Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft NhanNguyen∗ NASAAmesResearchCenter,MoffettField,CA94035 EricTing† NASAAmesResearchCenter,MoffettField,CA94035 DanielChaparro‡ StingerGhaffarianTechnologies,Inc.,MoffettField,CA94035 MichaelDrew§ StingerGhaffarianTechnologies,Inc.,MoffettField,CA94035 SeanSwei¶ NASAAmesResearchCenter,MoffettField,CA94035 Asaircraftwingsbecomemuchmoreflexibleduetotheuseoflight-weightcompositesmaterial,adverse aerodynamicsatoff-designperformancecanresultfromchangesinwingshapesduetoaeroelasticdeflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic com- pensation,thebenefitofweightreductionfromtheuseoflight-weightmaterialcouldbeoffsetbylessoptimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technologycanpotentiallyaddressthesetechnicalchallengesforfutureflexiblewingtransports. PAAWtech- nologyleveragesmulti-disciplinarysolutionstomaximizetheaerodynamicperformancepayoffoffutureadap- tivewingdesign,whileaddressingsimultaneouslyoperationalconstraintsthatcanpreventtheoptimalaero- dynamic performance from being realized. These operational constraints include reduced flutter margins, increasedairframeresponsestogustandmaneuverloads,pilothandlingqualities,andridequalities. Allof theseconstraintswhileseekingtheoptimalaerodynamicperformancepresentthemselvesasamulti-objective flightcontrolproblem.Thepaperpresentsamulti-objectiveflightcontrolapproachbasedonadrag-cognizant optimalcontrolmethod.Aconceptofvirtualcontrol,whichwaspreviouslyintroduced,isimplementedtoad- dressthepair-wiseflapmotionconstraintsimposedbytheelastomermaterial.Thismethodisshowntobeable tosatisfytheconstraints.Real-timedragminimizationcontrolisconsideredtobeanimportantconsideration forPAAWtechnology. Dragminimizationcontrolhasmanytechnicalchallengessuchassensingandcontrol. Aninitialoutlineofareal-timedragminimizationcontrolhasalreadybeendevelopedandwillbefurtherin- vestigatedinthefuture.Asimulationstudyofamulti-objectiveflightcontrolforaflightpathanglecommand withaeroelasticmodesuppressionanddragminimizationdemonstratestheeffectivenessoftheproposedso- lution. In-flightstructuralloadsarealsoanimportantconsideration. Aswingflexibilityincreases,maneuver loadandgustloadresponsescanbesignificantandthereforecanposesafetyandflightcontrolconcerns. In thispaper,wewillextendthemulti-objectiveflightcontrolframeworktoincludeloadalleviationcontrol.The studywillfocusinitiallyonmaneuverloadminimizationcontrol,andthensubsequentlywilladdressgustload alleviationcontrolinfuturework. I. Introduction Aircraft are typically designed to maintain efficient structural design for safe load-carrying capacity. Modern engineered materials such as composites have begun to appear in new airframe constructions for weight reduction ∗TechnicalGroupLeadandResearchScientist,AssociateFellowAIAA,IntelligentSystemsDivision,[email protected] †ResearchEngineer,IntelligentSystemsDivision,[email protected] ‡ResearchEngineer,StingerGhaffarianTechnologiesInc.,NASAAmesResearchCenter,[email protected] §ResearchEngineer,StingerGhaffarianTechnologiesInc.,NASAAmesResearchCenter,[email protected] ¶ResearchScientist,IntelligentSystemsDivision,[email protected] 1of32 AmericanInstituteofAeronauticsandAstronautics purposes. A typical modern transport aircraft wing can provide less structural stiffness while maintaining the same load-carrying capacity as an older aluminum