ebook img

NASA Technical Reports Server (NTRS) 20170011316: Refinement of Objective Motion Cueing Criteria Investigation Based on Three Flight Tasks PDF

0.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20170011316: Refinement of Objective Motion Cueing Criteria Investigation Based on Three Flight Tasks

AIAA 2017-1081 AIAA SciTech Forum 9 - 13 January 2017, Grapevine, Texas AIAA Modeling and Simulation Technologies Conference Refinement of Objective Motion Cueing Criteria Based on Three Flight Tasks PeterM.T.Zaal∗ Jeffery A.Schroeder† WilliamW. Chung‡ SanJoseStateUniversity FederalAviationAdministration ScienceApplicationsInternational NASAAmesResearchCenter MoffettField,CA Corporation MoffettField,CA NASAAmesResearchCenter MoffettField,CA 1 8 0 1 7- 1 20 Thispaperaimstorefineobjectivemotioncueingcriteriadevelopedinapreviousexperimentforthesim- 6. 4/ ulatormotionsystemdiagnostictestspecifiedbytheInternationalCivilAviationOrganization.Fifteenairline 1 25 transportpilotsflewthesamethreetasksasinthepreviousexperimentintheNASAVerticalMotionSimu- 0. DOI: 1 lraetgoironunbdetewreseinxtdhifefemreontitonmfiotdieolnitycounnficgeurtraaitniotynsb.oTunhdeasriyxfdoiuffnedreinnttmheoptiroenvicoounsfiegxupreartiimonesntcoavnedretdhethmeemanotmioon- g | tionresponseofastatisticalsampleofeightrepresentativehexapodmotionsimulators. Themotioncondition or a. significantlyaffected1)rolldeviationsintheapproachtoastallandmaximumpitchrateinastallrecovery, a c.ai and2)headingdeviationandpedalreactiontimeafteranenginefailureinthetakeofftask.Significantdiffer- p://ar encesinpilot-vehicleperformancewereusedtodevelopnewobjectivemotioncueingcriteriaboundariesfor htt themainmotionresponses. Inaddition,perceptionthresholdsoffalsemotioncueswereusedtodevelopmo- 7 | tioncueingcriteriaforthecross-couplingmotionresponses.Thefidelityboundariesofthecurrentexperiment 1 20 shouldbeusedwithcautionwhenreducingtheuncertaintyoftheinitialfidelityboundariesdevelopedinthe y 1, previousexperiment,astheydonotfullyoverlap.Datacollectedinthecurrentstudywilladdtodatafromthe uar nextexperiment,whichaimstofurtherrefineandoptimizetheobjectivemotioncriteriafoundtodate. br e F n o R Nomenclature E T N E H C AFS analoguefidelityscale,% x,y,z surge,sway,heave RC fx,fy,fz surge,sway,heavespecificforce,ft/s2 ∆xtd longitudinaltouchdowndeviation EA g gravitationalacceleration,ft/s2 ofmaingear,ft S RE H OMCTfrequencyresponse ∆y lateraltouchdowndeviationofmaingear,ft MES h˙td sinkrateofmaingearattouchdown,ft/s ω td frequency,rad/s A A N1 enginefanspeed,% S A N numberofstickshakers N s by p,q,r roll,pitch,yawrate,deg/s Abbreviations ded qmax maximumpitchrate,rad/s nloa RMSgs RMSofglideslopedeviation,dot CAVU ceilingandvisibilityunlimited w FL flightlevel o RMS RMSofindicatedairspeeddeviation,kts D V GS glideslope RMS RMSofrolldeviation,deg φ LOC localizer RMS RMSofheadingdeviation,deg ψ OMCT ObjectiveMotionCueingTest t pedal-responsetime,s p RMS rootmeansquare V2 takeoffsafetyspeed,kts RWY runway V rotationspeed,kts r VMS VerticalMotionSimulator V referencespeed,kts ref ∗ResearchAssociate,HumanSystemsIntegrationDivision,NASAAmesResearchCenter,MoffettField,CA,94035;[email protected]. Member. †Chief Scientific and Technical Advisor for Flight Simulation Systems, Federal Aviation Administration, Moffett Field, CA, 94035; jef- [email protected]. ‡SimulationEngineer,SimulationLaboratories,NASAAmesResearchCenter,MoffettField,CA,94035;[email protected]. Senior Member. 