footspanwiseflapsectionsareconnectedwithanelastomertransitionmaterial,soastoproducenogapsinbetween thespanwisesections. Thiscontinuoustrailingedgeflapcanpotentiallyhelpreduceviscousdragandairframenoise. TwowindtunnelexperimentswereconductedfortheflexibleGTMwingattheUniversityofWashingtonAeronautical Laboratoryin2013and2014.7,8 TheexperimentalresultsconfirmtheaerodynamicbenefitsoftheVCCTEF. TheVCCTEFisamulti-functionalflapsystemenvisionedtobe: • Awingshapingcontroldevicetotwisttheflexiblewingandchangethespan-loaddistributiontoreducecruise dragthroughouttheflightenvelope, • Ahigh-liftdevicefortake-off,climb-out,let-downandfinalapproachbyusingthefullspancamberedflap, • Afullspanrollcontroleffectorinlieuoftraditionalaileronsusingtheaftsectionofthecamberedflap,and • Anaeroservoelastic(ASE)controldevicetocompensateforreducedfluttermarginsofflexiblewingsandpro- videloadalleviationcontrol. TheVCCTEFisdividedinto14sectionsattachedtotheouterwingand3sectionsattachedtotheinnerwing,asshown in Fig. 2.5 Each 24-inch section has three chordwise cambered flap segments that can be individually commanded. Thesecamberedflapsarejoinedtothenextsectionbyaflexibleandsupportedmaterial(showninblue)installedwith thesameshapeasthecamberandthusprovidingcontinuoustrailingedgeflapsthroughoutthewingspanwithnodrag producinggaps. Amajorgoaloftheprogramistodevelopalight-weightflapcontrolsystemthathasasignificantweightadvantage as compared to current flap screw-jack actuators. Hydraulic, electric and Shape Memory Alloy (SMA) torque rod actuation were evaluated with the result that the SMA actuation has the best weight advantage. Moreover, the use of hinge line actuation eliminates the large and heavy externally mounted actuators, and permits all actuators to be interiortothewingandflapmoldlines,thuscontributingtotheoveralldragreductiongoal. Figure3showsaschematicrepresentationofanoutboardwingflapsectionhavingthreecamberedflapsegments.5 SMAactuatorsdrivethefirstandsecondcamberedflapsegmentsandafasteractingelectricactuatordrivesthethird cambered flap segment. SMA actuators can deliver large hinge moments, but generally move at a slow rate. The outboard wing flap uses the full-span third cambered segment as a roll command effector and as a control device for suppressing aeroelastic wing structural dynamic modes, both requiring high rates which can be met by electric actuators. Usingthecamberpositioning,afull-span,high-liftconfigurationcanbeactivatedthathasnodragproducinggaps andalowflapnoisesignature. ThisisshowninFig. 4. Tofurtheraugmentlift,aslottedFowlerflapconfigurationis formedbyanairpassagebetweenthewingandtheinnerflapthatservestoimproveairflowovertheflapandkeepthe flowattached. Thisairpassageappearsonlywhentheflapsareextendedinthehighliftconfiguration. Inthehigh-liftconfiguration,theouterwingflapusesthethirdcamberedsegmentforrollcontrol,asshowninFig. 