ebook img

NASA Technical Reports Server (NTRS) 20170000376: Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers PDF

2.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20170000376: Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers

Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers MatthewT.Wescott ,J.ScottMcQuien ,ChristopherL.Bertagne ,JohnD.Whitcomb , ⇤ † ‡ § DarrenJ.Hartl ¶ TexasA&MUniversity,CollegeStation,Texas,77843 LisaR.Erickson k NASAJohnsonSpaceCenter,Houston,Texas,77058 Abstract Upcomingcrewedspacemissionswillinvolvelargeinternalandexternalheatloadsandrequireadvancedthermal controlsystemstomaintainadesiredinternalenvironmenttemperature.Radiatorswithatleast12:1turndownratios(the ratiobetweenthemaximumandminimumheatrejectionrates)willbeneeded. However,currenttechnologiesareonly abletoachieveturndownratiosofapproximately3:1. Amorphingradiatorcapableofalteringshapecouldsignificantly increaseturndowncapabilities. Shapememoryalloysofferqualitiesthatmaybewellsuitedforthisendeavor;their temperature-dependentphasechangescouldofferradiatorstheabilitytopassivelycontrolheatrejection. In2015, amorphingradiatorprototypewasconstructedandtestedinathermalvacuumenvironment, whereitsuccessfully demonstratedthemorphingbehaviorandvariableheatrejection. Newercompositeprototypeshavesincebeendesigned andmanufacturedusingtwodistincttypesofSMAmaterials. Thesemodelsunderwenttemperaturecyclingtestsina thermalvacuumchamberandaseriesoffatigueteststocharacterizethelifespanofthesedesigns. Thefocusofthis paperistopresentthedesignapproachandtestingofthemorphingcompositefacesheet. Thediscussionincludes: an overalldescriptionoftheprojectbackground,definitionofperformancerequirements,compositematerialsselection, useofanalyticandnumericaldesigntools,facesheetfabrication,andfinallyfatiguetestingwithaccompanyingresults. I. Introduction A. ProjectDescription Theprojectfocusesonthedesign,fabrication,anddemonstrationinathermalvacuumtestofastructurallyandthermally optimizedradiatorfacesheetprototype,incorporatingthetemperature-dependentbehaviorofshapememoryalloys (SMAs). Thisnoveltypeofradiatorisknownasamorphingradiator;1itemploysSMAmaterialstopassivelychange theradiatorshapetoadaptitsrateofheatrejectiontovehiclerequirements. Theprototyperadiatorfacesheethasa naturallyclosedposition(similartoacylinder)inacoldenvironment. Astheradiator’stemperaturegraduallyrises, SMAs affixed to the facesheet contract, leading to a change of radiator radius; and increasing the exposure of the radiatorinnersurfaceviewfactortospaceandallowingittorejectmoreheat. SMAmaterialshavebeenusedina numberofaerospaceapplicationsandarerobust,2,3 withanactuationfatiguelifeexceeding1E4-1E6cycles. This technologyaddressesseveraloftheEvolvableMarsCampaign’s(EMC)needsincluding: (1)variableheatrejection, (2)lightweightandefficientstructuresandmaterials,and(3)reliablemechanismsforlong-durationmissionsbeyond lowearthorbit(LEO).Thesemissionsrequireathermalcontrolsystem(TCS)withamaximumtominimumheat rejectionratio(i.e. turndownratio)of12:1.4 Thehighestturndownratioastate-of-the-artTCScanachieveis3:1.5 The12:1ratioenablesashiftinTCSdesignfromtheconventionalduallooptoasinglelooparchitecturebydecreasing therequiredtemperaturerangeofaTCSandincreasingtheTCSminimumtemperature,enablingsingleloopuseof non-toxicworkingfluidswithhigherfreezingpoints.6 AdoptingasingleloopTCSoveradualloopTCSwillreduce