ebook img

NASA Technical Reports Server (NTRS) 20150021271: Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20150021271: Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design NhanNguyen∗ NASAAmesResearchCenter,MoffettField,CA94035 EricTing† StingerGhaffarianTechnologiesInc.,MoffettField,CA94035 SoniaLebofsky‡ StingerGhaffarianTechnologiesInc.,MoffettField,CA94035 Thispaperpresentsdataanalysisofaflexiblewingwindtunnelmodelwithavariablecambercontinuoustrailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL).ThewindtunneltestwasdesignedtoexploretherelativemeritoftheVCCTEFconceptforimprovedcruise efficiencythroughtheuseoflow-costaeroelasticmodeltesttechniques. Theflexiblewingmodelisa10%-scalemodel ofatypicaltransportwingandisconstructedofwovenfabriccompositesandfoamcore. Thewingstructuralstiffness inbendingistailoredtobehalfofthestiffnessofaBoeing757-eratransportwingwhilethetorsionalstiffnessisabout thesame. Thisstiffnessreductionresultsinawingtipdeflectionofabout10%ofthewingsemi-span. TheVCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15individualflapelements. Thethreechordwisecambersegmentscanbepositionedappropriatelytocreateadesired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieveadragreductionofupto6.31%andanimprovementinthelift-to-dragratio(L/D)ofupto4.85%.Amethodfor estimatingthebendingandtorsionalstiffnessesoftheflexiblewingUWALwindtunnelmodelfromstaticloadtestdatais presented.Theresultingestimationindicatesthatthestiffnessoftheflexiblewingissignificantlystifferintorsionthanin bendingbyasmuchas3to1.Theliftpredictionfortheflexiblewingiscomputedbyacoupledaerodynamic-structural model. ThecoupledmodelisdevelopedbycouplingaconceptualaerodynamictoolVorlaxwithafinite-elementmodel oftheflexiblewingviaanautomatedgeometrydeformationtool. Basedonthecomparisonoftheliftcurveslope,the liftpredictionfortherigidwingisingoodagreementwiththeestimatedliftcoefficientsderivedfromthewindtunnel testdata. DuetothemovementoftheVCCTEFduringthewindtunneltest,uncertaintyintheliftpredictiondueto theindicatedvariationsoftheVCCTEFdeflectionisstudied.Theresultsshowasignificantspreadintheliftprediction whichcontradictstheconsistencyintheaerodynamicmeasurements, thussuggestingthattheindicatedvariationsas measuredbytheVICONsystemmaynotbereliable. Theliftpredictionoftheflexiblewingagreesverywellwiththe measuredliftcurveforthebaselineconfiguration. Thecomputedbendingdeflectionandwash-outtwistoftheflexible wingalsomatchreasonablywellwiththeaeroelasticdeflectionmeasurements. Theresultsdemonstratethevalidityof theaerodynamic-structuraltoolforusetoanalyzeaerodynamicperformanceofflexiblewings. I. Introduction Theaircraftindustryhasbeenrespondingtotheneedforenergy-efficientaircraftbyredesigningairframestobeaerodynam- icallyefficient,employinglight-weightmaterialsforaircraftstructuresandincorporatingmoreenergy-efficientaircraftengines. Reducing airframe operational empty weight (OEW) using advanced composite materials is one of the major considerations forimprovingenergyefficiency. Modernlight-weightmaterialscanprovidelessstructuralrigiditywhilemaintainingsufficient load-carrying capacity. As structural flexibility increases, aeroelastic interactions with aerodynamic forces and moments can alteraircraftaerodynamicssignificantly,therebypotentiallydegradingaerodynamicefficiency. UndertheFundamentalAeronauticsPrograminNASAAeronauticsResearchMissionDirectorate,theFixedWingproject isconductingmultidisciplinaryresearchtoinvestigateadvancedconceptsandtechnologiesforfutureaircraftsystems.ANASA study entitled “Elastically Shaped Future Air Vehicle Concept” was conducted in 20101,2 to examine new concepts that can ∗NASAAmesResearchCenter,ResearchScientist,AIAAAssociateFellow,[email protected] †StingerGhaffarianTechnologiesInc.,NASAAmesResearchCenter,ResearchEngineer,[email protected] ‡StingerGhaffarianTechnologiesInc.,NASAAmesResearchCenter,ResearchEngineer,[email protected] 1of28 AmericanInstituteofAeronauticsandAstronautics enableactivecontrolofwingaeroelasticitytoachievedragreduction.Thisstudyshowedthathighlyflexiblewingaerodynamic surfacescanbeelasticallyshapedin-flightbyactivecontrolofwingtwistandverticaldeflectioninordertooptimizethelocal angles of attack of wing sections to improve aerodynamic efficiency through drag reduction during cruise and enhanced lift performanceduringtake-offandlanding. Thestudyshowsthatactiveaeroelasticwingshapingcontrolcanhaveapotentialdragreductionbenefit. Conventionalflap andslatdevicesinherentlygeneratedragastheyincreaselift. Thestudyshowsthatconventionalflapandslatsystemsarenot aerodynamically efficient for use in active aeroelastic wing shaping control for drag reduction. A new flap concept, referred to as Variable Camber Continuous Trailing Edge Flap (VCCTEF) system, was conceived by NASA to address this need.1 Initial study results indicate that, for some applications, the VCCTEF system may offer a potential pay-off in drag reduction that could provide significant fuel savings. In order to realize the potential benefit of drag reduction by active span-load and aeroelasticwingshapingcontrolwhilemeetingallotherperformancerequirements,theapproachforhighliftdevicesneedsto beconsideredaspartofthewingshapingcontrolstrategy. NASAandBoeingarecurrentlyconductingajointstudytodeveloptheVCCTEFfurtherundertheresearchelementActive AeroelasticShapeControl(AASC)withintheFixedWingproject.3,4 ThisstudyisbuiltuponthedevelopmentoftheVCCTEF systemforNASAGenericTransportModel(GTM)whichisessentiallybasedontheBoeing757airframe,5 employinglight- weight shaped memory alloy (SMA) technology for actuation and three separate chordwise segments shaped to provide a variablecambertotheflap. Thiscamberedflaphaspotentialfordragreductionascomparedtoaconventionalstraight,plain flap. Theflapisalsomadeupofindividual2-footspanwisesectionswhichenabledifferentflapsettingateachflapspanwise position. This results in the ability to control the wing twist shape as a function of span, resulting in a change to the wing twist to establish the best lift-to-drag ratio (L/D) at any aircraft gross weight or mission segment. Wing twist on traditional commercialtransportdesignsisdictatedbytheaeroelasticdeflectionofafixed“jigtwist”shapeappliedatmanufacture. The design of this jig twist is set for one cruise configuration, usually for a 50% fuel loading or mid-point on the gross weight schedule. TheVCCTEFoffersdifferentwingtwistsettings,hencedifferentspanwiseloadings,foreachgrossweightcondition andalsodifferentsettingsforclimb,cruiseanddescent,amajorfactorinobtainingbestL/Dconditions. ThesecondfeatureofVCCTEFisacontinuoustrailingedgeflap.Theindividual2-footspanwiseflapsectionsareconnected with a flexible covering, so no breaks can occur in the flap planforms, thus reducing drag by eliminating these breaks in the flapcontinuitywhichotherwisewouldgeneratevorticitythatresultsinadragincreaseandalsocontributestoairframenoise. Thiscontinuoustrailingedgeflapdesigncombinedwiththeflapcamberresultinlowerdragincreaseduringflapdeflections. Inaddition,italsooffersapotentialnoisereductionbenefit. Fig. 1-WingConfiguredwiththeVariableCamberContinuousTrailingEdgeFlap TheVCCTEFisdividedinto14sectionsattachedtotheouterwingand3sectionsattachedtotheinnerwing,asshownin Fig. 1.4 Each24-inchsectionhasthreecamberflapsegmentsthatcanbeindividuallycommandedtoformavariablecamber 2of28 AmericanInstituteofAeronauticsandAstronautics trailingedge,asshowninFig. 