5.Thisprovidesrollingmomentthatisequivalenttoaileroncontrol.Itissomewhatsimilartodeflectingtheaileronsin adrooppositiontoactasflaps,acommonprocedureusedontacticalaircraftandonsometransportaircraft. Thehigh- lift configuration distributes the required flap hinge moment throughout the span of the wing while using actuation 3of32 AmericanInstituteofAeronauticsandAstronautics componentsthatarealllocatedinteriortothewingandflap.ThiscanbeachievedbytheuseofSMAhingelinetorque rods,sizedtomeetthehingemomentrequirementsateachspanwiselocationonthewing. Figure2. WingConfiguredwiththeVariableCamberContinuousTrailingEdgeFlap Figure3. VariableCamberFlapControlUsesShapeMemoryAlloyTorqueRodandElectricDriveActuation 4of32 AmericanInstituteofAeronauticsandAstronautics Figure4. CruiseandHighLiftVCCTEFConfigurations Figure5. Three-SegmentVariableCamberFlap Figure6. GTMwithwithVariableCamberContinuousTrailingEdgeFlap 5of32 AmericanInstituteofAeronauticsandAstronautics Figure6illustratestheGTMequippedwiththeVCCTEFforwingshapingcontrol. Byactivelyshapingthewing aerodynamicsurfaceusingtheVCCTEF,optimalaerodynamicperformancecouldpotentiallyberealizedatanypoint intheflightenvelope,therebyenablingamissionadaptivecapability. Itisakeyenablingfeatureoftheresearcharea PerformanceAdaptiveAeroelasticWing(PAAW)intheAATTproject. Theterm“performanceadaptiveaeroelastic” distinguishesitselffromthefamiliarterm“missionadaptive”inthattheeffectofaeroelasticityonaerodynamicperfor- mancemustbefullyaccountedforasisthecaseformoderntransportdesign.TheVCCTEFreliesontwomechanisms toimproveaerodynamicperformance:1)wingtwistoptimizationforflexiblewingdesign,and2)variablecamberand continuoustrailingedgeforimprovedaerodynamics. Thistechnologycouldenablemodernhigh-aspectratioflexible wingaircraftwithsignificantflexibilitytoadaptivelychangewingshapesin-flighttoachievecruisedragoptimization, whileatthesametimesatisfyingoperationalconstraintssuchasstructuralloadlimitations,fluttermargins,gustand maneuverloadresponses,andothersbyactiveaeroservoelasticcontrols. Toassesstheeffectivenessofwingshapingcontrolformoderntransportaircraft,theGTMwingismodeledwith a high degree of flexibility, similar to estimated flexibility distributions on state-of-the-art passenger aircraft wings. Thewingbendingstiffnessistailoredtoachievea10%wingtipdeflectionat1-gflightconditions, whichresultsin abendingstiffnessabouthalfthatofolder-generationtransportwings,whilethetorsionalstiffnessisaboutthesame. This10%wingtipdeflectionisaboutthesameasthatofamoderncompositehigh-aspect-ratiowingdesigninmodern transportaircraftsuchastheBoeing787. II. FlightDynamicsofRigidAircraft The development of a flight dynamic model of