ebook img

NASA Technical Reports Server (NTRS) 20170001315: DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model PDF

2.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20170001315: DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model

DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model K.S.Abdol-Hamid,∗Jan-Renee´ Carlson,†ChristopherL.Rumsey,‡ ElizabethM.Lee-Rausch,§andMichaelA.Park¶ NASALangleyResearchCenter,Hampton,VA TheCommonResearchModelwing-bodyconfigurationisinvestigatedwiththek-kL-MEAH2015turbu- lencemodelimplementedinFUN3D.ThisincludesresultspresentedattheSixthDragPredictionWorkshop andadditionalresultsgeneratedaftertheworkshopwithanonlinearQuadraticConstitutiveRelation(QCR) variantofthesameturbulencemodel. Theworkshopprovidedgridsareused,andauniformgridrefinement studyisperformedatthedesigncondition. Alargevariationbetweenresultswithandwithoutareconstruc- tionlimiterisexhibitedon“medium”gridsizes,indicatingthatthemediumgridsizeistoocoarsefordrawing conclusionsincomparisonwithexperiment.Thisvariationisreducedwithgridrefinement.Atafixedangleof attackneardesignconditions,theQCRvariantyieldeddecreasedliftanddragcomparedwiththelineareddy- viscositymodelbyanamountthatwasapproximatelyconstantwithgridrefinement. Thek-kL-MEAH2015 turbulencemodelproducedwingrootjunctionflowbehaviorconsistentwithwindtunnelobservations. Nomenclature area halfwingreferencearea Re Reynoldsnumber ref b wingsemispan ref Conventions c localchord CFD ComputationalFluidDynamics C dragcoefficient D CFL Courant-Friedrichs-Lewy C liftcoefficient L NAS NASAAdvancedSupercomputing C pitchingmomentcoefficient m NTF NationalTransonicFacility C x-componentofskinfrictioncoefficient fx QCR QuadraticConstitutiveRelation c meanaerodynamicchord ref RANS Reynolds-averagedNavier-Stokes h characteristicgridspacing C surfacepressurecoefficient Symbols p M∞ freestreamMachnumber α angleofattack,degree N numberofnodesingrid η wingspanlocation ∗SeniorResearchScientist,ConfigurationAerodynamicsBranch,MS499,AssociateFellow. †ResearchScientist,ComputationalAeroSciencesBranch,MS128,SeniorMember. ‡SeniorResearchScientist,ComputationalAeroSciencesBranch,MS128,Fellow. §AssistantBranchHead,ComputationalAeroSciencesBranch,MS128,AssociateFellow. ¶ResearchScientist,ComputationalAeroSciencesBranch,MS128,SeniorMember. 1of19 I. Introduction THEAIAAAppliedAerodynamicsTechnicalCommittee(APATC)conductedtheir6thDragPredictionWorkshop (DPW-VI)ainthesummerof2016tocontinuetheevaluationofCFDtransoniccruisedragpredictionsforsubsonic transports.Thestatedobjectivesoftheworkshopwereasfollows:1)tobuildonthesuccessofthepastfiveAIAADrag Prediction Workshops (DPW-I–V); 2) to assess the state-of-the-art computational methods as practical aerodynamic tools for aircraft force and moment prediction of industry relevant geometries; 3) to provide an impartial forum for evaluatingtheeffectivenessofexistingcomputercodesandmodelingtechniquesusingNavier-Stokessolvers;and4) toidentifyareasneedingadditionalresearchanddevelopment. ThefocusofthisworkshopwastheNASACommon ResearchModel(CRM)withwind-tunnelmeasuredwingtwist;bothwing-body(WB)andwing-body-nacelle-pylon (WBNP) configurations were considered. CFD predictions of absolute and incremental force and moment values were examined and compared. The workshop included grid convergence and code verification studies as well as an angle-of-attack sweep with static aeroelastic deformations. As with prior workshops, grids were made available for allrequiredcases. ResultsfortheDPW-VIrequiredcasestudiesweresubmittedtotheworkshopfortheFUN3D1–4unstructured-grid Reynolds-averagedNavier-Stokes(RANS)solveronasetofworkshop-suppliednode-basedmixed-elementmeshes. FUN3Dhasbeenusedinpreviousworkshopstudies,includingDPW-IV5 