wing construction. There is a realization that next-generation aircraft conceptscanbedevelopedtotakeadvantageofthestructuralflexibilityaffordedbymodernengineeredmaterialsto improvetheaerodynamicperformance. Asaircraftwingsbecomemoreflexible,adverseaerodynamicsatoff-designperformancecanresultfromchanges in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is one such potential con- sequence. Withoutmeansforaeroelasticcompensation,thebenefitofweightreductionfromtheuseoflight-weight materialcouldbeoffsetbylessoptimalaerodynamicperformanceatoff-designflightconditions. PerformanceAdap- tiveAeroelasticWing(PAAW)technologycanpotentiallyaddressthesetechnicalchallengesforfutureflexiblewing transports.PAAWtechnologyleveragesmulti-disciplinarysolutionstomaximizetheaerodynamicperformancepayoff offutureadaptivewingdesign,whileaddressingsimultaneouslyoperationalconstraintsthatcanpreventtheoptimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, in- creasedairframeresponsestogustandmaneuverloads,anddegradedpilothandlingqualitiesaswellasridequalities. Alloftheseconstraintswhileseekingtheoptimalaerodynamicperformancepresentthemselvesasamulti-objective flightcontrolproblem. A multi-objective flight control framework has been developed to address these operational constraints and the efficiencygoalsimultaneouslyinordertoarriveatoptimalsolutionsthatcanprovidegoodcompromisebetweenthe efficiencygoalandoperationalconstraints. Theseoptimalsolutionstakeadvantageofamulti-functionalflightcontrol systemcalledtheVariableCamberContinuousTrailingEdgeFlap(VCCTEF)conceptinthisstudy. TheVCCTEFis apossiblecandidatePAAWconceptdevelopedundertheNASAAdvancedAirTransportTechnology(AATT)project. TheVCCTEFconceptwasoriginally developedbyaNASAInnovationFundstudy entitled “ElasticallyShaped Future Air Vehicle Concept” in 2010.1,2 This study examined new concepts that can enable active control of wing aeroelasticitytoachievedragreduction. Theresultsshowedthatahighlyflexiblewingcouldbeelasticallyshapedin- flightbyactivecontrolofwingtwistandverticaldeflectioninordertooptimizethelocalanglesofattacktoimprove the aerodynamic efficiency. The VCCTEF concept provides spanwise load tailoring via a continuous trailing edge formedbymultiplespanwiseflapsectionswhicharejoinedtogetherbyelastomertransitionsectionsasshowninFig. 1. The spanwise load tailoring allows optimal lift distributions to be achieved throughout a given flight envelope, thereby enabling a mission-adaptive performance. A secondary benefit of the continuous trailing edge flap is the potentialnoisereductionduringtake-offandlandingwhentheflapisconfiguredforhigh-liftoperations. Incontrast, conventionalflapswithgapsproduceasignificantnoisesourceathigh-liftconditions. Figure1. GTMwithwithVariableCamberContinuousTrailingEdgeFlap The VCCTEF also provides chordwise pressure shaping via a variable camber flap having three chordwise seg- mentsasshowninFig. 