ebook img

NASA Technical Reports Server (NTRS) 20170000649: Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects PDF

0.74 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20170000649: Extratropical Weather Systems on Mars: Radiatively-Active Water Ice Effects

EXTRATROPICALWEATHERSYSTEMSONMARS:RADIATIVELY-ACTIVE WATER ICE CLOUD EFFECTS. J.L.Hollingsworth,M.A.Kahre,R.M.Haberle,SpaceScienceandAstrobiologyDivision,PlanetarySystems Branch,NASAAmesResearchCenter,MoffettFieldCA94035USA([email protected]),R.A.Urata, BAERInstitute/NASAAmesResearchCenter,MoffettFieldCA94035USA,F.Montmessin,LaboratoireAtmosphe`res Mileux,ObservationsSpatiales(LATMOS),78280GuyancourtFR. Introduction:Extratropical,large-scaleweatherdis- meantemperaturecontrasts(i.e.,“baroclinicity”). Data turbances,namelytransient,synoptic-period,baroclinic- collected during the Viking era and observations from barotropiceddies–or–low-(high-)pressurecyclones boththeMarsGlobalSurveyor(MGS)andMarsRecon- (anticyclones), are components fundamental to global naissanceOrbiter(MRO)indicatethatsuchstrongbaro- circulation patterns for rapidly rotating, differentially clinicitysupportsvigorous,large-scaleeastwardtravel- heated, shallow atmospheres such as Earth and Mars. ing weather systems [Banfieldetal., 2004; Barnesetal., Such“wave-like”disturbancesthatarise via(geophys- 1993]. A good example of traveling weather systems, ical) fluid shear instability develop, mature and decay, frontalwaveactivityandsequestereddustactivityfrom andtravelwest-to-eastinthemiddleandhighlatitudes MGS/MOCimageanalysesisprovidedinFigure1(cf. withinterrestrial-likeplanetaryatmospheres. Thesedis- Wangetal. [2005]). turbancesserveascriticalagentsinthetransportofheat Utilizing an upgraded and evolving version of the and momentum between low and high latitudes of the NASA Ames Research Center (ARC) Mars globalcli- planet. Moreover,theytransporttracespecieswithinthe mate model, investigated here are key dynamical and atmosphere(e.g.,watervapor/ice,otheraerosols(dust), physicalaspectsofsimulatednorthernhemisphere(NH) chemicalspecies,etc). large-scaleextratropicalweathersystems,withandwith- outradiatively-activewatericeclouds. Mars Climate Model: Over the past 5+ years, several major improvements have been made to the NASA ARC Mars global climate model (Mars GCM) to enhance its capabilities and to standardized its in- frastructure. Physicsimprovementsincludeanupdated radiation code based on a generalized two-stream ap- proximation for radiative transfer in vertically inho- mogeneousmultiple-scatteringatmospheres[Toonetal., 1989],togetherwithacorrelated-kmethodforcalculat- inggaseousopacities[LacisandOinas, 1991]. Inappli- cationshere,theradiationcoderespondstoaprescribed dust distribution based on an opacity climatology de- rivedfromMGSThermalEmissionSpectrometer(TES) 9-µmopacitymeasurementsduringMY24. Thevertical distributionvarieswithseasonandlatitude. A complex cloud microphysics package has been includedbasedontheworkofMontmessinetal.[2002]; Montmessinetal.[2004]. Thismicrophysicsmoduleas- sumesalog-normalparticlesizedistributionwhosefirst twomomentsarecarriedastracers,andwhichincludes the nucleation, growth and sedimentation of ice crys- tals [Montmessinetal., 2004]. The cloud microphysics package includes a time-splitting (sub-stepping) prog- Figure 1: MGS/MOC hemispheric image analyses [Wang et nosticalgorithm,anditinteractswithatransporteddust al., 2005] of large-scale synoptic extratropical weather sys- tracer whose surface source is adjusted to maintain an temsduringNHautumnandlatewinterwithsequestereddust atmospheric column abundance as observed by TES. activitywithincyclones/frontalwaves. Aerosolsofdustandwaterice,inadditiontowaterva- por, can be separately or collectively either radiatively inert (default case) or radiatively active (in combina- Betweenearlyautumnthroughearlyspring,middle