theTCSmassbyasmuchas25%whilealsosimplifyingvehicledesign.4 Basedonsystemrequirements,candidateSMAandfacesheetmaterialshavebeenevaluatedandprocured. Down- ⇤UndergraduateResearcher,DepartmentofAerospaceEngineering,3141TAMU †GraduateResearchAssistant,DepartmentofAerospaceEngineering,3141TAMU ‡NASASpaceTechnologyResearchFellow,DepartmentofAerospaceEngineering,3141TAMU,AIAAStudentMember §Professor,DepartmentofAerospaceEngineering,3141TAMU,AIAAMember. ¶TEESResearchAssistantProfessor,DepartmentofAerospaceEngineering,3141TAMU,AIAAMember. kThermalEngineer,CrewandThermalSystemsDivision,2101NASAParkway. 1of12 AmericanInstituteofAeronauticsandAstronautics selectionofcandidatematerialsreliedonanalyticalpredictionsoftheSMAbehaviorandpredictedradiatoractuation obtainedviaathermallycoupledmodelformorphingSMAradiatorsdevelopedatTexasA&M.Theoptimalprototype configuration(e.g.size,interfacebetweenSMAsandfacesheet)wasdeterminedwithexpertinputfromeachcollaborator, thecoupledthermo-mechanicalmodel,andaseriesofbenchtoptests. Thermalvacuumtestingoftheprototyperadiator wasconductedtodemonstrateoperationinarelevantenvironmentandthusraisethetechnology’sreadinesslevelfrom aTRL2toTRL3. ThisdevelopmenthasprovidedprogresstowardovercomingalongstandingNASAtechnicalhurdle ofdemonstratingapracticalmeanstoachievethenecessary12:1turndownratioanddoessoinapassivemannerbythe inherentbehaviorofSMAs. Figure 1showsamorphingradiatordesignwhichcombinesthetemperatureinducedtransformationphenomena fromSMAswithathermallyconductiveandlinearlyelasticbiasingstructuretocreatearadiatorpanelthatreconfigures passivelyinresponsetochangesintemperature. Theradiatorconsistsofacircularpanelfixedalongthepanelline ofsymmetry. Thepanelisgivenahigh-emissivitycoatingontheinner(concave)surface,shownwithdarkshading, and low-emissivity coating on the outer (convex) surface, shown with light shading. This surface treatment adds minimalweightforanincreaseinTCSperformance. Shapememoryalloymaterial(wires,strips,orfilm)attachedto theoutermostsurfaceofthepanelallowstheradiatortomorphbetweenvariousshapesdependingonthetemperature ofthepanel. Whensufficientlycold,theradiatortakesonthecircularshapeshowninFigure 1a. Asthetemperature intheradiatorincreasesduetoawarmerambientenvironmentand/orincreaseintheheatload,theSMAbeginsto opentheradiatortoanintermediateconfiguration,suchasthatshowninFigure 1b. Figure1cshowsthefully-open, maximum-heat-rejectionshape. Thismorphingbehaviorisintendedtobefullyreversible: asubsequentdecreasein temperaturewillcausetheradiatortoreturntotheminimumheatrejectionshape. (a)Closedshapeforminimum (b)Semi-openshapeforintermediateheat (c)Openshapeformaximum heatrejection. rejection. heatrejection. Figure1: Schematicrepresentationofaflexiblemorphingradiatorpanel. Lightanddarkshadingrepresentslow-and high-emissivitycoatings,respectively. B. TechnicalApproach Researchbeganwithdefinitionofthefacesheetandprototyperadiatorrequirementsthataccountforaspaceenvironment andlargevibrationalloadstobesurvivedduringlaunch. Candidatematerialswereselectedbasedontheirabilityto satisfythedesignrequirements. Thefacesheetrequiresthreecontradictoryresponses: sufficientstiffnesstoprovide springforceforreturningtheradiatortoitsclosedcoldshape,amplecompliancetodeformtoitsopenhotshape,and adequatethermalconductivitytotransportheatoutofthefluidloop. Optionsincludedcompositeandmetallicmaterials, andpotentiallyacombinationofthetwoinalaminate. SMAmaterialswereinitiallyselectedfromfatigue-resistant