2. Thesethreechordwiseflapsegmentscanbeindividuallycommandedoractuatedinunison whenaflapdeflectioncommandisgiven. Byvaryingthedeflectionsoftheindividualchordwiseflapsegments,any camber surface can be created to achieve a desired aerodynamic performance. In general, a cambered flap is more efficientinproducingliftthanastraightconventionalflapbyachievingthesameliftatalowerdrag. Thechordwise 2of32 AmericanInstituteofAeronauticsandAstronautics pressureshapingmodifiesthepressuredistributiononawingsurfacetoachieveadragreductionortoreducetheshock formationonthewing’suppersurface,thusallowingahighercruisespeedorreducingthetransonicdragrise. Initial study results indicate that the VCCTEF system can offer a potential pay-off in drag reduction that could translate into significant fuel savings. In order to realize the potential benefit of drag reduction by aeroelastic wing shaping control while meeting all other performance requirements and operational constraints, an integrated multi- disciplinaryapproachisdevelopedtoincorporateaflightcontrolsystemdesignintoamodelingenvironmenttomaxi- mizethesystembenefitsofPAAWtechnology. Figure1illustratestheVCCTEFconceptinstalledonaflexiblewing GTM. Figure2. Three-SegmentVariableCamberFlap Figure3. GTMWingConfiguredwiththeVariableCamberContinuousTrailingEdgeFlap Subsequently, Boeing Research & Technology conducted a joint study with NASA in 2012 to develop a system design of the VCCTEF3,4 as shown in Fig. 3. This study was built upon the development of the original VCCTEF systemfortheNASAGenericTransportModel(GTM)whichisessentiallybasedontheBoeing757airframe. The VCCTEF design includes 14 spanwise sections attached to the outer wing and 3 spanwise sections attached to the inner wing, as shown in Fig. 3.4 Each 24-inch section has three chordwise cambered flap segments that can be individually commanded. These cambered flaps are joined to the next section by a flexible and supported material (showninblue)installedwiththesameshapeasthecamberandthusprovidingcontinuousflapsthroughoutthewing span with no drag producing gaps. The VCCTEF design results in the ability to control the wing twist shape along thewingspan,therebyeffectivelyproducingachangetothewingtwisttoestablishthebestlift-to-dragratio(L/D)at anyaircraftgrossweightormissionsegment. Thedesignwingtwistonatraditionalcommercialtransportisdictated by the aeroelastic deflection of a fixed “jig twist” shape applied during manufacturing. The design of this jig twist 3of32 AmericanInstituteofAeronauticsandAstronautics is set for only one cruise configuration, usually for a 50% fuel loading or mid-point on the gross weight schedule. TheVCCTEFoffersdifferentwingtwistsettings,hencedifferentspanwiseloadings,foreachgrossweightcondition and also different settings for climb, cruise and descent. This ability is a major factor in obtaining best L/D flight conditions. Theflexibilityofmoderntransportwingscancauseareductioninafluttermarginwhichcancompromiseaircraft stability.Inaddition,aflexiblewingismoreresponsivetogustormaneuverloadswhichcanleadtostructuralissuesas wellascompromisedrideandhandlingqualities. Inapreviousstudy,aflutteranalysiswasconductedtoexaminethe effectofincreasedflexibilityoftheGTMwing.5 ThebaselinewingstiffnessoftheGTMisreducedby50%. Table 1 shows the flutter speed prediction at 35,000 ft for the stiff wing GTM with the baseline stiffness and the flexible wingGTMwiththereducedstiffness. ThecriticalfluttermodefortheflexibleGTMwingisthefirstanti-symmetric bendingmodewhichfluttersatMach0.938atanaltitudeof35,000ft. SymmetricMode Anti-SymmetricMode StiffWingGTMFlutterMach@35Kft 1.358 1.310 StiffWingGTMFlutterFrequency@35Kft,Hz 4.31 3.87 FlexibleWingGTMFlutterMach@35Kft 0.938 0.925 FlexibleWingGTMFlutterFrequency@35Kft,Hz 6.94 2.85 Table1. FlutterSpeedPrediction