tion). Otherimprovementsintheclimatemodelinclude andhighlatitudesonMarsexhibitstrongequator-to-pole implementing a new planetary boundary layer (PBL) Mars’NorthernHemisphereTraveling,SynopticWeatherSystems&Water-IceClouds model(i.e.,alevel-2MellorandYamadaapproach[Mel- nucleationcontactparameter,m). lor and Yamada, 1982]; incorporation of a sub-surface Figure2showsmeanzonalcrosssectionofthezonal landmodel;utilizationofahighlymodularizedfinitedif- wind (color) and temperature (white dashed contours) ferencedynamicalcore(basedonanArakawa“C”-grid) during northern early spring (Ls = 30◦) from the two [Suarez and Takacs, 1995] that incorporates improved simulations. IntheRACcase(toppanel),thereisstrong tracer transport [Hourdin and Armengaud, 1995]. This baroclinicity within middle and high latitudes of both latest version has been termed NASA ARC Mars GCM, northernandsouthernhemispheres,andstrongwesterly version2.3 (gcm2.3). Please see Kahreetal. [2017]for jetsareindicatedwithmaximumspeedsover110ms−1. furtherdetailsonthisparticularrelease. Innorthernmidlatitudes,themeanzonalisothermsshow Results: We focushereontwomulti-annualwater littletiltwithinthefirstcouplescaleheights(i.e.,theyare cycle simulations: (i) one where water-ice clouds are radiativelyactive(“RAC”case);and,(ii)onewhereice clouds are radiatively inert (“nonRAC” case). These Daily Ave Surface Pressure two cases are subsets detailed in Kahreetal. [2017] to Arcadia assess attributes of the simulated water cycle together RAC with comparisons with recent MGS and MRO obser- 10.0 Baseline mbar) 9.0 Pressure ( 8.0 7.0 0 60 120 180 240 300 360 Ls (deg) Figure3: DailyaveragedsurfacepressureintheArcadiare- gionasafunctionofLsfortheRACcase(redcurve)andthe baseline(nonRAC)case(blackcurve). moreverticallyoriented)thaninthenonRACcase. This characteristic holds also at other seasons. Differences (i.e.,RAC–nonRAC)betweenthesetwocorresponding fields(bottompanel)showthatradiatively-activewater icecloudsprofoundlyaffecttheseasonalmeanclimate. Thereis a bulkwarmingofthe atmospherein thesub- tropicsaloft,acooling(warming)oftheatmospherein lower (upper) regions at high latitudes, and, increases inthemeanpole-to-equatortemperaturecontrasts(i.e., stronger mean “baroclinicity”) resulting in augmented zonaljets. Suchthermalandmeancirculationchanges have also been found in the studies by Haberle et al. Figure 2: Time and zonally averaged temperature (K) and [2011],Madeleineetal. [2014]andNavarroetal. [2014]. zonal wind(ms−1)duringearlynorthernspring(Ls =30◦) Themeanoverturning(i.e.,“Hadley”)circulationisalso fortheRACcase(a)andthecorresponding differencefields enhanced in the RAC case. These changes are signif- (i.e., RAC–nonRAC) (b) from the water cycle simulations icant in the middle and high latitudes. Comparisons conducted with the ARC Mars GCM. The contour interval withMGS/TESandMRO/MCSmeasurementsindicate is 10 K and 2 K in panels (a) and (b), respectively, and in betteragreementbetweenthemodel’ssimulatedclimate (b)negativevaluesaredashed. Colorshadingcorrespondsto comparedtoobservations. zonalwind. The increased baroclinicity is robust and signifi- cantly affects the intensity and seasonality of synoptic weather systems. Figure 3 shows time series of the vations, and further, several sensitivity experiments to daily-averaged surface pressure in the northern hemi- the assumed cloud microphysicalparameters (e.g., the sphere(NH)Arcadiaregion,ageographicregionprevi- Mars’NorthernHemisphereTraveling,SynopticWeatherSystems&Water-IceClouds ouslyfoundto indicateenhancedsynoptic-periodtran- ing heat, momentum and other scalar quantities (e.g., sientwaveactivity(i.e.,a “stormzone”)[Hollingsworth atmospherictracers)withinmiddlelatitudes. etal.,1996;Hollingsworthetal.,1997]. Itcanbeseenthat thereis enhancedsynopticperiodvariability(i.e., day- to-dayweather)inbothamplitudeandintra-seasonality 