andDPW-V.6 ThepriorFUN3Dworkshop studiesfocusedontheuseofthestandardSpalart-Allmaras(SA)turbulencemodel.FortheDPW-IVgridconvergence studyatthedesignliftcondition,FUN3Dtotalforce/momentpredictionswiththeSAmodelwerewithinonestandard deviationoftheworkshopcoresolutionmedians. TheDPW-IVdownwashstudyandReynoldsnumberstudyresults also compared well with the range of results shown in the workshop presentations. Similarly, the FUN3D results fromtheDPW-VgridconvergencestudycomparedcloselywithresultsfromothercodeswhenusingtheSAmodel. However,resultsfromtheDPW-Vbuffetstudyproducedalargervariationthanthedesigncaseprimarilyduetothe large differences in the predicted side-of-body separation. Park et al.6 summarize the DPW-IV methods and size of the simulated side-of-body separations. They also studied the impact of modeling differences and grid effects on separationextentinthecontextofDPW-V.Alargewing-rootseparationbubblewasnotobservedinthewind-tunnel tests. FUN3D results for DPW-VI were submitted for the SA turbulence model and for a recently developed k-kL- MEAH2015turbulencemodel.7 Thek-kL-MEAH2015modelhasbeenimplementedinFUN3Dinalooselycoupled manner. Forbrevity,wewillrefertok-kL-MEAH2015ask-kL,herein. Theimplementationofk-kLinbothCFL3D and FUN3D was verified in Ref. 7. The results were compared with theory and experimental data, as well as with results that employ the SST turbulence model.8 They demonstrated that the k-kL model has the ability to produce resultssimilarorbetterthantheSSTmodelincomparisonwithexperiment.Forexample,foraseparatedaxisymmetric transonicbumpvalidationcase,thesizeoftheseparationbubble(separationandreattachmentlocations)predictedby thek-kLmodelisclosertoexperimentalmeasurements. As in prior workshops, the FUN3D SA results from the DPW-VI test cases compared closely with results from othercodes whenusing theSA modelb, and sothe currentpaperwill focusonly ona subsetofDPW-VI caseswith the k-kL model. The current study will focus on the effects of limiter and turbulence model formulation on the computationalresultsoftheCRMWBconfiguration. Theresultswillincludeaconstant-liftgridconvergencestudy fromtheworkshopaswellasanadditionalconstantangle-of-attackgridconvergencestudy.Anangle-of-attacksweep withstaticaeroelasticdeformationswillbeconsideredandcomparisonswillbemadewiththeexperimentaldata. II. CommonResearchModel The CRMc is a full-span wing body configuration with optional horizontal tail and optional nacelle/pylon. It is designed to be representative of a contemporary high performance transonic transport.9 The derived reference quantitiesofthefull-scalevehiclearesummarizedinTable1,whichcorrespondtothegeometryandgridsprovidedby theDPWcommittee. TheCRMWB(nonacelle/pylon)wasanalyzedwithandwithoutahorizontaltailinDPW-IV.10 TheCRMWBwithoutboththenacelle/pylonandhorizontaltailwasthefocusofDPW-V.11ThefocusofDPW-VIis ontheWB(notail)withandwithoutthenacelle/pylon. AnexperimentalaerodynamicinvestigationoftheNASACRMhasbeenconductedintheNASALangleyNational TransonicFacility12andintheNASAAmes11-ftTransonicWindTunnel.13 Classicalwallcorrectionsaccountingfor ahttps://aiaa-dpw.larc.nasa.gov[retrieved9/12/2016]. bhttps://aiaa-dpw.larc.nasa.gov[retrieved9/12/2016]. chttp://commonresearchmodel.larc.nasa.gov[retrieved8/12/2016]. 