commerciallyavailableoptions. Thesecandidatematerialsweremodeledandtestedtofurtherevaluatetheirsuitability using collaborator expertise and Texas A&M’s existing coupled FEA/thermally coupled model for general SMA radiators. Validation and further refinement of the FEA/thermal model was performed parallel to this effort using existingNASASpaceTechnologyResearchFellowshipfundsbutarenotaddressedinthisshortpaper. Aftermaterial down-selectiontheFEA/thermalmodelwasemployedtofindoptimalparametersfortheprototyperadiator’sdesign(e.g. size,conductivitybetweenSMAsandfacesheet). TheSMAfacesheetassemblymethodwasthendetermined. Novel arrangementsofcompositefibersandSMAmaterialwereexploredtoprovidethenecessarycombinationofactuation, conductivity,stiffness,andstrength. Oncefabricated,thebench-toptestarticlesweretestedintwosteps: (1)actuation controlledviaelectricallyheatedSMAcomponentsand(2)hightemperaturefluidlooptestingdemonstrating“passive” SMAactuation. Thesestepsprovidedconfidenceontheactuatingbehavior,andStep1alsopermittedstraightforward testingofahighnumberofcycles,addressingSMAandmorphingradiatorfatigueconcerns. Finally,amission-inspired 2of12 AmericanInstituteofAeronauticsandAstronautics lowtemperaturetestarticlewasfabricatedandtestedinathermalvacuumchamberatJohnsonSpaceCenter,raisingthe TRLofthetechnologyfrom2to3. II. AnalysisandDesign Thedesignspacewascharacterizedthroughacombinationofanalytical,numerical,andexperimentalmethods. Several designtoolsweredevelopedinordertopredictboththemechanicalandthermalpropertiesofaspecifiedfacesheet material,geometry,andlayup;i.e.,thenumberandorientationofeachlaminaintheoveralllaminate. Inparticular,a straightforwardanalyticalmodelbasedonclassicalLaminatedPlateTheory(LPT)wasdevelopedtocharacterizethe mechanicalbehaviorofagivenfacesheetlayup,includingpredictionofelasticresponseandevaluationoflaminate failurecriteria. Laminatethermalconductivityandmaximumbendingcurvaturearecalculatedforeachspecifiedlayup. Laminatethermalconductivitydiffersfromthebasematerial(i.e.,fiberandresinmatrix)propertiesasthelaminateis madeupofacombinationoflayersatdifferentorientations. Followingthedevelopmentofmechanicaldesigntools, severalbenchtopexperimentsweresubsequentlyperformedontestspecimenstovalidatethepredictionsofthesetools. Inaddition,ahigher-fidelitynumericalmodelwasdevelopedinAbaqus®inordertopredictthethermalresponse(i.e. temperaturedistributionandheatrejectionrate)ofagivenfacesheetdesignoperatinginaradiativeenvironmentwitha knownsinktemperature.7–9 Together,thesetoolswereusedtodrivethedesignofthreetestarticleswhichwouldbe fabricatedforfatigueandthermaltesting. A. MechanicalAnalysis WithintheLPTmodel,maximumbendingcurvatureandeffectivelaminatethermalconductivityherecalculatedforeach specifiedlayup. Thisisimportantbecauselaminatethermalconductivityobviouslydiffersfromthebasematerial(i.e. lamina)propertiesasthelaminateismadeupofacombinationoflaminaeorientedindifferentdirections. Maximum bendingcurvatureiscalculatedbasedonfirstplyfailureconsideringultimatestrainfailurecriteriainbothaxialand transversetensionandcompression. TheLPTmodelisbasedontheclassicallaminatedplateequation, N A B "0 = (1) M B D  ( ) " #( ) whichsolvesforthemidplanestrainsandcurvatures,"0 and,respectively,ofagivenlayupintermsofforceand momentstressresultantsN andM. Layupmechanicalpropertiesarecalculatedandassembledintotheso-calledABD