Aerosol remote sensing with small satellites in formation flight Kirk Knobelspiesse1 and Sreeja Nag NASA Goddard Space Flight Center and NASA Ames Research Center 1 funding generously provided by the NASA New (Early Career) Investigator Program in Earth Science Synopsis Motivation potential of small satellite formations Background - Coupled Model Based Systems Engineering (MBSE) + - Information content based Observing System Simulation Experiment (OSSE) Approach - Transform prior BRDF analysis for aerosol remote sensing - Information content analysis details - sensor and simulations Results - Example BRDF results. Example Jacobian BRDF - Degrees of Freedom - Relative Aerosol Optical Thickness predicted uncertainty - Fine mode effective radius predicted uncertainty Conclusions 2 Formation flight – alternate aerosol remote sensing paradigm? We need more information: multiple spectra, multiple view angles, multiple polarization states So far, we’ve put this all on a single instrument/platform New cube/small satellite technology means observation can be dispersed… … can there be a benefit to doing this? 3 Formation flight: access alternate view geometries Single spacecraft Multiple views in one plane Distributed viewing geometry: Independent spacecraft observe a common location, variety of view zenith, azimuth angles 4 SN0123, 410nm , SZA=40, I 0 Solar direction Multi-angle observations (backscatter) 5 at Top of Atmosphere 1 4 3 5 (TOA) sample the: total Bidirectional Reflectance Distribution 90 30 60 90 270 Function (BRDF) 5 3 2 1 2 5 Nadir 180 0.0 0.1 0.2 0.3 0.4 0.5 Reflectance, I 5 SN0123, 410nm , SZA=40, I 0 Multi-angle observations 5 at Top of Atmosphere 1 4 3 5 (TOA) sample the: total Bidirectional Reflectance Distribution 90 30 60 90 270 Function (BRDF) “single” platforms with multiple angle views 5 (ie POLDER, MISR) 3 2 1 2 5 sample in a plane 180 0.0 0.1 0.2 0.3 0.4 0.5 Reflectance, I 6 SN0123, 410nm , SZA=40, I 0 Multi-angle observations 5 at Top of Atmosphere 1 4 3 5 (TOA) sample the: total Bidirectional Reflectance Distribution 90 30 60 90 270 Function (BRDF) Samples from constellations of (single view) 5 3 2 1 2 instruments are not 5 restricted to a plane 180 0.0 0.1 0.2 0.3 0.4 0.5 Reflectance, I 7 SN0123, 410nm , SZA=40, I 0 Multi-angle observations 5 at Top of Atmosphere 1 4 3 5 (TOA) sample the: total Bidirectional Reflectance Distribution 90 30 60 90 270 Function (BRDF) Is this useful? Depends on nature of BRDF, and how it 5 3 2 1 2 incorporates desired 5 information 180 0.0 0.1 0.2 0.3 0.4 0.5 Reflectance, I 8 Conversion of Sreeja Nag’s analysis for surface BRDF remote sensing to aerosol remote sensing InternationalJournalofAppliedEarthObservationandGeoinformation43(2015)102–118 ContentslistsavailableatScienceDirect International Journal of Applied Earth Observation and Geoinformation journal homepage:www.elsevier.com/locate/jag Observing system simulations for small satellite formations estimating bidirectional reflectance SreejaNaga,b, ,CharlesK.Gatebeb,c,OlivierdeWecka ∗ aMassachusettsInstituteofTechnology,Cambridge,MA02139,USA bNASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA cUniversitiesSpaceResearchAssociation,Columbia,MD21046,USA a r t i c l e i n f o a b s t r a c t Articlehistory: Thebidirectionalreflectancedistributionfunction(BRDF)givesthereflectanceofatargetasafunc- Received1November2014 tionofilluminationgeometryandviewinggeometry,hencecarriesinformationabouttheanisotropyof Accepted30April2015 thesurface.BRDFisneededinremotesensingforthecorrectionofviewandilluminationangleeffects Availableonline4September2015 (forexampleinimagestandardizationandmosaicing),forderivingalbedo,forlandcoverclassification, forclouddetection,foratmosphericcorrection,andotherapplications.However,currentspaceborne Keywords: instrumentsprovidesparseangularsamplingofBRDFandairborneinstrumentsarelimitedinthespatial Multi-angularremotesensing andtemporalcoverage.Tofillthegapsinangularcoveragewithinspatial,spectralandtemporalrequire- Smallsatellite ments,weproposeanewmeasurementtechnique:useofsmallsatellitesinformationflight,eachsatellite Formation BRDF Nag,w Sith.,a CVN.KIR.