1of20 AmericanInstituteofAeronauticsandAstronautics This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. I. Introduction Theobjectiveofthispaperistorefineobjectivemotioncueingcriteriaforcommercialtransportsimulatorsbased onpilots’performanceinthreeflyingtasks.Actuatorhardwareandsoftwarealgorithmsdeterminemotioncues.Today, duringasimulatorqualification,engineersobjectivelyevaluateonlythehardware.1 Pilotinspectorssubjectivelyassess the overall motion cueing system (i.e., hardware plus software); however, it is acknowledged that pinpointing any deficienciesthatmightarisetoeitherhardwareorsoftwareischallenging.ICAO9625hasanObjectiveMotionCueing Test(OMCT),whichisnowarequiredtestintheFAAspart60regulationsfornewdevices,evaluatingthesoftware and hardwaretogether; however,it lacksaccompanyingfidelity criteria.1,2 Hosman hasdocumentedOMCT results forastatisticalsampleofeightsimulators,3 whichisuseful,buthavingvalidatedcriteriawouldbeanimprovement. Inapreviousexperiment,wedevelopedinitialobjectivemotioncueingcriteriathatthispaperistryingtorefine. Sinacorisuggested simple criteria,4,5 which are in reasonable agreementwith much of the literature.6–15 These criteriaoftennecessitatemotiondisplacementsgreaterthanmosttrainingsimulatorscanprovide. Whilesomeofthe previousworkhasusedtransportaircraftintheirstudies,themajorityusedfighteraircraftorhelicopters.6–11 Thosethat 1 used transportaircraftconsidereddegradedflight characteristics.12–15 As a result, earlier criteria lean moretowards 8 0 1 being sufficient, rather than necessary, criteria for typical transport aircraft training applications. Considering the 7- 1 0 prevalenceof60-inch,six-leggedhexapodtrainingsimulators,arelevantquestionis“whatarethenecessarycriteria 2 4/6. thatcanbeusedwiththeICAO9625diagnostic?” 1 25 Thisstudyaddstotheliteratureasfollows.First,itexamineswell-behavedtransportaircraftcharacteristics,butin 0. OI: 1 threechallengingtasks. Thetasksareequivalenttotheonesusedinourpreviousexperiment,allowingustodirectly D comparetheresultsandaddtothepreviousdata. Second,itusestheVerticalMotionSimulator(VMS),theworld’s org | largestverticaldisplacementsimulator. Thisallowsinclusionofrelativelylargemotionconditions,muchlargerthan aa. atypicaltrainingsimulatorcanprovide. Sixnewmotionconfigurationswereusedthatexplorethemotionresponses ai arc. between the initial objective motion cueing boundaries found in a previous experiment and what current hexapod p:// simulatorstypicallyprovide.Finally,asufficientlylargepilotpooladdedstatisticalreliabilitytotheresults. htt 7 | 1 0 2 II. FlightTasks 1, y ar u br The goalof the currentstudy was to refine the objectivemotioncueing criteria based on pilots’ performancein e n F three flight tasks developed in the previous study, discussed in Ref. 16. For this reason, the current study had the o R samethreeflighttasksasthepreviousstudywithsomeminorimprovements: anapproachandlandingwithsidestep E T N maneuver,ahigh-altitudestallrecovery,andanengine-outaftertakeoff. Theassumptionwasthatvaryingthemotion E C cueswouldaffecthowpilotsperformthesechallengingtasks. Fig.1showstheflightcardsforthethreetasks,which H RC thefollowingsectionsdescribe. A E S E R II.A. ApproachandLandingwithSidestep S E M A This task began at an altitude of 1,250 ft on a -3 deg glideslope approach to RWY 28R at San Francisco Inter- A S national Airport. Moderate turbulence, simulated using the Dryden turbulence model, existed throughout.17 After A y N breakingoutofthecloudceilingat1,100ft,airtrafficcontrolinstructedthepilotstosidesteptoRWY28L.Pilotstried b d tomaintaina-3degglideslopeduringtheapproachfollowedbylandingwithina750-ft-longand28-ft-wideboxwith e d oa asinkrateof6ft/sorless. Anaudiocall-outbeganatamaingearheightoffiftyfeetandrepeatedindecrementsof10 nl w ftuntiltouchdown.AnoverviewoftherunwayconfigurationanddefinitionofthetouchdownboxisgiveninFig.2. o D Thistaskevaluatedifchangesinmotioncuesaffect1)lateral-directionalcontrolinthesidestepmaneuver,2)speed andflightpathcontrolalongtheglideslope,and3)touchdownperformance. II.B. HighAltitudeStallRecovery Thetaskstartedduringcruiseat210kts(M = 0.75)atanaltitudeof41,000ft. Pilotswereinstructedtoinitiate a self-inducedstall by setting the throttlesto idle, rolling20 degsleft and pitching approximately15 degsnose up, deceleratingthroughthe stallwarninguntila negativesink rate was developed(asthe aircraftmodeldidnothavea pronouncedpitchbreak). Torecoverfromthestall,pilotshadtofollowthecorrectrecoverysequenceofreducingthe angle-of-attack(bypitchingtoapproximately15degnosedown),levelingthewings,andapplyingfullthrottleuntil establishingasafepositiveclimbrate. Thetaskcalledforthepilotstopullthenoseupgentlyandsmoothlysoasnot toactivatethestallwarningduringtherecovery.Moderateturbulencewaspresent. 