the GTM requires mass and inertia properties, and stability and control (S&C) derivatives. The mass and inertia properties of the GTM are based on a Boeing’s report and are modified to account for the reduced weight of the flexible wings. The S&C derivatives are estimated using three differentconceptualaerodynamicvortex-latticecodesalongwithanalyticalcalculation. Thethreeaerodynamiccodes areVORLAX,AVL,andVSPAERO.Theresultsshowreasonableagreementamongthefoursetsofestimates.Because VORLAXhastheaeroelasticcapabilityaswellastransonicandboundarylayercorrections,17 VORLAXresultsare selectedfortheflightdynamicmodel. AstaticaeroelastictrimfortheflexiblewingGTMisdeveloped. Thetrimsolutioncalculatestheangleofattack, enginethrust,andelevatordeflectionsforvariousdeformedGTMconfigurationsatdifferentfuelweight,altitude,and airspeed.Thefuelweightismodeledasanaddedweighttothewingweightwhichaffectsthestaticdeflectionshapeof thewingsat1-gcruiseconditions. Afinite-elementmodelisdevelopedtocomputethestaticwingdeflections. Once thewingdeflectionshapeiscomputed,theS&Cderivativesareevaluatedforthedeformedaircraft. Thenonlinear6-degree-of-freedomflightdynamicequationsofmotionintheaircraftbody-fixedreferenceframe aregivenby p˙ =RV (1) Φ˙ =Tω (2) d(mV) +ω˜mV=F (3) dt d(Iω) +ω˜Iω =M (4) dt (cid:104) (cid:105)(cid:62) (cid:104) (cid:105)(cid:62) (cid:104) (cid:105)(cid:62) wherep= x y h isthepositionvector, V= u v w isthevelocityvector, Φ = φ θ ψ is (cid:104) (cid:105)(cid:62) theEuleranglevector,andω = p q r istheangularratevector. Theangularratematrixω˜ isgivenby   0 −r q ω˜ = r 0 −p  (5)   −q p 0 6of32 AmericanInstituteofAeronauticsandAstronautics TheinertiamatrixoftheaircraftabouttheaircraftrollaxisX,pitchaxisY,andyawaxisZisgivenby   I¯ −I¯ −I¯ XX XY XZ I= −I¯ I¯ −I¯  (6)  XY YY YZ  −I¯ −I¯ I¯ XZ YZ ZZ RandTaretherotationmatricesgivenby   cosθcosψ −cosφsinψ+sinφsinθcosψ sinφsinψ+cosφsinθcosψ R= cosθsinψ cosφcosψ+sinφsinθsinψ −sinφcosψ+cosφsinθsinψ  (7)   sinθ −sinφcosθ −cosφcosθ   1 sinφtanθ cosφtanθ T= 0 cosφ −sinφ  (8)   0 sinφsecθ cosφsecθ Theforcevectorisgivenby   X+T−mgsinθ F= Y+mgcosθsinφ 1 (9)   Z+mgcosθcosφ whereX =C q Sistheaxialforce,Y =C q Sisthesideforce,Z=C q Sisthenormalforce,andT istheengine X ∞ Y ∞ Z ∞ thrust. TheforcecoefficientsC andC arerelatedtotheliftanddragcoefficientsas X Z C =C sinα−C cosα (10) X L D C =−C cosα−C sinα (11) Z L D Themomentvectorisgivenby   l M= m+Tz  (12)  e  n where l is the rolling moment, m is the pitching moment about the aircraft center of gravity (CG), n is the yawing momentabouttheaircraftCG,andz astheenginethrustoffsetfromtheaircraftCG. e III. InertialandAeroelasticForcesandMomentsofFlexibleWings ConsideranairfoilsectionontheleftwingasshowninFig. 