90 Stat Geopot Height Deviat (m), p = 3.0 mb : Run 14.110M, Ls = 190o inthesimulationwithradiatively-activewatericeclouds 80 -50 (redcurve). Similarcharacteristicsarefoundintheother 70 350450 50 stormzoneregionsoftheNH.Inaddition,theSHextra- 60 tiartlyos,oppiacapsrptaieclsauorlsairntlodyibcienatitenhseeennwhsaeintsitcveeerdntoshymenmoopidstepilch-(ephreoerr.iiozTdohnvitsaarlri)earsbeuisll--t Latitude (deg)23450000 -50 21550500 -150 50 -1-52050 olution. High-resolution(×2)simulationsfortheRAC 10 -50 and baseline cases indicate very similar transient eddy 0 amplitudesandseasonality. 90-180 -120 Stat- 6T0emp Deviat (K), Lpo n=g i3tu.0d0e m (dbe g:) Run 14.110M, L6s 0= 190o 120 180 AsindicatedinFigure4,synopticperiodvariability 80 is significantly enhanced in the RAC case. Transient- 70 etprdaodrpeyidcpstooaltrehewevanerodrynhRmeAautCcflhcuaxesneesh(awin.eict.he,dianfianthcetthoNerHoRfAathnCrdeceSaHsstereocxnotgmrae--r Latitude (deg)34560000 2 -2 2 -2 2 at least). As such, the baroclinic/barotropic eastward 20 10 -2 2 -2 0 0.01 Trans vT Covar (K ms-1) : Run 14.110M, Ls = 0230o 6.6 8900-1809 3-120 -3Stat Mer-i6d0 Wind Deviat (m Lso-1n)g,i tpu0d =e (3d.e0g )mb : Run 14.1106M0, Ls = 190o 120 180 70 9 -2 5.6 60 0.10 4.6 Latitude (deg)4500 -9 3 3.6 30 -9 -3 6 2.6 1200 -3 -9 -33 39 -33 9 -9 0 1.00 1.6 -180 -120 -60 Longitu0de (deg) 60 120 180 -14-6 0.6 Figure 5: NH longitude-latitude cross sections during early -10-2 1011482226 2 northern autumn (Ls = 190◦) at 3.0 mbar of stationary (a) 10.00 2 6 -0.4 geopotentialheight(m);(b)temperature(K);and,(c)merid- -90 -70 -50 -30 L-a1t0itude (d1e0g) 30 50 70 90 ionalwind(ms−1)fromtheMarsGCMwithRAC.Theabove Trans vT Covar (K ms-1) : Run 14.111M, L = 030o s fieldsareshowninwhitecontours(negativedashed) andthe 0.01 6.6 -2 colorshadingisthesmoothedtopographyattheresolutionof 5.6 theGCM. 4.6 0.10 3.6 Considerationofthestationary,forcedRossbymodes 2.6 withintheRACcaseduringearlyNHautumn(Ls=190◦) 2 in termsofa longitude-latitudesectionatthe 3.0mbar 1.00 1.6 level are presented in Figure 5. Within the northern hemisphere,thisfigurepresentsthestationarygeopoten- -6 0.6 -2 2 101418 tialheight(toppanel);temperature(middlepanel);and 10.00 6 -0.4 meridionalwind(bottompanel). Inallthreemeanzonal -90 -70 -50 -30 -10 10 30 50 70 90 Latitude (deg) departure fields, a clear zonal wavenumber s = 2 sta- tionarypatternisevident. ThisisgenerallyarobustNH Figure4:Transienteddypolewardheatflux(Kms−1)forthe pattern,andisfurtherdiscussedinHaberleetal. [2017] RAC case (top panel) and the nonRAC case (bottom panel) forotherseasons,andcomparisonswithMRO/MARCI duringearlynorthernspring(Ls=30◦). Thecontourinterval UV water-ice cloud observations. What is apparentin inbothpanelsis2Kms−1.Positivevaluesaresolid,negative Figure 5 is a strong correlation of the forced Rossby- valuesaredashed. wave pattern with the large-scale orography: namely, highreliefcollocatedwithhighgeopotential;lowrelief collocatedwithlowgeopotential—aclassicsignatureof traveling waves are much more efficient in transport- forcedRossbywaveresponseswithinabaroclinicatmo- Mars’NorthernHemisphereTraveling,SynopticWeatherSystems&Water-IceClouds sphere[HoskinsandKaroly,1981]. InthenonRACcase (not shown) the forced Rossby wave pattern presents 90 Trans Geopot Ht RMS Deviat (m), p = 3.0 mb : Run 14.110M, Ls = 190o a more zonal wavenumber s = 1 stationary pattern in 80 18 middleandhighlatitudes,andoneofmuchweakeram- 70 18 60 plituTdheeirnetihsesthigrneeifificealndtsicnotnerspidlaeyredb.etween the forced Latitude (deg)4500 12 18 12 Rossbystationarymodesandthetravelingsynopticpe- 30 riodtransientwaves. In particular,the geographic“lo- 20 6 6 10 calization”ofmaximumband-passtransientvarianceis 0 h6igfohrlythtieedRtAoCthMefaorrsceGdCRMosssibmyumlaotdioens.dSuhroinwgneianrFlyigNurHe 90-180 -120 Trans T-e60mp RMS Deviat (LKo)n,g pitu 0=de 3 (.d0e gm)b : Run 14.110M60, Ls = 190o 120 180 80 autumn(Ls=190◦)intermsofalongitude-latitudesec- 70 4 4 tionatthe3.0mbararesimilarfieldspresentedinFigure 60 6 5sdileyenepttafgonereotlph);oetabenandnti,dam-lpheaersiisgdfihiolttn(eatrolepdwp(iina.end.e,(l2b)–;o1ttet0omdmpaeypr)aaRtnueMrle)S.