2of20 AmericanInstituteofAeronauticsandAstronautics Task:approachtoSFORWY28RwithsidesteptolandingonRWY28L Task:recoverfromahighaltitudestall InitialCondition:1,250ftaltitudeatVref+5onGSandLOCfor28R InitialCondition:levelatFL410and210KIAS Configuration:geardown,flaps30deg Configuration:clean Ceiling/visibility:1,100ftceiling,10-milevisibility Ceiling/visibility:CAVU Wind:230/15 Turbulence:moderate Gusts:none Wind:none Turbulence:moderate Gusts:none Procedure: Procedure: 1. TracktheGSandLOCtoSFORWY28Rmaintaining141KIAS 1. Retardthrottletoidle 2. PerformsidesteptoRWY28LatATCcommand 2. Rolllefttoa20degbankangle 3. ContinuevisualtoRWY28LmaintainingGS 3. Pulluptodecelerateatapproximately4kt/s 4. Flareandtouchdown750–1,500ftfromthethreshold 4. Continuedecelerationthroughstickshakeruntilasinkratedevelops 5. Applynosedownpitch,rollasneeded,powerasneededtoreturn Desiredperformance: 1 tosteady-stateflight 8 0 1 1. Deviationfrom141KIASwithin±5ktsuntil200ftaltitude 7- Desiredperformance: 01 2. Glideslopedeviationwithin±onedotuntil200ftaltitude 2 4/6. 3. Longitudinaltouchdown750–1,500ftfromthreshold 1. Maintainbankanglewithin±5degsabout15degsduringentry 251 4. Lateraltouchdown±14ftfromcentreline 2. Properstallrecoveryprocedure(push,roll,thrust,stabilizedflight) OI: 10. 5. Sinkrateattouchdown≤6ft/s 43.. RReeccoovveerrswsimthoooutthelyxctoeesdpienegda>irp2l1a0neK’sIAlimSiatnatdiopnossitiverateofclimb D g | 5. Oscillatoryloadfactorpeaksbetween0.75and1.25g or a. 6. Duringrecovery,nomorethanoneadditionalstickshakeractivation a ai c. ar p:// (a)Approachandlandingwithsidestep (b)Highaltitudestallrecovery htt 7 | 1 0 1, 2 Task:recoverfromengineoutontakeoff ary InitialCondition:attakeoffpositiononRWY28R u br Configuration:geardown,flaps10deg e F n Ceiling/visibility:CAVU o R E Wind:none Turbulence:none Gusts:none T N E Procedure: Desiredperformance: C H C 1. Advancethrottlestotakeoffthrust(90%N1) 1. Desiredheading±5degs R A 2. Maintaincentreline 2. Desiredairspeed±5kts E S RE 3. RotateatVr=128kts,pitchto10degsandestablishspeedofV2+10 3. Bankapproximately5degstowardsoperatingengine ES 4. Maintainheadingandspeedaftersingleenginefailure M A A S (c)Engineoutaftertakeoff A N Figure1. Experimentflightcards. y b d e d a o nl w Do 8R 2 desiredtouchdownpoint touchdownbox 750ft 500ft 250ft 750ft 8L 28ft 2 Figure2. Runwayconfigurationandtouchdownboxdefinition. 3of20 AmericanInstituteofAeronauticsandAstronautics Thistaskevaluatedifchangesinmotioncuesaffecttherecoveryperformancebyhelpingapilotdamptheflight pathresponse,aswellasstabilizetheprogressivelyless-stablerolldynamicsnearstall. II.C. EngineOutafterTakeoff Duringthetakeoffroll,thetaskrequiredpilotstorotateat128kts,establisha10degnoseuppitchattitude,and maintain a steady climb speed of 145 kts. Either the left or right engine failed randomlyat a randomaltitude after liftoffbutbelow100ft. Afteridentifyingthefailedengine,pilotsneededtoapplynearfullrudderpedaltowardsthe goodengine,rollapproximately5degintothedirectionofthegoodenginetomaintainthedesiredtrack,andmodulate theremainingthrusttomaintainspeed. Thistaskevaluatedifchangesinmotioncuesaffectapilot’sabilitytodetectthefailedenginepromptlyandrecover usingappropriatelateral-directionalcontrol. II.D. AircraftModel 1 8 0 The experimentersmodified an existing mid-size twin-engine commercial transport aircraft model with a gross 1 17- weightof185,800lbsforthisstudy.Theenhancementsallowedforamorerepresentativeaircraftresponseinthestall 0 2 6. task.Mostsignificantly,modificationstotheliftcoefficientasafunctionofangleofattackallowedfortypicaltransport 4/ 51 post-stall characteristics. Modifications to the rolling