TheFAA(FederalAviationAdministration)requiresaircraftcertificationtodemonstrateafluttermarginofatleast 15%abovethedivespeedwhichisnormallydeterminedfromflighttesting. ForamaximumoperatingMach0.8,the divespeedmaybeestimatedtobeabout20%overthemaximumoperatingMach,or0.96. Thus,theflutterclearance forthisnotionalaircraftwouldrequireaminimumflutterspeedofMach1.10at35,000ft. ThestiffwingGTMmeets thisflutterclearancebuttheflexiblewingGTMdoesnot. Toincreasetheflutterspeed,activefluttersuppressionisan option. Currently,activefluttersuppressionhasnotbeencertifiedfortransportaircraft,butthissituationmaychange as the FAA has begun to investigate certification requirements for active flutter suppression control for commercial transportaircraft. Toaddresstheadaptiveaeroelasticwingshapingcontrolobjective, amultidisciplinarydesignanalysisoptimiza- tion(MDAO)frameworkmustbeconsideredbyincorporatingtheaerodynamicperformancepredictiontogetherwith aeroelasticity, flutter suppression control, and maneuver load alleviation control. The objective of the MDAO is to identify a desired wing flexibility that would provide the best overall aerodynamic, structural, aeroelasticity, and control benefits. For example, the wing stiffness could be optimized to maximize the aerodynamic performance at off-design cruise conditions with the least amount of control effort to maintain a flutter margin and maneuver load constraints. TheMDAOwouldincludethecontrolsynthesisdirectlyintheMDAOprocess. Flightcontroldesignofconventionalaircrafthasalongheritagewiththesingle-axisflightcontrolphilosophyfor pitch control by the elevator, roll control by the aileron, and yaw control by the rudder. The VCCTEF represents a newclassofmulti-functionalflightcontrolforfuturePAAWtechnology. Thispotentiallycouldopenupanewflight control paradigm. In the presence of multi-functional flight control surfaces such as the VCCTEF, a conventional flight control task such as a pitch command could be designed in conjunction with other flight control requirements particularlyforflexiblewingaircraft.Theseadditionalrequirementsmayinclude:1)dragminimization,2)aeroelastic modesuppression,3)maneuverloadalleviation,and4)gustloadalleviation.Inaddressingtheserequirements,aflight controlsystemcouldprovideimprovementsinpilothandlingqualitiesandpassengerridecomfort. To address all of these flight control objectives simultaneously can be a challenge in a flight control design. A multi-objective optimization framework can be developed to address the needs for satisfying multiple, competing flightcontrolrequirements. Thispaperwillpresentamulti-objectiveflightcontrolapproachtoaddresssomeofthese multi-disciplinaryinteractionsinaflexiblewingaircraftemployingPAAWtechnology.Amulti-objectiveflightcontrol system has been previously developed to simultaneously gain aerodynamic efficiency and maintain traditional pilot command-trackingtasksforguidanceandnavigation.6,7 Thisstudyextendsthepreviouslydevelopedmulti-objective optimal control design to include gust and maneuver load alleviation objective in conjunction with the aeroelastic modesuppressionanddragminimizationobjectives. 