2of19 AmericanInstituteofAeronauticsandAstronautics modelblockage, wakeblockage, tunnelbuoyancy, andliftinterferencehavebeenappliedtotheexperimentaldata.d Alargeoffsetinpitchingmomentbetweentheexperimentaldataandthefree-aircomputationalresultsfromDPW-IV hasbeennoted.10 Subsequentcomputationalassessmentsofthemodelsupportsysteminterferenceeffectsindicated thattheCRMpitchingmomentissensitivetothepresenceofthemountinghardware.14,15 Themodelsupportsystem wasnotincludedintheDPW-IV,DPW-VorDPW-VIgridsystems.Additionally,theinvestigationsofRef.15alsoled tothediscoveryofalargediscrepancybetweentheas-builtandtestedwindtunnelmodelwing-twistandtheDPW-IV computational wing-twist. Hue16 showed that including the experimentally measured twist distribution reduced lift andimprovedthecomparisonwithwind-tunnelmeasurements. Keyeetal.17 alsoappliedfluid-structurecouplingand confirmedtheshiftinpredictedforcesandmomentduetowingtwist. Duetothedifferencesbetweenthewindtunnel wing-twistandtheDPW-IVandDPW-Vgeometries,one-to-onecomparisonsbetweentheseworkshopcasesandthe experimental data have been problematic. The CRM geometry for DPW-VI includes the static aeroelastic twist and deformationexperiencedbythemodelatdifferentanglesofattack, butomitsthemodelsupportfeaturesandtunnel walls. Table1. ReferencegeometryfortheCRM. Parameter Value c ,meanaerodynamicchord 275.80inch ref area ,one-halfwingreferencearea 297,360inch2 ref b ,semispan 1159.75inch ref X-MomentCenter 1325.90inch Z-MomentCenter 177.95inch AR,aspectratio 9.0 III. MethodDescription FUN3D1–4isafinite-volumeRANSsolverinwhichtheflowvariablesarestoredatthenodesofthemesh.FUN3D solvestheflowequationsonmixedelementgrids,i.e.,tetrahedra,pyramids,prisms,andhexahedra. Atinterfacesde- limitingneighboringcontrolvolumes,theinviscidfluxesarecomputedwithanapproximateRiemannsolverbasedon the values on either side of the interface. The flux difference splitting method of Roe18 is used in the current study. For second-order accuracy, interface values are obtained by a U-MUSCL scheme19,20 with gradients of the mean flowequationscomputedatthemeshverticesusinganunweightedleast-squarestechnique. TheU-MUSCLscheme coefficient is set to 0.0 for purely tetrahedral grids and 0.5 for grids with mixed element types. Several reconstruc- tionlimitersareavailableinFUN3D,twoofwhichareusedinthecurrentstudy. ThedimensionalVenkatakrishnan limiter21 is scaled to the mean aerodynamic chord to have the same behavior as the airfoil example with unit chord inVenkatakrishnan.21 Inthepresentthree-dimensionalanalysis, asmoothlimitercoefficientisusedbasedon3/c ref wherec isthemeanaerodynamicchordoftheconfiguration. ThislimiterisreferredtoastheVenkatlimiter. Addi- ref tionally,thecurrentstudyusesastencil-basedmin-modlimiter22 augmentedwithaheuristicpressurelimiter.23 This limiterisreferredtoastheh-minmodlimiter. Computationsarealsoperformedwithnolimiter. For tetrahedral meshes, the full viscous fluxes are discretized with a finite-volume formulation in which the re- quiredvelocitygradientsonthedualfacesarecomputedwiththeGreen-Gausstheorem. Ontetrahedralmeshesthisis equivalenttoaGalerkintypeapproximation. Fornontetrahedralmeshes,thesameGreen-Gaussapproachcanleadto odd-evendecoupling.Apureedge-basedapproachcanbeusedtocircumventtheodd-evendecouplingissuebutyields onlyapproximateviscousterms.Fornontetrahedralmeshes,theedge-basedgradientsarecombinedwithGreen-Gauss gradients;thisimprovestheh-ellipticityoftheoperatorandallowsthecompleteviscousstressestobeevaluated.2,24 ThisformulationresultsinadiscretizationofthefullNavier-Stokesterms. The solution at each time step is updated with a backwards Euler time-integration scheme. At each time step, thelinearsystemofequationsisapproximatelysolvedwithamulticolorpoint-implicitprocedure.25 Localtime-step scalingisemployedtoaccelerateconvergencetosteadystate. Forturbulentflows,avarietyofturbulencemodelsare availablewithinFUN3D.Thek-kLmodel7usedinthisstudyisalineareddyviscositytwo-equationturbulencemodel, which is solved in a loosely coupled approach with the mean-flow equations. The nonlinear Quadratic Constitutive dhttp://commonresearchmodel.larc.nasa.gov[retrieved10/13/2016]. 