matrix. GiventheradiatorconfigurationandthedistributedbendingmomenttheSMAprovides,theappliedloadis assumedtohaveonlyoneterm,representedbythestressresultant M . Allotherstressresultantsareassumedtobe x zero. ThemidplanestrainsandcurvaturesarecomputedintermsofM ,andarethenusedtocalculatetheglobalstrains x ineachlaminausingtheequation, " G "0  xx xx x " = "0 +z  (2) yy yy i y 8>>><"xy9>>>=i 8>>><"0xy9>>>= 8>>><xy9>>>= wherethesubscriptidenotestheindexofthela>>>:mina>>>;andz>>>:iist>>>;hedis>>>:tanc>>>;eofthemidplaneoflaminaifromthemidplane ofthelaminate. Theselaminaestrainsarethentransformedintothelocalorientationofthelaminabywritingthemin tensorformandusingthetensortransformationlaw, "L =a a "G (3) ij ik jl kl wherethea matricesaresimplerotationmatricesaboutthetransverseaxis,computedusingtheorientationangleof ij eachlamina. Thelocallaminaecoordinatesystemsaredefinedbythefirstaxisrunningparalleltothefibers,withthe secondaxisorthogonaltothefirstintheplaneofthelamina. Oncethestrainsareobtainedinthelocalcoordinatesystem ofeachlamina,eachnormalstrainissetequaltothecorrespondingfailurestrain,inbothtensionandcompression. ThefourresultingequationsareevaluatedtofindtheM requiredtofailthelaminainallmodes. Thisisdoneforeach x lamina,andthefirstplyfailureisfoundbythesmallestrequired M . This M isthenre-substitutedintoEquation1 x x to yield midplane curvature  at which the given laminate will fail. This  describes, through simple geometric x x calculations,themaximumangletowhichthegivenlaminatecanopenfromthereferencecylindricalshape. Thegivenfacesheet’seffectivethermalconductivityperunitwidth(denotedbyKt)inthecircumferentialdirection isevaluatedbytransformingeachlaminathermalconductivityintoglobalcoordinatesfollowingreverseprocedureasin Equation3,multiplyingbythelaminathickness(t),andthensummingovereachlamina: N Kt= kt. (4) i i Xi=1 3of12 AmericanInstituteofAeronauticsandAstronautics Fromtheseoperations,thefailurestress M ,correspondingmidplanecurvatureK andthermalconductivity(Kt) x x foragivenlaminatearecomputed. B. CompositeMaterialSelection Certainclassesofcarbonfiberreinforcedcomposites(i.e.,thosemadefrompitchbasedfibers)aresuitableforthis application as they are capable of extremely high thermal conductivities (TC), high stiffness, and are lightweight. Simplymanufacturingthefacesheetoutofthecorrectcompositematerialcansatisfyalloftherequirements. Inaddition, thistypeofcompositecanbeproducedinaunidirectionaltapemannerallowingittobeconfiguredviaappropriateor optimizedlayupstotailorresultingthermalandstructuralproperties. Consideringthefacesheetasalayupofcarefully orientedpliesofunidirectionalfibers,therequiredstiffnessandTCcanbeachieved. Thematerialselectedisapre-impregnatedunidirectionalcompositetapemadeupofRS-3C®resin(producedby TenCateAdvancedComposites),andK13D2U® pitchcarbonfibers(producedbyMitsubishiRayon). Theprepreg is assembled and prepared by TenCate Advanced Composites®. The material system has previously been proven inthespaceenvironment, andtheresinmeetsoutgassingrequirementsforspaceflight. Itisalsocapableofbeing processedusingout-of-autoclavecuringcyclesundervacuumpressure. Keymaterialpropertiesincludelaminathermal conductivityof480W/mK,andstiffnessof465GPaat0 (fiberdirection). � Thedesigntoolswerevalidatedthroughexperimentalfabricationoftestfacesheetpanels. Experimentalresults furthernarroweddownthenumberofpossiblelayupcombinations. Inparticular,itwasshownthatlayupsofonly 