4of32 AmericanInstituteofAeronauticsandAstronautics II. AdaptiveAeroelasticWingShapingControlAnalysis A. DragMinimizationControl Aeroelasticdeflectionscanaffectaircraftaerodynamics. Asanaircraftcruises,fuelisburnedandthewingloadingis reduced,therebycausingtheliftdistribution,hencethewingshape,tochange.Thechangeinthewingshapecancause adragpenaltysincethewingshapenolongerretainsitsoptimaldesignshape. Thisparticularlycanbeanimportant issueforlight-weightairframes. Thus,aircraftwithflexiblewingstructurescanpotentiallybecomelessfuel-efficient ifthereisnomechanismtocompensateforaeroelasticdeflections. Theelasticangleofattackcontributestotheaircraftliftanddrag. Aircraftwingsareusuallydesignedforoptimal aerodynamicsatasinglepointintheflightenvelope. Atypicaldesignpointforatransportaircraftwingisusuallyat themid-pointofatypicalcruiseprofilewherethefuelishalfspent. Asthefuelisburnedoff,thewingshapechanges. The resulting static aeroelastic deflection alters the elastic angle of attack which in turn causes the lift distribution to be non-optimal. The net effect is a drag penalty at off-design flight conditions. In modern transport aircraft with flexiblehigh-aspectratiowings,specialcontroldevicesareusedtore-optimizethewingtwisttocompensateforthe aeroelasticeffectonaerodynamics. Thestaticaeroelasticequationsforbendingandtorsionaregivenby ∂2W ∂2 (cid:18) ∂2W(cid:19) ∂m¯ ρA + EI =l¯cosΛ−ρAgcosΛ+ cosΛsinΛ (1) ∂t2 ∂x2 yy ∂x2 ∂x ∂2Θ ∂ (cid:18) ∂Θ(cid:19) ρI − GJ =m¯cos2Λ−ρAge cos2Λ (2) xx ∂t2 ∂x ∂x cg whereW(x,t) is the bending deflection, Θ(x,t) is the torsional twist, x is the coordinate of the elastic axis inclined from the aircraft pitch axis y¯ by the sweep angle Λ as shown in Fig. 4, l¯(x,t) is the unsteady lift force, m¯(x,t) is thepitchingmomentinthestreamwisedirectionalongtheelasticaxis,ρAgisthewingweightdistribution,e isthe cg offsetofthecenterofmassfromtheelasticaxis(positivewhenthecenterofmassliesforwardoftheelasticcenter), andthemassandelasticpropertiesρA,ρI ,EI andGJarealldefinedwithrespecttotheelasticaxis. xx yy Figure4. SweptWingCoordinates 5of32 AmericanInstituteofAeronauticsandAstronautics Usingtheaerodynamicstriptheory,theunsteadysectionalliftcoefficientc (x,t)isgivenby L l¯ (cid:18) ∂W e cosΛ∂Θ 1 ∂W(cid:19) c c = =c (α+ξ−α )+C(k)c δ+C(k)c ΘcosΛ− sinΛ+ − L q c Lα 0 Lδ Lα ∂x V ∂t V ∂t ∞ ∞ ∞ πc (cid:18) ∂Θ e cosΛ∂2Θ 1 ∂2W(cid:19) m + cosΛ + − (3) 2V ∂t V ∂t2 V ∂t2 ∞ ∞ ∞ whereq isthedynamicpressure,c (x)istheliftcurveslope,α(t)istheangleofattack,ξ(x)isthejigshapetwist, ∞ Lα (cid:104) α (x)isthezero-liftangleofattack,c(x)isthewingchordinthestreamwisedirection,c (x)= c (x) c (x) 0 L L L δ δ1 δ2 (cid:105)(cid:62) (cid:104) (cid:105)(cid:62) ··· cLδn(x) isavectoroftheliftcontrolderivatives,δ(t)= δ1(t) δ2(t) ··· δn (t) isavectorofthe flap deflections, e (x) is the offset of the elastic center from the three-quarter-chord point (positive when the elastic c center lies forward of the three-quarter-chord point), ρ is the air density, andC(k) is Theodorsen’s function of the ∞ reducedfrequencyparameterk= ωc fortheelasticwing. 2V∞ Thestreamwiseunsteadysectionalpitchingmomentcoefficientc (x,t)isgivenby m m¯ e(cid:2) (cid:3) c = =c +C(k)c δ+ c (α+ξ−α )+C(k)c δ m q c2 mac mδ c Lα 0 Lδ ∞ e (cid:18) ∂W e cosΛ∂Θ 1 ∂W(cid:19) πe (cid:18)e cosΛ∂2Θ 1 ∂2W(cid:19) c m m +C(k) c ΘcosΛ− sinΛ+ − − − c Lα ∂x V ∂t V ∂t 2V V ∂t2 V ∂t2 ∞ ∞ ∞ ∞ ∞ πe cosΛ∂Θ πc2cosΛ∂2Θ c − − (4) 2V ∂t 64V2 ∂t2 ∞ ∞ (cid:104) wherec (x)isthepitchingmomentcoefficientabouttheaerodynamiccenter,c (x)= c (x) c (x) ··· mac mδ mδ1 mδ2 (cid:105)(cid:62) c (x) isavectorofthepitchingmomentcontrolderivatives,e(x)istheoffsetoftheaerodynamiccenterfrom