3of19 AmericanInstituteofAeronauticsandAstronautics Relation(QCR)developedbySpalart26 willalsobeusedtocomputetheReynoldsstressterms. Thiswillbereferred toas+QCRnonlinearoptionusedbyk-kL.7 Thediscretizationoftheturbulencemodeldiffusiontermsishandledin thesamefashionasthemean-flowviscousterms. IV. FocusCasesfromDPW-VIandResults In the present paper, we will cover the effect of limiter and turbulence model formulations in the computational resultsofCRMWBconfigurationforanumberoftestcasesatM =0.85andRe=5million: ∞ 1. CRMgridconvergencestudy(C =0.5): CRMwing-body(WB)configurationscomputedwithk-kLincluding L reconstructionlimitereffects; 2. CRM grid convergence study (α = 2.75 degree): CRM wing-body (WB) configurations computed with k-kL includingreconstructionlimitereffects; 3. CRMWBstaticaeroelasticeffect: Angle-of-attacksweepcomputedwithk-kL,bothlineareddy-viscosityand QCRvariations. ThefirstandthirdcasesarebasedontherequiredcasesfromDPW-VI.Thesecondcaseisatraditionalgridconver- gencestudywhereallflowconditionsarefixed,includingangleofattack. The current FUN3D solutions were computed on mixed-element unstructured grids provided by the DPW com- mittee. These grids were generated using the gridding guidelines specified for the workshop.e Table 2 lists the grid sizesforthefamilyofgridsusedforthegridconvergencestudy.Thesegridshaveprismaticcellsnearthesolidsurface of the wing/body and tetrahedral cells away from the wall with a small number of pyramids in the interface region betweentheprismsandtetrahedralcells. Table3liststhegridsusedfortheangle-ofattacksweeps. Thesegridsareat themediumgridlevelandhaveasimilartopologyasthosecreatedforthegridconvergencestudy. Recallthatthese grid geometries include the static aeroelastic twist and deformation experienced by the model at different angles of attack,butomitthemodelsupportfeaturesandtunnelwalls. Alltheforceandmomentcoefficientspresentedherein are the total value (combined pressure and viscous components) for the wing and body. Computed results will be comparedwithexperimentaldataforC ,C C andC run197R44f fromtheNTFtestatNASALangleyResearch L D m P Center. WewillalsocompareCFDwithexperimentaldata27 thatweregeneratedwithapressure-sensitivepaintmea- suringtechniquedoneattheNASAAmes11-fttransonictunnel.Asmentionedearlier,theCFDmodeldidnotinclude supportsystemortunnelwalls. Table2. SummaryofDPW-VIWBgridsforgridconvergencestudies. Level N Tiny 20,472,098 Course 29,916,005 Medium 44,249,828 Fine 66,228,067 X-Fine 100,781,934 U-Fine 151,316,926 ehttps://aiaa-dpw.larc.nasa.gov[retrieved9/12/2016]. fhttp://commonresearchmodel.larc.nasa.gov[retrieved8/12/2016]. 4of19 AmericanInstituteofAeronauticsandAstronautics Table3. SummaryofDPW-VIWBgridsforangle-of-attacksweep. α,degrees N 2.50 44,154,687 2.75 44,249,828 3.00 44,174,034 3.25 44,180,700 3.50 44,242,617 3.75 44,217,067 4.00 44,238,097 A. ConstantLiftGridConvergenceStudy One of the required cases computed for DPW-VI is a grid convergence study performed at the design condition of M =0.85,Re=5millionandC =0.5fortheWBconfiguration. Eachcaseisstartedatα=2.75◦togetinitially ∞ L converged solutions. Then, the angle of attack is automatically adjusted to reach the target lift coefficient within ±0.0001. Figure 1 shows a typical total lift and drag coefficient convergence history through the two-step solution process. FUN3Dtakesapproximately6000iterationstocompletetheentireprocess,targetingC =0.5. L C L C D 0.7 0.05 0.6 0.04 L D C C 0.5 0.03 0.4 0.02 0 2000 4000 6000 Iteration Figure1. Typicalliftanddragconvergence,M =0.85,Re=5million,C =0.5,k-kLturbulencemodel. ∞ L DragcoefficientC andpitchingmomentcoefficientC areplottedasafunctionofacharacteristicgridspacing D m squared, h2, inFigs.2(a)and(b), respectively. Theh2 