7undergoingbendingandtorsionaldeflections. Let (x,y,z)betheundeformedcoordinatesofpointQonawingairfoilsectioninthereferenceframeDdefinedbyunit vectors(d ,d ,d ). Letp =xd beapositionvectoralongtheelasticaxis. Then, pointQisdefinedbyaposition 1 2 3 0 1 vectorp=p +qwhereq=yd +zd definespointQinthey−zplanefromtheelasticaxis. 0 2 3 Figure7. LeftWingReferenceFrameofWinginCombinedBending-Torsion 7of32 AmericanInstituteofAeronauticsandAstronautics Let Θ be a torsional twist angle about the x-axis, positive nose-down. LetW andV be flapwise and chordwise bendingdeflectionsofpointQ,respectively. LetU betheaxialdisplacementofpointQ.Then,thedisplacementand rotationvectorsduetotheelasticdeformationcanbeexpressedas r=Ud +Vd +Wd (13) 1 2 3 φ =Θd −W d +V d (14) 1 x 2 x 3 wherethesubscriptsxandt denotethepartialderivativesofΘ,W,andV. Let(x ,y ,z )bethedeformedcoordinatesofpointQontheairfoilintheleftwingreferenceframeDandp = 1 1 1 1 x d +y d +z d beitspositionvector. Then,thecoordinates(x ,y ,z )arecomputedas10 1 1 1 2 1 3 1 1 1 p =p+r+φ×q (15) 1 where     x x+U−yV −zW 1 x x  y = y+V−zΘ  (16)  1    z z+W+yΘ 1 A. InertialForcesandMoment LetV=ub +vb +wb andω = pb +qb +rb betheaircrafttranslationalandrotationalvelocityvectorsatthe 1 2 3 1 2 3 aircraftcenterofgravity(CG)where(b ,b ,b )aretheunitvectorsintheaircraftbody-fixedreferenceframeB.Let 1 2 3 r =−x b −y b −z b bethepositionvectorofpointQintheaircraftbody-fixedreferenceframeBrelativetothe a a 1 a 2 a 3 aircraftCGsuchthatx ispositivewhenpointQisaftoftheaircraftCG,y ispositivewhenpointQistowardtheleft a a wingfromtheaircraftCG,andz ispositivewhenpointQisabovetheaircraftCG.ThevelocityatpointQduetothe a aircraftvelocityandangularvelocityinthereferenceframeDisthencomputedas v =V+ω×r =(ub +vb +wb )+(pb +qb +rb )×(−x b −y b −z b ) Q a 1 2 3 1 2 3 a 1 a 2 a 3 =(u+ry −qz )b +(v−rx +pz )b +(w+qx −py )b =xd +yd +zd (17) a a 1 a a 2 a a 3 t 1 t 2 t 3 where     x −(u+ry −qz )sinΛcosΓ−(v−rx +pz )cosΛcosΓ−(w+qx −py )sinΓ t a a a a a a  y = −(u+ry −qz )cosΛ+(v−rx +pz )sinΛ  (18)  t   a a a a  z (u+ry −qz )sinΛsinΓ+(v−rx +pz )cosΛsinΓ−(w+qx −py )cosΓ t a a a a a a Thetransformationbetween(b ,b ,b )and(d ,d ,d )isgivenby 1 2 3 1 2 3      b −sinΛcosΓ −cosΛ sinΛsinΓ d 1 1  b = −cosΛcosΓ sinΛ cosΛsinΓ  d  (19)  2    2  b −sinΓ 0 −cosΓ d 3 3      d −sinΛcosΓ −cosΛcosΓ −sinΓ b 1 1  d = −cosΛ sinΛ 0  b  (20)  2    2  d sinΛsinΓ cosΛsinΓ0 −cosΓ b 3 3 The local velocity at point Q due to aircraft rigid-body dynamics and aeroelastic deflections in the left wing referenceframeDisobtainedas11,12 ∂∆p v=v + +ω×∆p=v d +v d +v d (21) Q x 1 y 2 z 3 ∂t 8of32 AmericanInstituteofAeronauticsandAstronautics where∆p=p −pand 1     v x +U −yV −zW −ω (V−zΘ)+ω (W+yΘ) x t t xt xt z y  v = y +V −zΘ +ω (U−yV −zW )−ω (W+yΘ)  (22)  y   t t t z x x x  v z +W +yΘ −ω (U−yV −zW )+ω (V−zΘ) z t t