ebook img

NASA Technical Reports Server (NTRS) 20170000745: The Ice-Covered Lakes Hypothesis in Gale Crater: Implications for the Early Hesperian Climate PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20170000745: The Ice-Covered Lakes Hypothesis in Gale Crater: Implications for the Early Hesperian Climate

THE ICE-COVERED LAKES HYPOTHESIS IN GALE CRATER: IMPLICA- TIONS FOR THE EARLY HESPERIAN CLIMATE. AlexandreM.Kling,NasaAmes/USRA,RobertM.Haberle,ChristopherP.McKay,ThomasF.Bristow,Nasa AmesResearchCenter,FrancesRivera-Hernandez,UCDavis,USA. Introduction 10,000 years if not resupplied by precipitation. Simi- larly,forsurfacepressurevaluesbelow100mbar,which Recent geological discoveries from the Mars Science isourpreferredenvironmentalcontext,anytemperature Laboratory(MSL),includingstreamandlakesedimen- T >247K willalsoresultintheevaporationofthelake tarydeposits,provideevidencethatGalecratermayhave in less than 10,000 years. The calculation is conser- intermittentlyhostedafluvio-lacustineenvironmentdur- vative as we assumed a high humidity content of the ing the Hesperian, with individual lakes lasting for a atmosphere(RH=60%)andnoconvectiveevaporation. periodoftenstohundredsofthousandsofyears[1]. Es- timatesoftheCO2contentoftheatmosphereatthetime At273K,weestimatedthatEarth-likerainfallrates the Gale sediments formedare far less than neededby in the order of 0.1-1 m/yr are required to resupply anyclimatemodeltowarmearlyMars[2],giventhelow the lake, depending on the average wind speed (not solarenergyinputavailableatMars3.5Gya. We have shown). The absence of geological evidence for the thereforeexploredthepossibilitythatthelakesinGale overall weathering that would be associated with such duringtheHesperianwereperenniallycoveredwithice rainfallratesduringtheHesperianmotivatedtheinves- usingtheAntarcticlakesasanalogs. tigationofa"coldandwet"scenarioforGale. TheAntarcticlakesanalogs Environmentalrequirementforliquidlakes TwodifferenttypesofAntarcticlakesmaybeadequate We estimated the lifespans of individual lakes for dif- analogsforancientGale: the DryValleysandthe lake ferentpressuresandtemperaturesofinterest,including Untersee. Bothlakesexperienceannualmeantempera- temperatures which are below the freezing point and ture below freezing,respectively -20o and -10.6o [4], forthoseanicylakewouldsublimate. Thelakesareas- [5] and still maintain liquid water underneath the ice sumedtobe100mdeep,[1]andthelifespansarederived cover. Theareaof a perenniallycoveredlakeis setby fromtheevaporationrates. [3] thebalanceofannualmeltwaterinputandablationfrom the surface of the ice cover. The thickness of the ice coverissetbytheenergyandmassbalancesoftheice 3 bar Time to evaporate a 100 m deep lake, RH= 60 %, u=0 m/s 1e+07 yr cover,massbeingremovedbyablationatthesurfaceand addedtothebottombyfreezing. [4]FortheDryValleys, 1 bar 1e+06 yr 1e+06 yr tghleacmiaelltawndatedrriivsepnrobvyidtehdebdyegsreeaesodnaaylsmaeblotvoeffareneezairnbgy. 500 mbar ForthelakeUntersee,themeltwaterisprovidedbysub- 100000 yr aqueousmeltingofa glacialdamflowingintothe lake Pressure100 mbar 10000 yr athnedbdortivtoemnboyftthheesicuenlcigohvterw[hMicchKapyeneettarla.,teinsapnredp.w].arWmes 50 mbar 100000 yr 1000 yr decided to apply the lake Untersee model for Gale as itdoesnotrequireliquidwatertoflowatthesurfaceat 10000 yr 1000 yr any time of the year and computed ice thicknesses of 100 yr 100 yr perennially-coveredlakesatGalecraterasafunctionof 10 mbar Water the mean annual temperature and the ice transparency boiling 6 mba2r20 225 230 235 240 245 250 255 260 265 270 275 280 285 290 10 yr [4],[McKayetal.,inprep.] Lake surface temperature [K] Time [Earth Years] Ourbestestimatefortheannualmeansurfacetem- peratureatGale3.5Gyais 230K.Thisvaluewasderived Figure1: Individual lake’slifetimeasafunctionofpressure from the surface energy balance assuming present-day andtemperature obliquityandasimpleparametrizationforthedownward IRradiationwasusedto mimicagreenhousewarming