iscomputedasthe(numberofnodes=N)raisedtothe−2/3 power. This exponent is based on two assumptions: (1) the characteristic length of the grid spacing varies with the cuberootofthecellvolume,and(2)thesolutionlieswithinthe“asymptoticrange”ofgridconvergenceanditsspatial errordecreaseswith2nd-orderaccuracy. Whentheseassumptionsaremet,thecomputedoutputsshouldvarylinearly withh2.Onthefinergrids,thedifferencebetweennolimiterandh-minmodgenerallydiminishesforthevaluesshown inFig.2. TheC valuesofthefinestgridwithnolimiterandh-minmodarewithinonecount,0.0001. TheC values D m ofthefinestgridwithnolimiterandh-minmodarewithin0.001. TheangleofattackrequiredforC = 0.5isalso L plottedasafunctionofh2inFig.2(c). Thistrimangleofattackdecreasesforbothmethodsasthegridisrefined. This decreaseinangleofattackwithgridrefinementatconstantcoefficientofliftisanalogoustoanincreaseincoefficient 5of19 AmericanInstituteofAeronauticsandAstronautics ofliftwithgridrefinementatconstantα. Theh-minmodlimiterreducesthedifferencesbetweentinyandultragrids bymorethan50%(comparedtonolimiter)forallthevaluesplottedinFig.2. No limiter No limiter 0.0265 0.07 h minmod limiter h minmod limiter 0.0260 0.08 D m C C 0.0255 0.09 0.0250 0.10 0.000000 0.000005 0.000010 0.000015 0.000000 0.000005 0.000010 0.000015 h2 h2 (a)Coefficientofdrag. (b)Coefficientofpitchingmoment. 2.80 No limiter h minmod limiter 2.75 2.70 ) 2.65 ( 2.60 2.55 2.50 0.000000 0.000005 0.000010 0.000015 h2 (c)Angleofattack,αdegrees. Figure2. Theeffectsoflimiterasafunctionofcharacteristicgridspacing,C =0.5,k-kLturbulencemodel. L B. ConstantAngle-of-AttackGridConvergenceStudy An alternate grid convergence study fixes geometry and all flow conditions (independent variables) to evaluate the effectofgridinpredictingflowquantitiessuchassurfacepressurecoefficientandtotalforcecoefficients(dependent variables). ThegridsprovidedbytheDPW-VIcommitteearebasedonthegeometryatα = 2.75◦,whichiscloseto designconditionfortheCRMWBconfiguration. The first set of results evaluates the effect of limiters when using the basic linear k-kL turbulence model. Drag, lift, and moment coefficients as well as surface pressure coefficients at different locations on the wing are assessed. Thebasicno-limiterresultsarecomparedtotheVenkatandtheh-minmodlimiterresults. Thelift,dragandmoment coefficientsareplottedasafunctionofh2 inFigs.3(a), (b)and(c), respectively. Onthefinergrids, the differences 6of19 AmericanInstituteofAeronauticsandAstronautics betweennolimiter,Venkatlimiter,andh-minmodlimiterdiminish. TheC valuesonthefinestgridarewithinabout D five counts, 0.0005, for the various methods. The C values of the finest grid are within about 0.008, and the C L m values of the finest grid are within about 0.005. As the grid is refined, C and C increase for either no limiter or D L h-minmodanddecreasefortheVenkatlimiter. TheoppositeoccursforC . Inotherwords,theVenkatlimiterhasa m differenttrendthantheotherapproaches. Thisdifferenttrendbetweenthelimiterswithgridrefinementcauses10% differencesbetweentheresultsatthemediumgridlevel(h2 ≈ 0.000008). Themediumgridlevelisusuallybuiltto computetherequiredcasesclosetodesigncondition(α=2.50◦−4.00◦)withan“industry-standard”acceptablelevel ofaccuracy. However,thelargeinfluenceofthelimiteronthemediumgridlevel(over44millionnodes)indicatesthe likelihoodthatthisgridisstillnotyetfineenoughformanyengineeringpurposes. No limiter No limiter 0.030 h minmod limiter 0.60 h minmod limiter Venkat limiter Venkat limiter 0.58 0.029 0.56 0.028 D L 0.54 C C 0.027 0.52 0.026 0.50 0.025 0.48 0.000000 0.000005 0.000010 0.000015 0.000000 0.000005 0.000010 0.000015 h2 h2 (a)Dragcoefficient. (b)Liftcoefficient. No limiter h minmod limiter Venkat limiter 0.08 m C 0.10 0.12 0.000000 0.000005 0.000010 