0 orientedlaminaelackedsufficienttransverseinplanedurabilityandwerehighlysusceptibletohandling-induced � cracking. Theoptimumlayupwasfoundtoconsistofsomenumberof0 laminasandwichedinbetweennon0 lamina. � � Furtherexperimentaltestingshowedthatusingonlylaminaeoutsideothethe0 laminaecausesmatrixcrackingwithin � the90 plies. Inaddition,sincethethermalconductivityoftheconstituentresinismuchlowerthanthatofthefibers,the � 90 laminaearealmostcompletelythermallynegligible. Lastly,thenon0 laminaemustnotleadtosignificantthermal � � stressesand/ordeformationcouplingwithbending. Withtheseconsiderationsinmind,experimentalresultshaveledto theselectionoflayupsthatincorporatetwotothree0 laminae(orientedinthecircumferentialdirection)inbetween � layersof 45 laminaeinananti-symmetricfashion. KeymaterialpropertiesarepresentedinTables1and2.10 � ± Table1: Fiberpropertiesofvarioushigh-conductivitypitchfibersproducedbyMitsubishiRayon®. Fiber Modulus ThermalConductivity Approx. FiberCost K13D2U®(2K) 930GPa 800W/mK $1,000/lb · K13C2U®(2K) 900GPa 620W/mK $800/lb · K13916®(16K) 760GPa 200W/mK <$75/lb · Table2: Effectivelaminatepropertiesinthefiberdirection. Material Modulus ThermalConductivity UltimateStrain K13D2ULaminate 590GPa 478W/mK 0.4% · K13C2ULaminate 550GPa 367W/mK 0.4% · C. ThermalAnalysis Ahigh-fidelitythermalmodelwasdevelopedinAbaqus®topredictthesteady-statethermalresponseofagivenfacesheet design.7–9 Thismodelwasthenusedtoinvestigatemaximumandminimumheatrejectionofagivenlayup. Maximum bendingcurvatureisusedinconjunctionwithaspecifiedradiatordiametertodeterminethemaximumheatrejectionof thegivenfacesheet(openconfiguration). Atwo-dimensionalthermalanalysisisperformedonarepresentativegeometry usingthecalculatedthermalconductivitypropertiesandincludingradiationboundaryconditions. Consideringheat rejectionintheclosedconfigurationinadditiontotheopenconfiguration,turndownratiocanbedetermined. Figure2showstheresultsofanumberofindividualthermalanalysesforasmallselectionofimportantlayups. Eachspecificlayupisanalyzedatanopenconfigurationuniquetoit;somepanels,basedontheirlayup,maybeableto openfurtherthanothers. Inaddition,eachlayuphasauniqueeffectivethermalconductivity. InFigure2,eachpoint representsadifferentradiatordiameter, increasingfromupperlefttolowerrightineighthinchincrementsfrom1 to4inches. Asradiatordiameterincreases,thespecificlayupisabletoopenfurther,andheatrejectionisincreased. However,asthefacesheetpanelbecomeslarger,thefinefficiencydecreasessignificantly. 4of12 AmericanInstituteofAeronauticsandAstronautics Figure2: Maximumheatrejectionplottedversusfinefficiencyforspecifiedlayupsformedintocylindricalreference shapesofincreasingdiameter. III. PanelFabrication Asstatedpreviously,thechosenmaterialsystemallowsforvacuum-assistedout-of-autoclavecuring. Thispermits theuseofconventionalvacuumbaggingtechniquesandvacuumequippedoven. Fabricationofthefacesheetlargely followedthestandardout-of-autoclavecompositefabricationmethodology. Forthefacesheettoprovidethecorrect biasingforceforSMAactuation,thecompositefacesheetwasfabricatedsuchthatitsstressfree(cured)stateisitsclosed cylindricalconfiguration. Accordingly,afabricationtoolknownasamandrelwasdesignedtoallowforthecomposite tobelaidup,vacuumbagged,andcuredinthecorrectconfiguration. Sincethefacesheetisnotfullycylindrical(i.e.,a smallgapexistsbetweenopenends),thematerialisabletoslideagainstthetoolduringcuringtoavoidthermalhoop