moment coefficient due to roll rate allowed for satisfactory 2 10. representation of reduced roll stability near stall. Finally, modifications to the rolling moment coefficient due to OI: aileroninputsallowedforanadequaterepresentationofreducedrollcontrolauthoritynearthestall. D g | Thesimulatedaircrafthadsixdegreesoffreedomandatwo-crewcockpit. Theaircraftmodelincludedalanding or a. gearmodel,allowingittotaxi,takeoff,andland. Theaircraftcouldoperateinthetypicaltransportenvelopeuptoa a c.ai maximumcruisingaltitudeof42,000ft. ar p:// htt 7 | III. MotionConfigurations 1 0 2 y 1, Pilots performed each flight task with the same six motion configurations. Only the motion parameters of the uar roll and heave degrees of freedom for the stall task were slightly different from the landing and takeoff tasks to br Fe accommodatethelargerollandverticalexcursionsduringthestall. TheexperimentusedthestandardVMSmotion n R o algorithmandhardwareforallmotionconfigurations. TheequivalenttimedelaysoftheVMSmotionsystemforthe E T pitch, roll, yaw, longitudinal,lateral, and verticalaxesare47, 68, 48, 50, 69, and67 ms, respectively. Moredetails N CE abouttheVMSmotionsystemareprovidedinRef. 18. Intheremainderofthispaper,thefourmotionconfigurations H C ofthepreviousstudy,referredtoasMCUE2014,arelabeledbyM1-M4.Thesixmotionconfigurationsofthecurrent R A study,referredtoasMCUE2015,arelabeledbyM5-M10(Table1). E S E R S Table1. Motionconfigurations. E M A A experiment label motion S A M1 largeVMSmotion(LMOT) N y MCUE2014 M2 low-gain/low-break-frequencyhexapodmotion(HEX-L) b ed (Ref.16) M3 medium-gain/medium-break-frequencyhexapodmotion(HEX-M) d a nlo M4 high-gain/high-break-frequencyhexapodmotion(HEX-H) w Do M5 meanOMCT+σ(definedinRef.3) M6 meanOMCT M7 meanOMCT+1/3∆1 MCUE2015 M8 meanOMCT+2/3∆1 M9 lowerfidelityboundaryedge(definedinRef.16) M10 lowerfidelityboundaryedge+1/4∆2 The six motion configurations of the current study were selected to encompass the lower edge of the objective motioncueingcriteria fidelity boundariesdevelopedin the previousstudy16 and the meansof the Objective Motion CueingTest (OMCT)responsesfroma statistical sampleof eightsimulators.3 Fig. 3 detailsthe selectionofthe six motion configurations using the magnitude of the OMCT motion response for any degree of freedom. The mean OMCTresponsesplusonestandarddeviationandthemeanOMCTresponseswerethefirsttwomotionconfigurations (M5andM6,respectively).AsimulationmodeloftheVMSmotionlogicwasusedtocalculatethemotionparameters 4of20 AmericanInstituteofAeronauticsandAstronautics ofM5andM6byfittingtheirsimulatedOMCTresponsestothemean-OMCTandmean-OMCT-plus-one-standard- deviation responses. The lower edge of the initial objective motion cueing criteria fidelity boundaries determined in Ref. 16 was used to determine a third motion configuration M9. The difference between the lower boundary edgeandthemeanOMCT responses, ∆1, wasusedto determineM7andM8. Themotionparametersof thesetwo configurationsandM6andM9wereequallyspaced 31∆1 fromeachother(Fig.3). Forthefinalmotionconfiguration M10,thedifferencebetweenthelowerandupperboundaryedgesoftheinitialobjectivemotioncueingcriteriafidelity boundaries,∆2,wasused.ThemotionparametersofM10weredefinedbythelowerboundaryplus 41∆2. Fig. 3 providesa schematic overviewof the methodused todefinethemotionconfigurations,andonlyshowsthevaria- tioninmotiongain.Inreality,themethodalsoextendedtothe ∆2 othermotionparameters, such as the washoutbreakfrequen- M10 cies and damping ratios. In addition, the uncertainty bound- 14∆2 M9 ariesoftheinitialobjectivemotioncueingcriteriaandthearea 31∆1 M8 7-1081 dolaeftfiethdneeOdOMbMyCCTthTerermespsepoaonnnssesespslfuoosrvaetnhrldeaprmeodilnl.udFseigogrn.eee4sodtafenpfdriceatersddothdmeevcoiaafltcitohune- Hjj ∆1 1133∆∆11 MMM756 1 20 motionconfigurationsforthesidesteptask.Themotiontuning 6. 