0.000015 h2 (c)Pitchingmomentcoefficient. Figure3. Theeffectsoflimiterasafunctionofcharacteristicgridspacing,α=2.75◦,k-kLturbulencemodel. Next, chordwisesurfacepressurescoefficientsfromthemediumandultragridsolutionsareexamined. Figure4 showssurfacepressurecoefficientsatthreespanlocations: η =0.131,0.502,and0.95. Figures4(a),(c)and(e)show results from the medium grid solutions, whereas (b), (d) and (f) show results from the ultra grid solutions. At the mediumgridlevel,thenolimiterandh-minmodlimitergivesimilarresultsatallstations,whicharedifferentthanthe 7of19 AmericanInstituteofAeronauticsandAstronautics VenkatlimiterresultsasshowninFig.4(a),(c)and(e).Overall,bothnolimiterandh-minmodlimiterresultsaremuch closertotheexperimentalpressuredatag ascomparedwithVenkatlimiterresults. However,thisdoesnotnecessarily meanthattheyaremoreaccurate,becausenumericalerrorsduetoinsufficientgridrefinementmaystillbeplayinga largerole. Infact,allthreeapproachesaremuchclosertoeachotherattheultragridlevelasshowninFigs.4(b),(d) and(f). Thedifferenceisslightlywideratη =0.95towardthewingtipbutdiminishedfromthemediumgridlevels. ThesurfacepressureresultsareconsistentwithwhatwasdiscussedforC andC inFig.3. Attheultragridlevel, D L C andC arewithinlessthan1%betweenalltheapproaches. D L The basic (linear) k-kL results are compared with (nonlinear) k-kL+QCR turbulence model results in Fig. 5. Thesesolutionswerecomputedwithoutalimiter. ThedragcoefficientC ,liftcoefficientC ,andmomentcoefficient D L C are plotted as a function of h2 in Figs. 5(a), (b), and (c), respectively. The variation in C , C , and C with m L D m gridrefinementshowssimilartrendsforbothk-kLandk-kL+QCR.Thedifferencesareveryconsistentacrossthegrid levelswithk-kL+QCRresultinginasmallerC andC andhigher(lessnegative)C thanthebasick-kLmodel. L D m ThecorrespondingsurfacepressurecoefficientsfromthemediumandultragridsolutionsareshowninFig.6at η =0.131,0.502and0.95. Figures6(a),(c)and(e)aretheresultsfromthemediumgridsolutions. Figures6(b),(d) and(f)aretheresultsontheultragridlevel. Overall,resultsfromthelinearandnonlinearturbulencemodelsarevery similarforη =0.131and0.502,withaslightdifferenceattheη =0.95station. ghttp://commonresearchmodel.larc.nasa.gov[retrieved8/12/2016]. 8of19 AmericanInstituteofAeronauticsandAstronautics No limiter No limiter 1.5 h minmod limiter 1.5 h minmod limiter Venkat limiter Venkat limiter = 0.131, Experimental Data 0.131, Experimental Data 1.0 1.0 0.5 0.5 p p C C 0.0 0.0 0.5 0.5 1.0 1.0 0 0.5 1 0 0.5 1 x / c x / c (a)η=0.131,mediumgrid. (b)η=0.131,ultragrid. No limiter No limiter 1.5 h minmod limiter 1.5 h minmod limiter Venkat limiter Venkat limiter = 0.502, Experimental Data 0.502, Experimental Data 1.0 1.0 0.5 0.5 p p C C 0.0 0.0 0.5 0.5 1.0 1.0 0 0.5 1 0 0.5 1 x / c x / c (c)η=0.502,mediumgrid. (d)η=0.502,ultragrid. No limiter No limiter 1.5 h minmod limiter 1.5 h minmod limiter Venkat limiter Venkat limiter = 0.95, Experimental Data 0.95, Experimental Data 1.0 1.0 0.5 0.5 p p C C 0.0 0.0 0.5 0.5 1.0 1.0 0 0.5 1 0 0.5 1 x / c x / c (e)η=0.95,mediumgrid. (f)η=0.95,ultragrid. Figure4. Comparisonofchordwisesurfacepressurecoefficientdistributions,α=2.75◦,k-kLturbulencemodel. 9of19 AmericanInstituteofAeronauticsandAstronautics k kL k kL 0.030 k kL+QCR 0.60 k kL+QCR 0.58 0.029 0.56 0.028 D L0.54 C C 0.027 0.52 0.026 0.50 0.025 0.48 0.000000 0.000005 0.000010 0.000015 0.000000 0.000005 0.000010 0.000015 h2 h2 (a)Dragcoefficient. (b)Liftcoefficient. 0.07 0.08 0.09 m C 0.10 0.11 k kL k kL+QCR 0.12 0.000000 0.000005 0.000010 0.000015 h2 (c)Pitchingmomentcoefficient. Figure5.TheeffectofQCRasafunctionofcharacteristicgridspacing,α=2.75◦,nolimiter,k-kLturbulencemodel. 10of19 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.