stressescausedbythemandrel’sthermalexpansion. Figure3showsafacesheetinitscuringconfigurationbeforebeing enclosedinthebreatherfabricandvacuumbag. Figure3: Samplepanelafterlayinguponthemandrelandbeforebeingvacuumbagged. Themateriallayupprocessintheclosed,circularconfiguration,andcustomfabricationjigwithmodifiedvacuum baggingprocedureisdetailedinFigure4. Figure5showthecompletedvacuumbaggingprocessandattachedvacuum 5of12 AmericanInstituteofAeronauticsandAstronautics port. Thenentireassemblyisthenplacedinalargeindustrialovenforcuring. Figure4: Cross-sectionofthemandrel,laminate,vacuumbag,andotherfabricationnecessities. Figure5: Panelduringfabrication,afterapplyingthevacuumandplacinginthecuringoven. Aftercuringandcoolingtheassemblyisremovedandthefinishedcompositepanelisextractedfromthemandrel. Figure6showsthreefinishedcompositespecimensofdifferentplylayups.Thelayuporiginallyproposedforfabrication wasa[ 45/0/0/0/ 45]stackingsequence. However,initialbendingoftestspecimensrevealedfibermicro-bucklingon ± ± theouterfacesheet. Thus,90degreeplieswereaddedtothestackingsequencetopreventmicro-bucklingwhileadding nosignificantincreasetothebendingstiffnessoftheoverallpanel. A. TestArticles Atotalofthreedifferenttestarticleswerefabricatedforthethermalvacuumchambertestsusingtheproceduredescribed inSec.III.Table3givesanoverviewofeachofthetestarticles. Thefirstrowgivesthelayupoftheunidirectional fiber-reinforcedcompositeusedforeachtestarticle. Anglesaredefinedwithrespecttothecircumferentialdirection (i.e. thefibersofa0 plyarealongthecircumferenceofthepanelandthefibersofa90 plyareorientedparallel � � totheflowtube). Thekeymechanicalandthermalpropertiesofthepanel,namely,bendingstiffnessandeffective conductioncoefficientperunitlength(denotedbyKt),arealsolistedforeachpanel,alongwiththeprimarydimensions. Thefirsttwotestarticles, AandB,werenearlyidenticalapartfromthelayup: TestArticleAusedalayupwitha singleplyorientedinthecircumferentialdirection(i.e.,0 );whilethelayupforTestArticleBincludedanadditional � circumferentialply. 6of12 AmericanInstituteofAeronauticsandAstronautics Figure6: Completedpanels. Lefttoright: [90/ 45/0/ 45/90] ,[90/ 45/0/0/ 45/90] ,[90/ 45/0/0/0/ 45/90] . � � � ± ± ± ± ± ± Table3: Overviewofthethreetestarticlesfabricatedforthethermalvacuumchambertests. TestArticleA TestArticleB TestArticleC Layup [90/ 45/0/ 45/90] [90/ 45/0/0/ 45/90] [90/ 45/0/0/0/ 45/90] ± ± ± ± ± ± Bendingstiffness 0.44Pam3 0.82Pam3 1.42Pam3 · · · Cond. coeff. perunitwidth(Kt) 0.091W/K 0.121W/K 0.152W/K Closeddiameter 3.0in 3.0in 3.5in Width 3.0in 3.0in 4.0in SMAtype&qty. Wires(x18) Wires(x36) Strips(x8) SMAphaseatroomtemp. Austenite Austenite Martensite IV. FatigueTests A. TestSetup Aprimaryconcernforthedesignofacompositemorphingradiatoristhefatiguelifeofthecompositefacesheet. A target minimum of 370 cycles was provided as a requirement by NASA JSC, taken from the lightweight radiator requirements from development in 2004-2005.11 A benchtop fatigue test stand was constructed consisting of low frictionpulleys,rollerbars,andin-lineShimpoforcegauge®. Usingthissetup,displacementssimilar(butnotidentical) tothoseobservedduringradiatoractuationcouldbeappliedinafullycontrolledandrepeatablemanner. Asisshownin Figure7,thecompositespecimenismountedusingrisersandultrahighmolecularweightpolyethyleneDyneema® stringisthenattachedundertheterminalblocksandconnectedthroughthepulleysystemtothebottomoftheplatform