Figure1showsthatevenformulti-baratmospheres, effect. The downwardIR flux was arbitrarychosen as a liquid lake (T > 273K) will evaporate in less than 15%ofthepeaknoontimeinsulation(present-dayvalue REFERENCES Mean thickness (contours) and half thickness variation (shades) of the ice cover [m] Possibly,iftheiceisthinenoughtoletsedimentspene- P=100 m2.0bar, RH= 60 %, u=10 m/s, fgeo= 0.04 W/m2, albd= 0.5, 0% dust cover, f below 750nm =40%, Fwater= 1.4D5Z W= /12m (m2ax(Z)-min(Z)) [m] tratetheice,geologicalfeaturesassociatedwithaqueous 1.45 m 11..89 1.5m 1.35 m environmentsarestillpossibleinaperennially-covered 1.7 1.25 m lakeonacold,yetwetplanet. Extinction path length [m] 01111111........90123456 50m 40m 30m 20m 10m9m8m7m6m5m4.5m4m3.5m3m2.5m 2m 000011......678901555555 mmmmmm p[tdhh7reae]evp,teaoIeafbsdnismosteasotnas,mbjcbeoeeoevreuoinldglfidmeeocenoebircltrsoacteeagtosriiinvonocgenafgdlloloaaamffcptetieaaGharstleuaatftlrieceeecaosse[t,l-1udoac]rrto.ecfvslOGriesmonarusel-actedgthweolcaeiaeandkgnnggelvaewibmcrseoio,oonwrdinkmnheethilneecaniirhcss-t 00..78 0.55 m beendonetoinvestigatethesedimentationratesandpro- 0.6 0.45 m cesses for ice-coveredlakes (particles melting through ( 1.092.5 1c5m /yr)( 3.32 2c0m /yr)( 5.72 2c5m /yr)( 9.62 3c0m /yr)( 15.283 c5m /yr)( 25.244 c0m /yr)( 40.234 c5m /yr)( 62.285 c0m /yr)( 96.225 c5m /yr) 0.35 m the ice, ice cracks, subglacial flow...) to assess if they Annual mean temperature [K] and (Avg. sublimation rate [cm\Earth yr]) could possibly be consistent with the sedimentary de- Figure 2: Ice thickness as a function of the extinction positsobservedatGale[Rivera-Hernandezetal.,inprep]. pathlengthandmeanannualsurfacetemperature(contours). Finally,themainadvantageoftheice-coveredlake Thicknessvariationisshowninshades modeland the main reason we pursuedit, is thatit re- laxestherequirementforalong-livedactivehydrologi- calcycleinvolvingrainfallandrunoff,whichnoclimate iscloseto4%[6]). modelisabletoproducegivenknownconstraintsonthe earlyMarsenvironment. Results Figure 2 shows that at 230K, the ice thickness ranges References from 20-30 meters depending on the ablation rate and theicetransparencyandwouldlikelyinhibitsediments [1] J.P.Grotzingeretal,Deposition,exhumation,andpa- from entering the lake. Also, for ice covers thicker leoclimateofanancientlakedeposit, Galecrater,Mars than10m,theseasonalvariationoftheice thicknessis 2015: Science,350 negligible,intheorderof+/-afewcentimetersto10’s of centimeters. Thus, a first conclusion is that the ice [2] T.F.Bristowetal,ConstrainingHesperianPCO2from mustnotbetoocold. insitumineralogicalanalysisatGalecratersubmitted: We found that for a mean annual temperature of Geology 245K, the ice thickness ranges from 3-10 meters, de- pendingontheicetransparency. Thesevaluesarecom- [3] E.Adamsetal,EvaporationfromHeatedWaterBodies: parabletotherangeofthosefortheAntarcticlakes(3-6 PredictingCombinedForcesplusFreeConvection1990: WaterResourcesResearch,26(3,425-435) m),andarenotimplausible. Andtheyarenotsothick thatsedimentscannotpenetratetheice. [4] C.P.Mckayetal,Thicknessoficeonperenniallyfrozen lakes1985: Nature,3133(561-562) Conclusionandon-goingwork [5] D. T. Andersen, Climate conditions at perennially- covered lake Untersee, East Antarctica, 2015: JAMS Raising the mean annual temperature to 245K is chal- 54(1393-1412) lenging, but not quite as hard as reaching the freezing point. The binary "warm and wet" versus "cold and [6] C.M.DundasandS.Byrne,ModelingSublimationof dry"scenariosforearlyMarsmayhavecomefromthe iceExposedbyNewimpactsintheMartianMid-latitudes misconception that a liquid lake will freeze solid over 2010Icarus206(716-728) timeifthesurfacetemperaturesarealwayssignificantly [7] A. G. Faire´netal, AcoldhydrologicalsysteminGale bellowfreezing. Thisissimplynottrueasthesublima- crater,Mars2014: PlanetaryandSpaceScience93- tionoftheicecoverandthesunlightpenetratingtheice 37(101-118) willstabilizethesolid/liquidinterfaceatacertaindepth.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.