t y x x x     ω −psinΛcosΓ−qcosΛcosΓ−rsinΓ x  ω = −pcosΛ+qsinΛ  (23)  y    ω psinΛsinΓ+qcosΛsinΓ−rcosΓ z Thekineticenergyisformedby T = 1(cid:90) ρv.vdA= 1(cid:90) ρ(cid:0)v2+v2+v2(cid:1)dA (24) 2 2 x y z We use the method of separation of variables to express the displacements asU(x,t)=Φ (x)q (t), V(x,t)= u u Φ (x)q (t),W(x,t)=Φ (x)q (t),Θ(x,t)=Φ (x)q (t). Then,thevirtualworkquantitiesduetothegeneralized v v w w θ θ coordinatesq (t),q (t),q (t),andq (t)arecomputedintermsofthevirtualdisplacementsas12 u v w θ (cid:20)d (cid:18)∂T (cid:19) ∂T (cid:21) (cid:90) (cid:20)dv (cid:21) −fiδU = − δq = ρ x −v (ω +V )+v (ω −W ) δUdA (25) x dt ∂q˙ ∂q u dt y z xt z y xt u u (cid:20)d (cid:18)∂T (cid:19) ∂T (cid:21) (cid:90) (cid:20)dv (cid:21) −fiδV = − δq = ρ y +v (ω +V )−v (ω +Θ) δVdA y dt ∂q˙ ∂q v dt x z xt z x t v v (cid:90) (cid:26)d[v (−y−V+zΘ)+v (U−yV −zW )] (cid:27) x y x x + ρ +v (yω +yV )−v (yω −yW ) δV dA (26) y z xt z y xt x dt (cid:20)d (cid:18)∂T (cid:19) ∂T (cid:21) (cid:90) (cid:20)dv (cid:21) z −f δW = − δq = ρ −v (ω −W )+v (ω +Θ) δWdA z w x y xt y x t dt ∂q˙ ∂q dt w w (cid:90) (cid:26)d[v (−z−W−yΘ)+v (U−yV −zW )] (cid:27) x z x x + ρ +v (zω +zV )−v (zω −zW ) δW dA (27) y z xt z y xt x dt (cid:20)d (cid:18)∂T (cid:19) ∂T (cid:21) (cid:90) (cid:26)d[v (−z−W−yΘ)] d[v (y+V−zΘ)] y z −m δΘ= − δq = ρ + x dt ∂q˙ ∂q θ dt dt θ θ (cid:9) −v (yω +zω +zV −yW )+v (yω +yΘ)+v (zω +zΘ) δΘdA (28) x y z xt xt y x t z x t (cid:82) (cid:82) Let ydA=Ae where A= dA is the mass area and e is the offset of the CG of a wing section from the cg cg elasticaxis,positiveiftheCGisaftoftheelasticaxis. WedefineI =(cid:82)(cid:0)y2+z2(cid:1)dA,I =(cid:82)z2dA,andI =(cid:82)y2dA. xx yy zz (cid:82) (cid:82) Furthermore, We assume zdA≈0 and I =− yzdA≈0. Integrating the integrals that contain δV and δW by yz x x parts,weobtainthelinearcontributionsoftheaeroelasticdeflectionstotheinertialforcesandmomentas12 fi=ρA(cid:2)−x +yω −zω +(cid:0)ω2+ω2(cid:1)U+(ω˙ −ω ω )V−(ω˙ +ω ω )W+2ωV −2ω W +yV x tt t z t y y z z x y y x z z t y t t xt +zW −U ]+ρAe (cid:2)−(ω˙ +ω ω )Θ−(cid:0)ω2+ω2(cid:1)V −2ω Θ +V (cid:3) (29) t xt tt cg y x z y z x y t xtt fi=ρA(cid:2)−y −xω +zω −(ω˙ +ω ω )U+(cid:0)ω2+ω2(cid:1)V+(ω˙ −ω ω )W−2ωU +2ω W +zΘ −xV y tt t z t x z x y x z x y z z t x t t t t xt ∂ −V ]+ρAe [(ω˙ −ω ω )Θ+(ω˙ +ω ω )V +2ω Θ +2ωV ]+ [ρA(y U−x V+yU −xV)] tt cg x y z z x y x x t z xt tt tt t t t t ∂x + ∂ (cid:8)ρAe (cid:2)−x +yω −zω +(cid:0)ω2+ω2(cid:1)U+(ω˙ −ω ω )V−(ω˙ +ω ω )W−y V +2ωV ∂x cg tt t z t y y z z x y y x z tt x z t −2ω W +zW −U ](cid:9)+ ∂ (cid:8)ρI (cid:2)−(ω˙ +ω ω )Θ−(cid:0)ω2+ω2(cid:1)V −2ω Θ +V (cid:3)(cid:9) (30) y t t xt tt ∂x zz y x z y z x y t xtt 9of32 AmericanInstituteofAeronauticsandAstronautics fi=ρA(cid:2)−z +xω −yω +(ω˙ −ω ω )U−(ω˙ +ω ω )V+(cid:0)ω2+ω2(cid:1)W+2ω