4/ approachfollowedisespeciallyclearathigherfrequenciesin 1 5 0.2 themagnitudeplotandinthephaseplot.Fig.4showsthatthe MCUE2014fidelityboundary OI: 1 sixmotionconfigurationsofthecurrentstudyspantheareabe- meanOMCT±σ org | D ptwlueseonntehestlaonwdaerrdcdrietveriaiatiounncoefrttahienOtyMboCuTnrdeasrpieosnasen;dththaetims,ethane !,rads−1 aiaa. areaoftheOMCTfidelityregionassociatedwithlowerfidelity Figure3. Motionconfigurationdefinition. arc. motion.Thisareawasnotfullycoveredinthepreviousexperiment.16 NotethattheOMCTresponsesinFig.4arenot p:// fromactualmeasurementsandmotionsystemdynamicsarenotincluded. htt 7 | Inthepreviousexperiment,threeofthefourmotionconfigurationsweretunedtofitonahexapodmotionsystem 1 20 with 60-inchlegs(M2-M4). To that extent, a hexapodalgorithmwas implementedto runin parallelwith the VMS y 1, motionlogicformotiontuningandmonitoringpurposes.16 Inthecurrentexperiment,noemphasiswasplacedonde- ar bru velopingspecifichexapodmotionconfigurations.However,duetothenatureoftheirdefinition,motionconfigurations e F M5toM9mostlyremainedwithinthehexapodmotionenvelopeforallthreetasks. n o R E T N E C H 101 270 C AR meanOMCT E S M5 E R ES 100 180 M6 M M7 A A M8 S NA eg M9 ed by |H|p 10-1 ,dHp 90 M10 d a o 6 nl w o D 10-2 0 OMCTfidelityregion3 boundaryuncertainty16 meanOMCT±σ 10-3 -90 10-1 100 101 10-1 100 101 ω,rads−1 ω,rads−1 (a)Rollmagnitude. (b)Rollphase. Figure4. CalculatedrollOMCTresponsesofthesidesteptaskmotionconfigurations. 5of20 AmericanInstituteofAeronauticsandAstronautics Figure5. VerticalMotionSimulator. Figure6. Cockpitsetup. Figure7. Primaryflightdisplay. 1 IV. Experiment Setup 8 0 1 7- 1 20 IV.A. IndependentVariable 6. 4/ 51 Motion configurationwas the only independentvariable, with six levels (M5-M10). Every pilot flew each task 2 10. withallsixmotionconfigurations(Table1). OI: D g | IV.B. Apparatus or a. a ai The experiment used the VMS with the transport cab (T-CAB) (Fig. 5).18 Pilots flew from the left seat; the c. p://ar instructoroccupiedtherightseat. Aprimaryflightdisplay(PFD)waspositionedinfrontofeachpilot(Fig.6). The htt navigationdisplayswerepositionednexttothePFDstowardsthecenterofthecab.Anadditionaldisplayinthecenter 7 | ofthecabshowedtheengineparameters.Thisdisplaychangedtoshowtaskperformanceaftereachrun. 1 0 1, 2 A column and wheel controlled aircraft pitch and roll, respectively. A thumb switch on the wheel controlled ary elevatortrim. Conventionalrudderpedalscontrolledthe rudderdeflectionin the air andnose wheelsteering on the u br ground. Two throttle leverscontrolledthe power of the two engines. The instructorpilot configuredflaps and gear e F n withrepresentativecontrolsbeforeeachtask. o ER ThePFDsymbologywassimilartothatonaBoeing777(Fig.7). Speedandheadingbugsindicatedthedesired T N speedandheadingforeachtask. Inaddition,typicalsymbologyonthespeedtapeindicatedtheminimumandmax- E C H imumspeeds,andV-speeds. ThePFDalsodepictedconventionallocalizerandglideslopeerrorindicators. Agreen C R speed trend vectororiginatingfromthe indicatedairspeed showedwhat the airspeed would be in 10 s. The control A E columnsinthecockpithadstickshakerstowarnpilotsofanimpendingstall. Theactivationoftheshakersoccurred S E R simultaneouslywhentheminimumspeedtape,alsoknownasthe“barberpole”,coincidedwiththeindicatedairspeed. S ME Thecollimatedout-the-windowdisplayofT-CABconsistedofaprojectionsystemprojectingahigh-qualityimage A A onsixsphericalmirrors. Themirrorsformedadome-likesectionprovidingacontinuousfield-of-viewimagetoboth AS pilots. Theout-the-windowvisualhada220◦horizontalfieldofviewanda28◦verticalfieldofview(10◦upand18◦ N y down).ARockwell-CollinsEPX5000computerimagegeneratorcreatedtheout-the-windowvisualscene. Thevisual b ed system equivalent time delay was 62 ms.18 This was in line with the equivalent time delays of the motion system d a nlo (SectionIII). ow AMicrosoft(cid:13)R SurfaceTM tabletwasusedbypilotstoprovidemotionratings. D IV.C. Procedures Thepilotpre-briefingexplainedthepurposeoftheexperiment,theprocedures,conditions,andperformancecriteria