m δn theelasticcenter(positivewhentheaerodynamiccenterliesforwardoftheelasticcenter),ande (x)istheoffsetof m theelasticcenterfromthemid-chordpoint(positivewhentheelasticcenterliesforwardofthemid-chordpoint). ThecruiseconditiondictatesthatthetotalliftLontheaircraftisequaltotheweightW oftheaircraft. So, L=W (5) The wing lift typically constitutes at least 90% of the total lift of a typical transport aircraft. For a given design grossweight,airspeed,andaltitude,adesignaircraftliftcoefficientiscomputedas (cid:115) W C∗= (6) L q S ∞ whereSisthewingreferencearea. Forsteadystateaerodynamics,thegeneralizedrigidaerodynamicforcevectoriscomputedas ´ (cid:34) (cid:35) LΦ(cid:62)(x)l dx Q = ´0 r =Q +Q α+Q δ (7) r LΨ(cid:62)(x)m dx 0 α δ 0 r (cid:104) (cid:105)(cid:62) (cid:104) (cid:105)(cid:62) whereΘ(x)= Θ (x) Θ (x) ··· Θ (x) andΨ(x)= Ψ (x) Ψ (x) ··· Ψ (x) arevectorsofthe 1 2 N 1 2 N bendingmodeshapefunctionsandtorsionalmodeshapefunctions,respectively,and (cid:2) (cid:3) l = c (α+ξ−α )+c δ q ccosΛ−ρAgcosΛ r Lα 0 Lδ ∞ + ∂ (cid:110)c +c δ+e(cid:2)c (α+ξ−α )+c δ(cid:3)(cid:111)q c2cosΛsinΛ (8) ∂x mac mδ c Lα 0 Lδ ∞ m =(cid:110)c +c δ+e(cid:2)c (α+ξ−α )+c δ(cid:3)(cid:111)q c2cos2Λ−ρAge cos2Λ (9) r mac mδ c Lα 0 Lδ ∞ cg 6of32 AmericanInstituteofAeronauticsandAstronautics Thegeneralizeddisplacementisthenexpressedas (cid:18) K (cid:19)−1 a q= K+q (Q +Q α+Q δ) (10) ∞q 0 α δ ∞ (cid:104) whereK isthestructuralstiffnessmatrix,Kaistheaerodynamicstiffnessmatrix,andq= w1 w2 ··· wN θ1 (cid:105)(cid:62) θ ··· θ isavectorofthegeneralizedcoordinateswhichformthedisplacementsolutions 2 N N W(x)=∑Φ (x)w (11) i i i=1 N Θ(x)=∑Ψ (x)θ (12) i i i=1 Sincethegeneralizedrigidaerodynamicforceisafunctionoftheangleofattackα andflapdeflectionvectorδ, thewingbendingandtorsionaldeflectionsarealsofunctionsofα andδ. Thisiswrittenby W(x)=W (x)+W (x)α+W (x)δ (13) 0 α δ Θ(x)=Θ (x)+Θ (x)α+Θ (x)δ (14) 0 α δ The local aeroelastic angle of attack on a swept wing is influenced by the bending and torsional deflections ac- cordingto cL ∂ α =α+ξ−α + δ δ+[Θ (x)+Θ (x)α+Θ (x)δ]cosΛ− [W (x)+W(x)α+W (x)δ]sinΛ (15) c 0 c 0 α δ ∂x 0 δ Lα Atthedesigncondition,theoptimalliftdistributioncanbeachievedbyproperlyselectingthejigtwistξ(x). This optimalliftdistributionisexpressedas 1 Γ= V cc (16) ∞ L 2 Theaerodynamicdragcoefficientatthedesignconditionisexpressedinaparabolicdragpolaras C∗2 C∗ =C∗ + L (17) D D0 πARε∗ whereC∗ isparasiticdragwhichincludestheskinfrictiondragandtransonicwavedrag,ARisthewingaspectratio, and0<Dε0∗<1isthespanefficiencyfactor. Thejigtwistreferstothegeometrictwistthatisbuiltintothewingconstructionprocessduringmanufacturing. A jig-shapewingisgenerallyofaplanarplanform. Asthewingdeflectsunderloadingatthedesigncruisecondition,the jigtwistwouldcompensateforthelocalaeroelasticangleofattacktoachievetheoptimalliftdistribution. Whenthe aircraftoperatesatoff-designflightconditions,thedesignliftdistributioncannolongerbemaintained. Consequently, alossinthespanefficiencyfactorresultsandcausesanincreaseintheinduceddrag. Atanoff-designliftcoefficient C >C∗,anincrementalliftcoefficient∆C isrequiredtotrimtheaircraftatanincrementalangleofattack∆α,then L L L thechangetheliftdistributionwithoutaeroelasticcompensationbywingshapingcontrolisgivenby (cid:20) (cid:21) 1 ∂W (x) ∆Γ= V cc ∆α Θ (x)cosΛ− α sinΛ (18) 2 ∞ Lα α ∂x