wheretheforcegaugeisconnected. AsseeninFigure8,aturnbuckleisattachedinlinewiththepulleysystem. Astheturnbuckleisadjusted(turned), incrementalmeasurementsofdisplacementandforcewererecorded,correspondingto“characterization”ofthepanel stiffness. Forthefatiguecyclingportionoftheexperiment,theturnbuckleisopenedcompletelyandtheforcegaugeis repeatedlymoveduptoandawayfromthehard-stopplate. Thisprocessisrepeatedforthedesirednumberofcycles. Theincrementalforceanddisplacementportionisthenrepeatedfollowedbyanothersetofcycles. Thisisdescribedin moredetailbelow. 7of12 AmericanInstituteofAeronauticsandAstronautics (a) (b) Figure7: Photographsoffatiguetestarticle. Asmentioned,theloadingappliedduringthefa- tiguetestingusingtheDyneemastringsattachedto theendsofthepanelsisnotidenticaltothatapplied bytheSMAwires/stripsduringmorphingradiator actuation. Theformercorrespondsmorecloselyto nonlineartiploadedbendingofacantileveredbeam, whilethelattercorrespondstonearlyconstantmo- ment loading throughout the panel. However, it isessentialtocharacterizethefatigueresponseof the panel under at least local loading similar to that seen during actuation. To determine the ap- propriatestring-loadeddeflectionmagnitudecorre- spondingtothesamemaximumstrainsgenerated duringSMAactuation,anAbaqusmodelwasdevel- oped. Theresultsofthisnumericaldesignanalysis areshowninFigure9. Thoughshownherequal- itatively using a contour image, the string-driven paneledgedisplacementsforstrainmatchingatthe fixedrootweredeterminedquantitativelytowithin 0.01mm. Notethatstrainsareshownasresolved intoafixedglobalcoordinatesystemandtherefore onlythevaluesofstrainsatthepanellineofsym- metry(i.e.,thepointofhigheststrainbeingsought) aremeaningful. B. Results&Discussion Withregardtodemonstratingstructuralrobustness undercyclicfatigueloadingupto370fullactuation cycles, the primary focus was on Test Article B previouslydiscussed. Thispanelincludedtwocir- cumferentiallyaligned(0 )laminaenearthemiddle � ofthelayup,andwasthusstiffer(andmorelikely toexperiencedamageandfailure)thanTestArti- cle A, which had only a single circumferentially alignedply. Thespecificcyclicloadinghistoryap- Figure8: Overviewoffatiguetestsetup. 8of12 AmericanInstituteofAeronauticsandAstronautics Deformation of panel Deformation of panel under constant under string loading moment loading (fatigue frame) (SMA wire loading) Identical maximum Identical maximum bending strain at root bending strain at root Figure9: ResultsofFEAfordeterminingthedeflectiononthefatigueframethatmatchedthesamemaximumpanel strain as applied during SMA actuation in the thermal vacuum chamber. Strains are resolved into a fixed global coordinatesystem;onlythestrainsfieldsnearthelineofsymmetry(thepointofinterest)arequantitativelymeaningful. pliedisschematicallyillustratedinFigure10. Prior toanydeformationafterfabrication(i.e.,withthe panelinitsvirginstate),aninitialcharacterization load/unloadcyclewasappliedtoanintermediate deflectionlevelusingtheexperimentalfatigueapparatus. Thisprovidedabaselinestiffnessresponseandalsoinitialized thetestsetup(tightenedtheDyneemastrings,etc.). Theloadingportionofthisinitialcycleisshownasthe N = 0 curveinFigure11a. Forthistest,theloadingcharacterizationwasperformedbyapplyinga 50mmdeflectionviathe ⇠ turnbuckle. Fullactuationcyclicloadingisthenappliedfor�N cycles,duringwhichforce-deflectiondatawasnotrigorously