foreachflighttask. Pilotswereinformedtheywouldperformeachtaskwithsixdifferentmotionconfigurationsand that the configurationswould be presented randomly. However, no specifics about the motion configurations were given. Pilots performed all three tasks, each with the six different motion configurations. Each motion configuration was repeatedsix times fora total of36 runspertask. The firstsix runswereused as trainingrunsin whichthe six motion conditions were presented once each. The remaining 30 runs were used for data analysis. The tasks and motion configurationswere presented randomly. A randomized Latin square determined the order of the tasks and 6of20 AmericanInstituteofAeronauticsandAstronautics motion configurations. All runs for a particular task were performed in a single session. Each task session lasted one-and-a-halftotwohours,andbreaksweretakeninbetweensessions. Before each task, the instructor pilot reviewed the procedures, performance criteria, the relevant controls, and displays. Theinstructorevaluatedapilot’sperformanceaftereachrunusingtaskperformanceinformationdisplayed inthecab.Anexperimentobserverinthecontrolroomverifiedtheevaluation.Aftercompletingeachrun,participant pilotsratedthemotionoftwospecificpartsofthetaskwithtwodifferentratingscalesonatabletPC(SectionIV.E). IV.D. Participants Fifteenexperiencedairlinetransportpilotsparticipated.EachpilotexceptonehadaB757/B767typerating,asthe aircraftmodelusedinthesimulationwasofanaircraftsimilartoaB757intermsofconfiguration,size,andweight. Allpilotshadexperienceonmanyotheraircrafttypes.TheaveragenumberofflyinghourspilotshadonaB757/B767 was4,658withastandarddeviationof±4,259.Theaveragenumberofflyinghoursonotheraircrafttypeswas7,969 withastandarddeviationof±5,064. Allpilotsweremaleandelevenhadexperienceasacaptain. Tenoutofthe12 1 pilotswhoparticipatedinthepreviousexperiment,discussedinRef. 16,participatedinthecurrentexperiment. 8 0 1 7- 1 20 IV.E. DependentMeasures 6. 4/ 51 Sixsubjectivedependentmeasuresand11objectivedependentmeasureswererecordedandanalyzed.Pilotsrated 2 10. thesimulatormotionoftwospecificpartsofeachtaskwithtwodifferentratingsineachrun. Foreachrating,pilots OI: answeredaquestionbymovingadigitalslideronananaloguefidelityscale(AFS).Theanaloguescalerangedfrom D g | 0%(lowfidelity)to100%(highfidelity).Thefollowingquestionswereaskedforthesidesteptask: or a. a c.ai 1. Howwouldyouratemotionfidelityinthesidestepturnswithrespecttowhatyouwouldexpectfromrealflight? ar http:// 2. Howwouldyouratemotionfidelityinthelandingflarewithrespecttowhatyouwouldexpectfromrealflight? 7 | 1 0 thestalltask: 2 1, y uar 1. Howwouldyouratemotionfidelityintheapproachtothestallwithwhatyouwouldexpectfromrealflight? br e F n 2. Howwouldyouratemotionfidelityinthestallrecoverywithwhatyouwouldexpectfromrealflight? o R E T N andthetakeofftask: E C H C 1. Howwouldyouratemotionfidelityintheinitialtakeoffrollwithrespecttowhatyouwouldexpectfromreal R A E flight? S E R S 2. Howwouldyouratemotionfidelityrightaftertheenginefailurewithrespecttowhatyouwouldexpectfrom E M realflight? A A S NA Severalobjectivemeasuresdeterminedtheeffectofmotionontaskperformance. Manymeasuresrelateddirectly d by totheperformancecriteria(Fig.1). Fortheapproachandlandingwithsidestep,theRMSoftheglideslope,RMSgs, de and speed deviationduringthe approach,RMS , were calculated. Calculationsfor these variablesused data from a V o nl the last 60s beforereachingthe decisionaltitude of 200ft. When the main geartouchedthe runway, datacaptures w Do occurredforthesinkrate,h˙td,andthelongitudinalandlateraldeviations,∆xtdand∆ytd,fromthedesiredtouchdown point. Forthe stall recovery,the RMS rollerror,RMS , appliedto the 30 s beforethe start of the stallrecovery. The φ maximum pitch rate deviation, q , and the number of stick shakers, N , applied to the stall recovery segment. max s Pitchratewassubstitutedasapartialsurrogatetoanalyzeloadfactoroscillationsinthestallrecovery,asitwasmore suitable for analyzingoscillatory behavior. Finally, for the engine outon takeoff task, the RMS of the headingand speeddeviationsaftertheenginefailure,RMS andRMS ,useddatafromthelast15saftertheenginefailure.The ψ V reactiontimeoftheinitialpedalinputaftertheenginefailure,t ,wasfromthetimeoftheenginefailuretothetime p whenthepedalinputwas10%ofthemaximuminput. 