( vGisiablteeabnden,e Oar.in dfraer eWd)iemcakgi,n gOspbescterormveitnerg,t osmyasketemmult is-sipmecturalla,nteiaor-nsism uflotarn esomusall satellite formations estimating OSSE bidirmeecastuiorenmaenl tsreoffelevecrytagrnoucned,s pInott.in Jt.h eosfw Aatphpatlimeudlt iEplaeratnhgl eOs.bThsiesprvapaetriodensc raibnedsa Gnoeboseirnvifnogrmation, 43, Dec. 2015, pp 102-118. systemsimulationexperiment(OSSE)toevaluatetheproposedconceptandselecttheoptimalforma- Nag,t iSon.,a rCch.itKec.t uGreattheatbmei,n iDmi.zWes.B RMDFilulenrce, rOtai.n tdiees. TWheevcarkia,b Elesffoeftchet OoSfS Esaareteidlelnittiefie fdo;nrummbaetrioofns and imaging modes on global albedo satellites,measurementspreadintheviewzenithandrelativeazimuthwithrespecttosolarplane,solar estimation, Acta Astronautica, 126, Sept. 2016, pp. 77-97. zenithangle,BRDFmodelsandwavelengthofreflection.AnalyzingthesensitivityofBRDFestimation errorstothevariablesallowsimplificationoftheOSSE,toenableitsusetorapidlyevaluateformation Nag, S., C.K. Gatebe, T. Hilker, Simulation of Bidirectional Reflectance-Distribution Function Measurements using architectures.A6-satelliteformationisshowntoproducelowerBRDFestimationerrors,purelyinterms Smaolfl aSngautlaerlslaitmep lFinograsmevaatluioatnedsb,y ItEheEOESS JE,.t hoafn Saesinleglcetsepdac eTcroapftiwcisth in9 foArwpaprldi-eadft sEenasrotrhs. WOebservations and Remote Sensing, accepted in Aprild 2em0o1n6st,r aitne tphereabsilsit ytouseOSSEstodesignsmallsatelliteformationsascomplementstoflagshipmis- siondata.TheformationscanfillangularsamplinggapsandenablebetterBRDFproductsthancurrently possible. ©2015PublishedbyElsevierB.V. 9 1. Introduction 1995).TotalOutgoingRadiation(TOR)isestimatedat0.9W/m2by currentclimatemodels—withuncertaintiesof 2to+7W/m2(Loeb − Multi-angularremotesensing,orsensingofthesametargetat et al., 2009), reduced only by frequent, global, angular radiance multiple angles, is very important for obtaining various science measurements(Dyrudetal.,2014).Snowalbedowhenestimated products such as albedo, for land cover classification, for cloud usingonlynadirreflectanceshowsupto45–50%errorscompared detection, and for atmospheric correction (Gatebe et al., 2003). tohemisphericalreflectance(Arnoldetal.,2002).CurrentGrossPri- Sparse angular sampling of the reflected light can cause errors maryProductivity(GPP)estimatesshowuncertaintiesupto40% between15%and90%inthereflectanceproductsofmoderateres- in the terrestrial carbon uptake (Hilker et al., 2011). Vegetation olution,solarwavelengthremotesensing(Esperetal.,2000;Nag, analysis is adversely affected by under-sampling on the princi- 2015).Upto90%oftheerrorsinthecomputationofradiativeforc- palplaneandhotspots(Románetal.,2011).GPPandvegetation ing,akeyassessorofclimatechange,isattributedtothelackof reflectancequantifiestheextenttowhichforestsandvegetation detaileddescriptionofreflectedsolarflux(WielickiandHarrison, actasasinkforatmosphericcarbondioxideandisveryimportant toestimatecarbonfeedbacksofvegetationinresponsetoglobal climate change (Canadell et al., 2007). Deforestation and forest degradationaccountsfor12%ofanthropogeniccarbonemissions, ∗ Correspondingauthorat:BayAreaEnvironmentalResearchInstitute,Sonoma, which have nearly doubled in the past 30 years (Van der Werf CA95476,USA. E-mailaddress:[email protected](S.Nag). etal.,2009).Recentstudieshavealsoshownanoverestimation http://dx.doi.org/10.1016/j.jag.2015.04.022 0303-2434/©2015PublishedbyElsevierB.V. Coupled Model Based Systems Engineering (MBSE) and Observing System Simulation Experiment (OSSE) tools 10