ebook img

NASA Technical Reports Server (NTRS) 20160009772: Aerosol Remote Sensing with Small Satellites in Formation Flight PDF

15.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20160009772: Aerosol Remote Sensing with Small Satellites in Formation Flight

Aerosol remote sensing with small satellites in formation flight Kirk Knobelspiesse1 and Sreeja Nag NASA Goddard Space Flight Center and NASA Ames Research Center 1 funding generously provided by the NASA New (Early Career) Investigator Program in Earth Science Synopsis Motivation potential of small satellite formations Background -  Coupled Model Based Systems Engineering (MBSE) + -  Information content based Observing System Simulation Experiment (OSSE) Approach -  Transform prior BRDF analysis for aerosol remote sensing -  Information content analysis details - sensor and simulations Results -  Example BRDF results. Example Jacobian BRDF -  Degrees of Freedom -  Relative Aerosol Optical Thickness predicted uncertainty -  Fine mode effective radius predicted uncertainty Conclusions 2 Formation flight – alternate aerosol remote sensing paradigm? We need more information: multiple spectra, multiple view angles, multiple polarization states So far, we’ve put this all on a single instrument/platform New cube/small satellite technology means observation can be dispersed… … can there be a benefit to doing this? 3 Formation flight: access alternate view geometries Single spacecraft Multiple views in one plane Distributed viewing geometry: Independent spacecraft observe a common location, variety of view zenith, azimuth angles 4 SN0123, 410nm , SZA=40, I 0 Solar direction Multi-angle observations (backscatter) 5 at Top of Atmosphere 1 4 3 5 (TOA) sample the: total Bidirectional Reflectance Distribution 90 30 60 90 270 Function (BRDF) 5 3 2 1 2 5 Nadir 180 0.0 0.1 0.2 0.3 0.4 0.5 Reflectance, I 5 SN0123, 410nm , SZA=40, I 0 Multi-angle observations 5 at Top of Atmosphere 1 4 3 5 (TOA) sample the: total Bidirectional Reflectance Distribution 90 30 60 90 270 Function (BRDF) “single” platforms with multiple angle views 5 (ie POLDER, MISR) 3 2 1 2 5 sample in a plane 180 0.0 0.1 0.2 0.3 0.4 0.5 Reflectance, I 6 SN0123, 410nm , SZA=40, I 0 Multi-angle observations 5 at Top of Atmosphere 1 4 3 5 (TOA) sample the: total Bidirectional Reflectance Distribution 90 30 60 90 270 Function (BRDF) Samples from constellations of (single view) 5 3 2 1 2 instruments are not 5 restricted to a plane 180 0.0 0.1 0.2 0.3 0.4 0.5 Reflectance, I 7 SN0123, 410nm , SZA=40, I 0 Multi-angle observations 5 at Top of Atmosphere 1 4 3 5 (TOA) sample the: total Bidirectional Reflectance Distribution 90 30 60 90 270 Function (BRDF) Is this useful? Depends on nature of BRDF, and how it 5 3 2 1 2 incorporates desired 5 information 180 0.0 0.1 0.2 0.3 0.4 0.5 Reflectance, I 8 Conversion of Sreeja Nag’s analysis for surface BRDF remote sensing to aerosol remote sensing InternationalJournalofAppliedEarthObservationandGeoinformation43(2015)102–118 ContentslistsavailableatScienceDirect International Journal of Applied Earth Observation and Geoinformation journal homepage:www.elsevier.com/locate/jag Observing system simulations for small satellite formations estimating bidirectional reflectance SreejaNaga,b, ,CharlesK.Gatebeb,c,OlivierdeWecka ∗ aMassachusettsInstituteofTechnology,Cambridge,MA02139,USA bNASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA cUniversitiesSpaceResearchAssociation,Columbia,MD21046,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Thebidirectionalreflectancedistributionfunction(BRDF)givesthereflectanceofatargetasafunc- Received1November2014 tionofilluminationgeometryandviewinggeometry,hencecarriesinformationabouttheanisotropyof Accepted30April2015 thesurface.BRDFisneededinremotesensingforthecorrectionofviewandilluminationangleeffects Availableonline4September2015 (forexampleinimagestandardizationandmosaicing),forderivingalbedo,forlandcoverclassification, forclouddetection,foratmosphericcorrection,andotherapplications.However,currentspaceborne Keywords: instrumentsprovidesparseangularsamplingofBRDFandairborneinstrumentsarelimitedinthespatial Multi-angularremotesensing andtemporalcoverage.Tofillthegapsinangularcoveragewithinspatial,spectralandtemporalrequire- Smallsatellite ments,weproposeanewmeasurementtechnique:useofsmallsatellitesinformationflight,eachsatellite Formation BRDF Nag,w Sith.,a CVN.KIR.