7of20 AmericanInstituteofAeronauticsandAstronautics V. Results This section presents the mean results of the 15 pilots for the approachand landingwith sidestep, high-altitude stallrecovery,andengineoutaftertakeofftasks. Foreverypilot,datafromthelastfiverunsforeachtaskandmotion configurationwereaveraged.Error-barplotspresentthecontinuous-intervaldependentmeasures,withmeansand95% confidenceintervalsforeachmotioncondition.Barplotspresenttheordinaldependentmeasures,withthenumberof occurrencesforeachdependentmeasurelevelandthemedianforeachmotioncondition.Whereverappropriate,grey dashedlinesdepictthetaskperformancecriteria.Notethatthissectiondiscussestheresultsofthecurrentexperiment (MCUE2015)only. Theresultsofthepreviousexperiment(MCUE2014)arediscussedinRef. 16andaregivenhere forreferenceonly. A repeated-measures analysis of variance (ANOVA) de- Table2. Summaryofstatisticaltestresults. tected possible statistically significant differencesin the con- Measure df F/χ2 p η2 Sig. tinuous interval dependentmeasures.19 A Friedman test was SidestepTask used for the ordinal dependent measures. For the ANOVA 1 toproduceaccurateresults,thedatamustmeetthreeassump- AFS1 5.0,70.0 0.285 0.920 0.020 − 108 tions: 1)thereshouldbenosignificantoutliers,2)datashould AFS2 5.0,70.0 0.515 0.764 0.036 − 017- be approximately normally distributed for each level of the RMSgs 5.0,70.0 0.304 0.909 0.021 − 2 2514/6. tiwndeeepnenaldlecnotmvabriinaabtlieo,nasnodf3le)vvealrsiaonfctehseoifndtheepednifdfeenretnvcaersiabbele- hR˙tMd SV 55..00,,7700..00 10..044380 00..389266 00..007300 −− OI: 10. mustbeequal(i.e.,assumptionofsphericity). ∆∆yxttdd 55..00,,7700..00 11..845694 00..121133 00..101975 −− D Boxplotsidentifiedoutliers,normalitywascheckedusing org | theShapiro-Wilktest,andMauchly’stestcheckedtheassump- StallTask aa. tion of sphericity. Few outliers were detected, so they were AFS1 1.5,21.6gg 1.545 0.235 0.099 − arc.ai kept in the data analysis. Data were generally normally dis- AFS2 2.6,40.0gg 1.095 0.357 0.073 − p:// tributed. In the few cases they were not, we did not correct RMSφ 3.1,43.4gg 4.948 0.004 0.261 ∗∗ 7 | htt for it, as an ANOVA is fairly robust to deviations from nor- qmax 2.3,31.7gg 3.519 0.037 0.201 ∗∗ 01 mality. When the assumption of sphericity was violated, the Ns 5.0 5.555 0.352 – − 2 y 1, degrees of freedom of the ANOVA were corrected using the TakeoffTask uar Greenhouse-Geisseradjustment. AFS1 1.4,19.5gg 1.886 0.185 0.119 − br Fe Post-hoctestswithBonferroniadjustmentwereperformed AFS2 5.0,70.0 1.647 0.194 0.105 − n R o for pairwise comparisons of motion conditions when the RMSψ 5.0,70.0 7.305 0.000 0.343 ∗∗ TE ANOVA indicated an overall significant difference. All sta- RMSV 5.0,70.0 0.599 0.701 0.041 − N CE tistical tests had a significance level of 0.05. Table 2 gives a tp 5.0,70.0 5.955 0.000 0.298 ∗∗ H C summaryofthestatisticaltestresultsforalltherepeatedmea- AR sures(SectionIV.E). Inthistable, df arethedegreesoffree- gg = Greenhouse-Geissercorrection ESE dom,F orχ2 istheteststatisticfortheANOVAorFriedman ∗∗ = significant(p<0.05) S R test, respectively, p is the probability of observing an effect, ∗ = marginallysignificant(0.05≤p<0.1) AME andη2isthepartialeta-squared,indicatingsampleeffectsize. − = notsignificant(p≥0.1) A S Next,motion-fidelity-ratingresultsarepresented,followed A N by the task-performance results, and an analysis of the magnitude of false motion cues. Finally, objective motion y d b cueingcriteriaresultingfromthetask-performanceandfalse-motion-cueresultsarepresented. e d a o nl w V.A. MotionFidelityRatings o D Pilotsratedthemotionfidelityoftwospecificpartsofeachtaskbymovingaslideronananaloguefidelityscale