Thechangeintheliftdistributionresultsinareductioninthespanefficiencyfactorwhichaffectstheinduceddrag. Theaerodynamicdragcanbeexpressedas (C∗+∆C )2 C =C∗ +∆C + L L (19) D D0 D0 πARε whereε <ε∗fornon-optimalliftdistribution. The parasitic drag usually is a convex function of the angle of attack. So, if the parasitic dragC∗ at the design D0 conditionisaminimum,then∆C >0. D0 7of32 AmericanInstituteofAeronauticsandAstronautics Withaeroelasticcompensation,theliftdistributioncanbeoptimizedwithapositiveflapdeflectionδ toachievethe sameincrementalliftcoefficient∆C withareducedincrementalangleofattack∆α∗. Thisoptimizedliftdistribution L isexpressedas (cid:20) (cid:21) (cid:20) (cid:21) 1 ∂W (x) 1 1 ∂W (x) ∆Γ∗= V cc ∆α∗ Θ (x)cosΛ− α sinΛ + V cc δ+ V cc δ Θ (x)cosΛ− δ sinΛ (20) 2 ∞ Lα α ∂x 2 ∞ Lδ 2 ∞ Lδ δ ∂x Assuming the optimal span efficiency factor ε∗ is achieved, then the aerodynamic drag due to aeroelastic wing shapingcontrolisexpressedas (C∗+∆C )2 C =C∗ +∆C∗ + L L (21) D D0 D0 πARε∗ Adragreductionisthenobtainedas (cid:18)1 1 (cid:19)(C∗+∆C )2 ∆C =∆C −∆C∗ + − L L (22) D D0 D0 ε ε∗ πAR Itcanbeseenthatthedragreductioncomesfromboththeinduceddragandtheparasiticdragsince∆C∗ <∆C because∆α∗<∆α.Thus,aeroelasticwingshapingcontrolcanofferapotentialdragreductionbenefitforfuDe0lsavinDg0s intransportaircraft. Ingeneral, thedragminimizationcontrolcanbesolvedbyacoupledaerodynamic-structuraloptimization. This optimization can be performed off-line to establish a schedule of flap settings based on the aircraft gross weight and flight conditions. Aerodynamic-structural optimization studies as well as a wind tunnel experiment have been conductedtoassessthedragreductionbenefitoftheVCCTEF.8–10Thesestudiesshowadragreductionbenefitranging from 1% to 6%. Figure 5 shows a typical solution of the aerodynamic-structural optimization of the spanwise lift distributionoftheflexiblewingGTMwiththeVCCTEFatanoff-designcruisecondition.8 Figure5. OptimizedSpanwiseLiftDistributionofFlexibleWingGTMat30%OverDesignCL Inpractice,variancesintheaircraftgrossweightandflightconditionscanresultindifferentperformancecharac- teristicsthantheoptimalsolutionsobtainedfromtheoff-lineaerodynamic-structuraloptimization.Thus,oneapproach in multi-objective flight control is to incorporate a real-time drag minimization control to compensate for operating variances. Thisreal-timeminimizationcontrolstrategyhasbeendevelopedrecentlyandwillbevalidatedinawind tunnel experiment.11 The real-time drag minimization would require real-time drag and aeroelastic deflection mea- surements for estimating the aerodynamic characteristics of the flexible wing. This information is then used for the on-lineoptimization. 8of32 AmericanInstituteofAeronauticsandAstronautics B. LoadAlleviationControl As aircraft wings become more flexible, maneuver and gust loads can result in potentially large load excursions. Dynamic responses due to a rapid flight maneuver such as a sudden pull-up or sharp roll can cause wing bending momentstoincreaserapidly.Asaresult,forhighaspectratioflexiblewingaircraft,flightmaneuversmustbeexecuted in a manner so as to maintain flight loads to within the allowable limits. Multi-functional distributed flight control surfacessuchastheVCCTEFcanbedeployedinthesesituationstoachievetherequiredmaneuverwhilereducingthe maneuverloads. Themaneuverloadalleviationthuscouldbeincorporatedinthedesignofaflexiblewingtoreduce thewingstructuralweight. As