logged. Thefullactuationdeflectionwas78.4mm,asdeterminedfromtheAbaqusanalysisofFigure9. Afterthis cycling,anadditionalcharacterizationcycleconsistingofintermediatedeflectionlevelsisperformedoncemore,the force-deflectiondatalogged,andthestiffnessassessed. Theprocesswasrepeatedupto370cycles,andtheneventually to400cycles,with�N generallyincreasingfromN =0toN =400. The key results from the stiffer Test Article BareshowninFigure11. Mostimportantly, the 120 panelisabletosurvivefullradiatoractuationstrains Initial Characterization ) ΔN Full Cycles for up to 400 cycles of loading, which was criti- m100 m caltodemonstratingthefeasibilityoftheconcept. e ( 80 Next However, some evolution during cycling loading c Characterization n is clearly observed, with the strongest effects ob- a 60 t s servedinthefirstfivecyclesandsomecontinuing Di 40 evolution up to 100 cycles. This can be seen in p boththeshiftinthereferencedisplacementofthe Ga 20 Co…ntin ues panelinFigure11aandinthechangeofstiffnessin 0 Figure11b. Thelatterisindicativeofsomedamage Time being generated in the panel. Given the loading methodofthefatigueapparatus,thiscorresponds Figure10: SchematicdescriptionofloadingappliedTestArticle todamagebeingformedneartheflowtubeorroot B.Dataisloggedandplottedfor“characterization”cyclesbutnot ofthepanel. Notethatstiffnesswascalculatedin for“full”cycles. therangeof5–10Nofloadingtoavoidtheoverall nonlinearityobservedwhenexaminingtheentire loadingcurve. After100cycles,thepanelappearstohavereachedasteady-stateresponsewherethestiffnessisreduced to 72%ofitsoriginalvalue,butcatastrophicfailureisneverobserved. ⇠ 9of12 AmericanInstituteofAeronauticsandAstronautics GiventhesuccessoftheTestArticleBconfigurationundercyclicloading, itisofinteresttoalsoconsiderthe cyclingloadingofthemorecompliantTestArticleAconfiguration(i.e.,asinglecircumferentiallyalignedply)cycled toevenhigherdeflections. SincethestiffnessofTestArticleAisapproximatelyhalfthatofTestArticleB,forthis casethefatigueloadingdeformationwasapproximatelydoubledto160mm. Characterizationdeformationwasalso increasedto 80mm. Again,thepanelsurvivedfatigueloadingwithoutcatastrophicfailureforupto400cycles. The ⇠ resultsareshowninFigure12. Noteherethatfullshakedownoftheresponseseemstobecompletedby20-50cycles, wherethetotalpanelstiffnesshasbeenreducedto 65%ofitsoriginalvalue. Herestiffnesswasmeasuredinthe ⇠ loadingrangeof2–4Ntoavoidnonlinearityeffects. 25 0.5 Initial N=0 N=5 N=10 20 N=20 0.45 N=50 N=100 N) N=206 10 Pull Force (N)1105 NNNNN=====333340677005050 nel Stiffness (~5-00.3.45 a P 5 0.3 0 0.25 0 10 20 30 40 50 60 0 50 100 150 200 250 300 350 400 Pull Distance (mm) Cycle Number (a)Force-deflectioncurvesasloadingcyclesincrease (b)Changeinstiffnessasloadingcyclesincrease Figure11: Fatiguetestingresultsformorphingradiatorpanelwithtwocircumferentiallyalignedplies(TestArticleB). 14 N=0 0.24 N=5 12 N=10 N=20 0.22 N=50 10 N=100 N) 0.2 N=200 4 orce (N) 8 NN==330605 ness (~2-0.18 Pull F 6 NNN===334770050 nel Stiff0.16 a P 4 0.14 2 0.12 0 0.1 0 20 40 60 80 100 0 50 100 150 200 250 300 350 400 Pull Distance (mm) Cycle Number (a)Force-deflectioncurvesasloadingcyclesincrease (b)Changeinstiffnessasloadingcyclesincrease Figure12: Fatiguetestingresultsformorphingradiatorpanelwithonecircumferentiallyalignedply(TestArticleA) loadedto doublethemaximumrootstrainasinthermalvacuumchambertesting.12 ⇠ 10of12 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.