U −2ω V −yΘ −xW z tt t y t x y x z x y z x y y t x t t t t xt −W ]+ρAe (cid:2)(cid:0)ω2+ω2(cid:1)Θ−(ω˙ −ω ω )V −2ω V −Θ (cid:3)+ ∂ [ρA(z U−x W+zU −xW)] tt cg x y y x z x y xt tt ∂x tt tt t t t t + ∂ [ρAe (−x Θ−z V −xΘ −zV )]+ ∂ (cid:8)ρI (cid:2)−(ω˙ −ω ω )Θ−(cid:0)ω2+ω2(cid:1)W −2ω Θ +W (cid:3)(cid:9) (31) ∂x cg tt tt x t t t xt ∂x yy z x y y z x z t xtt mi =ρA(−z V+y W−zV +yW)+ρAe [−z +xω −yω +(ω˙ −ω ω )U−(ω˙ +ω ω )V x tt tt t t t t cg tt t y t x y x z x y z +(cid:0)ω2+ω2(cid:1)W+y Θ+2ω U −2ω V −xW −W (cid:3)−ρI Θ x y tt y t x t t xt tt xx tt +ρI (cid:2)(cid:0)ω2+ω2(cid:1)Θ−(ω˙ +ω ω )W −2ωW (cid:3)+ρI (cid:2)(cid:0)ω2+ω2(cid:1)Θ−(ω˙ −ω ω )V −2ω V (cid:3) (32) yy x z z x y x z xt zz x y y x z x y xt In addition to the inertial forces and pitching moment acting on a wing section, the contributions of half of the fuselage mass and inertias and the engine mass to the inertial forces and pitching moment without the rigid-body aircraftinertialforcecouplingaregivenby (cid:18) (cid:19) 1 ∆fi=δ(x) − m U +δ(x−x )(−m U ) (33) x 2 f tt e e tt (cid:20) (cid:18) (cid:19)(cid:21) 1 ∂ 1 ∆fi=δ(x) − m V + I V +δ(x−x )[−m V −m z Θ ] (34) y 2 f tt ∂x 2 f,zz xtt e e tt e e tt (cid:20) (cid:18) (cid:19)(cid:21) 1 1 ∂ 1 ∆ff =δ(x) − m W + m y Θ + I W +δ(x−x )(−m W +m y Θ ) (35) z 2 f tt 2 f f tt ∂x 2 f,yy xtt e e tt e e tt (cid:18) (cid:19) ∆mi =δ(x) 1m y W −1I Θ +δ(x−x )(cid:2)m y W −m z V −m (cid:0)y2+z2(cid:1)Θ (cid:3) (36) x 2 f f tt 2 f,xx tt e e e tt e e tt e e e tt wherem ,I ,I ,andI arethemassandinertiasofthefuselage;m isthemassoftheengine;y istheoffset f f,xx f,yy f,zz e f of the fuselage CG from the elastic axis, positive if the fuselage CG is forward of the elastic axis; (x ,y ,z ) is the e e e coordinateoftheengineCGintheleftwingreferenceframeD,positiveiftheengineCGisbelowandforwardofthe elasticaxis;andδ(x−a)istheDiracdeltafunctionwhichisdefinedas (cid:90) δ(x−a)f(x)dx= f(a) (37) B. AeroelasticForcesandMoment Inordertocomputetheaeroelasticforcesandmoments,thevelocitymustbetransformedfromtheleftwingreference frameDtotheairfoillocalcoordinatereferenceframedefinedby(µ,η,ξ)asfollows:          v 1 0 0 1 V 0 1 0 W v v +v V +vW µ x x x x y x z x  v = 0 1 Θ  −V 1 0  0 1 0  v ≈ −v V +v +v Θ  (38)  η    x   y   x x y z  v 0 −Θ 1 0 0 1 −W 0 1 v −v W −v Θ+v ξ x z x x y z Thelocalaeroelasticangleofattackontheairfoilsectionduetothevelocitycomponentsv andv intheleftwing η ξ referenceframeD,asshowninFig. 7,iscomputedas12 v v¯ +∆v v v¯ ∆v ξ ξ ξ ξ ξ η α = = = − (39) c v v¯ +∆v v¯ v¯2 η η η η η where     v x +U −yV −zW −ω (V−zΘ)+ω (W+yΘ) x t t xt xt z y  v = y +V −zΘ +ω (U−yV −zW )−ω (W+yΘ)  (40)  y   t t t z x x x  v z +W +yΘ −ω (U−yV −zW )+ω (V−zΘ) z t t t y x x x v¯ =z (41) ξ t 10of32 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.