an example, consider the Truss-Braced Wing (TBW) aircraft equipped with a VCCTEF system as shown in Fig. 6. Thereare10flapsections,eachwithtwochordwisecamberedsegments.12 Figure6. Truss-BracedWingAircraftwithVCCTEF A2.5-gpull-upmaneuveriscommanded.Figure7showstheflapwisewingbendingmomentwhichisamaximum at the truss juncture.12 The truss is designed to reduce the wing root bending moment as can be seen from the plot andeffectivelytransfersthebendingmomenttothetrussjuncture. WithouttheVCCTEFdeployment,themaximum bendingmomentoccursatthetrussjuncture. TheVCCTEFisthendeployedtoalleviatethewingbendingmomentat thetrussjuncture. Theoptimalloadalleviationoccurswhenboththewingrootbendingmomentandbendingmoment atthetrussjunctureareequal. ByoptimizationoftheVCCTEF,thewingbendingmomentisreducedby37%.12 Figure7. WingBendingMomentfor2.5-gPull-UpManeuver Figure8showstheliftdistributionactingonthewingwithandwithouttheVCCTEFdeployment.12 Toreducethe wingbendingmoment,theVCCTEFincreasesthewingliftinboardanddecreasesthewingliftoutboardofthetruss juncture. TheVCCTEFeffectivelyre-optimizesthespanwiseliftdistributionfromanearlyellipticalliftdistribution 9of32 AmericanInstituteofAeronauticsandAstronautics foroptimalaerodynamicperformanceatcruisetoaliftdistributioncorrespondingtoaminimumwingbendingmo- ment. Thus,itcanbeseenthatdragminimizationcontrolandmaneuverloadalleviationcontrolproduceanopposing effect. Therefore,maneuverloadalleviationcontrolcannotbeachievedsimultaneouslywithdragminimizationcon- trol.Inmulti-objectivecontrol,thisopposingeffectiscreatedbyconflictingobjectives.Thereexistmultiplecandidate optimalcontrolsolutionsthatlieonaParetooptimalsurfacethatprovidesasetofcompromisedsolutionsofamulti- objectiveoptimizationproblem. Themulti-objectiveoptimalcontrolthusprovidesatrade-offactiontominimizeone objectivewhilenotsignificantlydegradingtheotherobjective. Figure8. WingLiftDistributionforLoadAlleviationControlusingVCCTEF Fortheunsteadyliftandpitchingmomentexpressionsintheprevioussection,wecanexpressthemingeneralas ∂Θ ∂2Θ ∂W ∂W ∂2W l=l +l +l Θ+l +l +l +l +l +l δ+l δ˙+l δ¨ (23) 0 α Θ Θt ∂t Θtt ∂t2 Wx ∂x Wt ∂t Wtt ∂t2 δ δ˙ δ¨ ∂Θ ∂2Θ ∂W ∂W ∂2W m=m +m α+m Θ+m +m +m +m +m +m δ+m δ˙+m δ¨ (24) 0 α Θ Θt ∂t Θtt ∂t2 Wx ∂x Wt ∂t Wtt ∂t2 δ δ˙ δ¨ wherel(x,t)andm(x,t)aretheexpressionsintherighthandsidesofEqs. (1)and(2). Theweakformexpressionoftheaeroelasticequationsusingafinite-elementmethodorotherequivalentdiscretiza- tionisgivenby Mq¨+Kq=Q +Q α+Q q+Q q˙+Q q¨+Q δ+Q δ˙+Q δ¨ (25) 0 α q q˙ q¨ δ δ˙ δ¨ where M is the structural mass matrix, K is the complex stiffness matrix which accounts for structural damping, Q isthe generalizedforce, andthe subscripts denotethe partialderivatives ofthe generalizedforcewith respectto the subscriptvariables. Thewingflapwisebendingmomentandtorsionalpitchingmomentarecomputedas M =GJ∂Θ =GJ∑N Ψ(cid:48)(x)θ x ∂x i i i=1 (cid:104) (cid:105) (cid:16) (cid:17) =GJΨ(cid:48)(x) 0 I K−1 −Mq¨+Q0+Qαα+Qqq+Qq˙q˙+Qq¨q¨+Qδδ+Qδ˙δ˙+Qδ¨δ¨ (26) M =EI ∂2W =EI ∑N Φ(cid:48)(cid:48)(x)w y yy ∂x2 yy i i i=1 (cid:104) (cid:105) (cid:16) (cid:17) =EIΦ(cid:48)(cid:48)(x) I 0 K−1 −Mq¨+Qr+Qqq+Qq˙q˙+Qq¨q¨+Qδδ+Qδ˙δ˙+Qδ¨δ¨ (27) Thebendingmomentatacriticallocationonthewingcanbeevaluatedfromtheexpressionaboveandexpressed ingeneralas M =M +M α+M q+M q˙+M q¨+M δ+M δ˙+M δ¨ (28) c 0 α q q˙ q¨ δ q˙ q¨ 10of32 AmericanInstituteofAeronauticsandAstronautics