( vGisiablteeabnden,e Oar.in dfraer eWd)iemcakgi,n gOspbescterormveitnerg,t osmyasketemmult is-sipmecturalla,nteiaor-nsism uflotarn esomusall satellite formations estimating OSSE bidirmeecastuiorenmaenl tsreoffelevecrytagrnoucned,s pInott.in Jt.h eosfw Aatphpatlimeudlt iEplaeratnhgl eOs.bThsiesprvapaetriodensc raibnedsa Gnoeboseirnvifnogrmation, 43, Dec. 2015, pp 102-118. systemsimulationexperiment(OSSE)toevaluatetheproposedconceptandselecttheoptimalforma- Nag,t iSon.,a rCch.itKec.t uGreattheatbmei,n iDmi.zWes.B RMDFilulenrce, rOtai.n tdiees. TWheevcarkia,b Elesffoeftchet OoSfS Esaareteidlelnittiefie fdo;nrummbaetrioofns and imaging modes on global albedo satellites,measurementspreadintheviewzenithandrelativeazimuthwithrespecttosolarplane,solar estimation, Acta Astronautica, 126, Sept. 2016, pp. 77-97. zenithangle,BRDFmodelsandwavelengthofreflection.AnalyzingthesensitivityofBRDFestimation errorstothevariablesallowsimplificationoftheOSSE,toenableitsusetorapidlyevaluateformation Nag, S., C.K. Gatebe, T. Hilker, Simulation of Bidirectional Reflectance-Distribution Function Measurements using architectures.A6-satelliteformationisshowntoproducelowerBRDFestimationerrors,purelyinterms Smaolfl aSngautlaerlslaitmep lFinograsmevaatluioatnedsb,y ItEheEOESS JE,.t hoafn Saesinleglcetsepdac eTcroapftiwcisth in9 foArwpaprldi-eadft sEenasrotrhs. WOebservations and Remote Sensing, accepted in Aprild 2em0o1n6st,r aitne tphereabsilsit ytouseOSSEstodesignsmallsatelliteformationsascomplementstoflagshipmis- siondata.TheformationscanfillangularsamplinggapsandenablebetterBRDFproductsthancurrently possible. ©2015PublishedbyElsevierB.V. 9 1. Introduction 1995).TotalOutgoingRadiation(TOR)isestimatedat0.9W/m2by currentclimatemodels—withuncertaintiesof 2to+7W/m2(Loeb − Multi-angularremotesensing,orsensingofthesametargetat et al., 2009), reduced only by frequent, global, angular radiance multiple angles, is very important for obtaining various science measurements(Dyrudetal.,2014).Snowalbedowhenestimated products such as albedo, for land cover classification, for cloud usingonlynadirreflectanceshowsupto45–50%errorscompared detection, and for atmospheric correction (Gatebe et al., 2003). tohemisphericalreflectance(Arnoldetal.,2002).CurrentGrossPri- Sparse angular sampling of the reflected light can cause errors maryProductivity(GPP)estimatesshowuncertaintiesupto40% between15%and90%inthereflectanceproductsofmoderateres- in the terrestrial carbon uptake (Hilker et al., 2011). Vegetation olution,solarwavelengthremotesensing(Esperetal.,2000;Nag, analysis is adversely affected by under-sampling on the princi- 2015).Upto90%oftheerrorsinthecomputationofradiativeforc- palplaneandhotspots(Románetal.,2011).GPPandvegetation ing,akeyassessorofclimatechange,isattributedtothelackof reflectancequantifiestheextenttowhichforestsandvegetation detaileddescriptionofreflectedsolarflux(WielickiandHarrison, actasasinkforatmosphericcarbondioxideandisveryimportant toestimatecarbonfeedbacksofvegetationinresponsetoglobal climate change (Canadell et al., 2007). Deforestation and forest degradationaccountsfor12%ofanthropogeniccarbonemissions, ∗ Correspondingauthorat:BayAreaEnvironmentalResearchInstitute,Sonoma, which have nearly doubled in the past 30 years (Van der Werf CA95476,USA. E-mailaddress:[email protected](S.Nag). etal.,2009).Recentstudieshavealsoshownanoverestimation http://dx.doi.org/10.1016/j.jag.2015.04.022 0303-2434/©2015PublishedbyElsevierB.V. Coupled Model Based Systems Engineering (MBSE) and Observing System Simulation Experiment (OSSE) tools 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.