between 0% and 100% (Section IV.E). This resulted in ratings AFS1 and AFS2 providedin Figures8, 9, and 10 forthesidestep,stall,andtakeofftasks,respectively. TheANOVAdidnotrevealanysignificantdifferencesbetween motionconditionsforanyoftheAFSratings(Table2).Forthesidesteptask,pilotsratedthemotionfidelitycompared to real flight in the sidestep turns around 60% in each condition (Fig. 8a), and motion fidelity in the landing flare between 50 and 60% (Fig. 8b). For the stall task, motion in the approachto the stall and in the stall recoverywas ratedaround70%ineachcondition(Figures9aand9b,respectively). Finally,forthetakeofftask,motionduringthe initialtakeoffrollandaftertheenginefailurewasratedbetween60and70%ineachcondition(Figures10aand10b, respectively). 8of20 AmericanInstituteofAeronauticsandAstronautics 100 100 90 90 80 80 70 70 % 60 % 60 1,S 50 2,S 50 AF 40 AF 40 30 30 20 20 10 10 0 0 M5 M6 M7 M8 M9 M10 M5 M6 M7 M8 M9 M10 (a)Rating1 (b)Rating2 Figure8. Motionfidelityratingsforthesidesteptask. 1 8 0 1 7- 1 20 100 100 6. 4/ 90 90 1 5 0.2 80 80 1 OI: 70 70 D % 60 % 60 org | 1,S 50 2,S 50 aiaa. AF 40 AF 40 arc. 30 30 p:// 20 20 7 | htt 10 10 01 0 0 2 1, M5 M6 M7 M8 M9 M10 M5 M6 M7 M8 M9 M10 y ar (a)Rating1 (b)Rating2 u ebr Figure9. Motionfidelityratingsforthestalltask. F n o R E T N 100 100 E C H 90 90 C R 80 80 A E 70 70 S E R % 60 % 60 MES 1,S 50 2,S 50 A A AF 40 AF 40 AS 30 30 N y 20 20 b ed 10 10 d oa 0 0 nl w M5 M6 M7 M8 M9 M10 M5 M6 M7 M8 M9 M10 o D (a)Rating1 (b)Rating2 Figure10. Motionfidelityratingsforthetakeofftask. V.B. TaskPerformance V.B.1. ApproachandLandingwithSidestepTask Fig. 11 providesthe task performanceresults for the approachand landing with sidestep task. The RMS of the glideslopeandspeeddeviationintheapproacharegiveninFigures11aand11b,respectively. Nosignificantdiffer- enceswerefoundbetweenconditionsforbothvariables(Table2). Notethatpilotswereabletomeettheglideslope- deviationperformancerequirementeasilywithanaverageglideslopedeviationofaround0.4dots. Resultswerevery similartothepreviousexperiment. Pilotshaddifficultiesmeetingthespeed-deviationperformancerequirementwith 9of20 AmericanInstituteofAeronauticsandAstronautics 1.2 8 7 1.0 6 dot 0.8 kts 5 ,Sgs 0.6 ,SV 4 M M 3 R 0.4 R 2 0.2 MCUE2014 MCUE2015 1 MCUE2014 MCUE2015 0.0 0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 (a)Glideslopedeviationonapproach (b)Speeddeviationonapproach 1 8 2500 16 0 1 017- MCUE2014 MCUE2015 14 2 4/6. 2000 12 1 5 2 10 g | DOI: 10. ∆,ftxtd 1500 ∆,ftytd 68 or a. 1000 4 a ai arc. 2 MCUE2014 MCUE2015 http:// 500 0 7 | M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 1 20 (c)Longitudinaldeviationfromtouchdownpoint (d)Lateraldeviationfromtouchdownpoint 1, y ar 8 u br Fe 7 n o R 6 E T N 5 H CE ft/s 4 C ,d AR ˙ht 3 E S RE 2 S ME 1 MCUE2014 MCUE2015 A A 0 S A M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 N y (e)Verticalspeedattouchdown b ed Figure11. Performancedataoftheapproachandlandingwithsidesteptask. d a o nl w o D anaverageairspeeddeviationbetween5and6kts. Pilotswereslightlyclosertomeetingthespeed-deviationrequire- mentcomparedtothepreviousexperiment. Thelongitudinalandlateraldeviationsfromthedesiredtouchdownpointwerenotsignificantlydifferentbetween motionconfigurations(Figures11cand11d,respectively).Pilotsgenerallytoucheddownaroundthemaximumallow- able1,500ftfromtherunwaythresholdinthepreviousexperiment;however,toucheddownwellbeforethelimitin thecurrentexperiment,around1,250ft. Pilotsdeviatedmuchmorelaterallyfromthedesiredtouchdownpointinthe currentexperimentcomparedtothepreviousexperiment. Thesinkrateattouchdown,depictedinFig.11e,wasnot statisticallysignificantlydifferentbetweenmotionconfigurations. Thesinkratewasaroundthemaximumallowable valueof6ft/sineverymotionconditionandverysimilartotheaveragesinkrateinthehexapodmotionconfigurations ofthepreviousexperiment(M2-M4). 10of20 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.