(mtrTaihdne-- Latitude (deg)345000 2 4 42 20 amplitude and location of the transient RMS maxima 10 arevastlydifferentintheRACcaseversusthenonRAC 0 cteamsep(enraottusrheovwanri)a:ntcheerjuesitsnloocrtahleizaasttioonftohfepTehakartsriasnhsiigehn-t 8900-1806810 -120 Trans Me-6ri0d RMS Deviat1 (m2L osn-1g)i,tu p0d e= 8( d3e.g06) mb : Run 14.1106M0, Ls = 1940o 120 4 180 landsintheRACcasewhereasamorezonallyuniform 70 12 12 andweakerpatternoccursinthenonRACcase. Further, 60 10 12 tihneammeprliidtuiodneaalnwdingdeotgraranpsiheinctalfilyelldoscaalriezemduicnhthsteroRnAgeCr Latitude (deg)4500 8 68 4 1086 casecomparedtothenonRACcase(notshown). 30 4 2 20 2 4 Such transient synoptic period storm zone patterns 10 2 2 varybetweentheRACandthenonRACcasesinsubtle 0 2 -180 -120 -60 Longitu0de (deg) 60 120 180 yet nontrivial ways, and the maxima and geographic localization of transient variability occur differently at Figure 6: NH longitude-latitude cross sections during early thesameseasonswithintheannualcycle. northern autumn (Ls =190◦) at 3.0mbar of transient band- Summary: ManyupgradestotheNASAAmesRe- passfilteredRMS(a)geopotentialheight(m);(b)temperature searchCenter(ARC)Marsglobalclimatemodel(GCM) (K); and, (c) meridional wind(m s−1) fromthe Mars GCM have occurredrecently and include a modern radiative withRAC.Theabovefieldsareshowninwhitecontoursand transfer package and cloud microphysics package that thecolorshadingisthesmoothedtopographyattheresolution permitradiativeeffectsandinteractionsofsuspendedat- oftheGCM. mosphericaerosols(e.g.,watericeclouds,watervapor, dust,andtheirmutualinteractions)toinfluencethenet diabatic heating within the atmosphere. Atmospheric aerosolsarecritically importantin determiningthe na- References: tureof the meanthermalstructureandcirculation,and Banfield et al., 2004: Icarus, 170, 365; Barnes et hencetheoverallclimateoftheplanet[Hobbs,1993]. al., 1993: J. Geophys. Res., 98, 3125; Haberle et al., OurMarsGCMsimulationsindicatethatradiatively 2011: MAMO4, Paris, France; Haberle et al., 2017: In activeicecloudsprofoundlyaffecttheseasonalandan- prep; Hobbs, 1993: Aerosol-Cloud-Climate Interactions, nual mean climate in a variety of ways. Such results Academic Press; Hollingsworth et al., 1996: Nature, suggestthatthebulkthermalstructureandresultantcir- 380, 413; Hollingsworth et al., 1997: Adv. Space Res., culationpatternsarestronglymodifiednearthesurface 19, 1237; Hoskins and Karoly, 1981: J. Atmos. Sci., andaloft. Generallyspeaking,itisfoundthereiswarm- 38, 1179; Hourdin and Armengaud, 1995: Mon. Wea. ing of the atmosphere in subtropical and high-latitude Rev., 127, 822; Kahre et al., 2017: MAMO6, Granda, upper layers, cooling of the atmosphere in the lower Spain; Lacis and Oinas, 1991: J. Geophys. Res., 96, high-latituderegions,and,increasesinthemeanpole-to- 9027; Madeleine et al., 2014: Geophys. Res. Lett., 41, equatortemperaturecontrasts(i.e.,strongermean"baro- 4873; Mellor and Yamada, 1982: Rev. Geophys. Space clinicity")andaugmentedzonaljets. Comparisonswith Phys.,20,851;Montmessinetal.,2002: J.Geophys.Res., MGS/TES and MRO/MCS measurements show better 106,E65037;Montmessinetal.,2004: J.Geophys.Res., agreementbetweenthemodel’ssimulatedclimatecom- 109,E10004;Navarroetal.,2014: J.Geophys.Res.,119, paredto thatobserved. An increasedbaroclinicitysig- 1479; Suarez and Takacs, 1995: NASA Tech. Memo. nificantlyaffectstheintensityandseasonalityofsynop- 104606;Toonetal., 1989: J.Geophys.Res., 94, 16287; ticweathersystems. Wangetal.,2005: J.Geophys.Res.,110,E07005.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.