2. Thesecamberflapsarejoinedtothenextsectionbyaflexibleandsupportedmaterial(shown inblue)installedwiththesameshapeasthecamberandthusprovidingcontinuousflapsthroughoutthewingspanwithnodrag producinggaps. Fig. 2-VariableCamberFlap Usingthecamberpositioning,afull-span,low-drag,high-liftconfigurationcanbeactivatedthathasnodragproducinggaps andalowflapnoisesignature. ThisisshowninFig. 3. Tofurtheraugmentlift,aslottedflapconfigurationisformedbyanair passagebetweenthewingandtheinnerflapthatservestoimproveairflowovertheflapandkeeptheflowattached. Thisair passageappearsonlywhentheflapsareextendedinthehighliftconfiguration. Fig. 3-CruiseandHighLiftVCCTEFConfigurations Figure 4 illustrates the GTM equipped with the VCCTEF for wing shaping control. By actively shaping the wing aero- dynamicsurfaceusingtheVCCTEF,optimalaerodynamicperformancecouldpotentiallyberealizedatanypointintheflight envelope. TheVCCTEFreliesontwomechanismstoimproveaerodynamicperformance: 1)wingtwistoptimizationforflexi- blewingdesign,and2)variablecamberandcontinuoustrailingedgeforimprovedaerodynamics. Thisfixed-wingtechnology maybereferredtoasPerformanceAdaptiveAeroelasticWing(PAAW)technology. Fig. 4-GTMwithVCCTEF 3of28 AmericanInstituteofAeronauticsandAstronautics II. WindTunnelModelofFlexibleWingwithVCCTEF For exploratory assessment of the aerodynamic potential of the VCCTEF concept, a 10%-scale aeroelastic model of a softened Boeing 757-based GTM wing was constructed for a wind tunnel experimental investigation in the University of WashingtonAeronauticalLaboratory(UWAL)inAugustof2013.6 Thesemi-spanofthemodelis5.6075ft,asshowninFig. 5. Themodelisconstructedofwovenfabriccompositesskinandextrudedpolystyrenefoamcore. Thecompositelaminates andextrudedpolystyrenefoamcorearestructurallytailoredtoattainhalfofthebendingstiffnessofthescaledbaselineGTM wingstiffnesswhilekeepingtorsionalstiffnessaboutthesame. Thistailoredstiffnessistoachievea10%wingtipdeflection. The VCCTEF parts are fabricated by 3D printing. The flap segments are mechanically interlocking aerodynamic surfaces in thechordwisedirectionandmatewithsiliconeelastomermaterialbetweenspanwiseflapsections,asshowninFig. 6. Theflap segmentsarehingedatthreechordwiselocationsandaredesignedtobefullyadjustable. ThedimensionsoftheVCCTEFare showninFig. 7. Fig. 5-UWALWindTunnelModelwithVCCTEF(CourtesyofUniversityofWashingtonAeronauticalLaboratory) Fig. 6-VCCTEFConstruction(CourtesyofUniversityofWashingtonAeronauticalLaboratory) 4of28 AmericanInstituteofAeronauticsandAstronautics Fig. 7-VCCTEFDimension(CourtesyofUniversityofWashingtonAeronauticalLaboratory) Figure 8 shows an exploded view of the UWAL wind tunnel model of the flexible wing mated to a center body fairing attachedtoanexternalfloor-mountedbalance. Fig. 8-ExplodedViewofWindTunnelModel(CourtesyofUniversityofWashingtonAeronauticalLaboratory) TheUWALaeroelasticwindtunnelmodelwasbuiltwithdifferentstiffnessthanthescaledGTMwinganditsjigshapewas notoptimizedforbestaerodynamicperformanceattestconditions. ThesamejigshapeasthatoftheGTMwingwasused. The wash-outtwististhereforenon-optimalforthemodelwhenitoperatesatthedesignliftcoefficientof0.51.ACFDoptimization wasconductedpriortothetesttoidentifyanoptimaljigtwist. However,thisoptimizedjigtwistwasnotincorporatedintothe finalmodelfabricationduetoprogrammaticissues. TherelevantmodelscalinginformationisgiveninTable1. 5of28 AmericanInstituteofAeronauticsandAstronautics Full-Scale Semi-SpanModel M 0.797 0.1162 ∞ C 0.51 0.51 L h,ft 36,000 0 q ,psf 211.09 20.00 ∞ S/2,ft2 975.5 9.638 c¯,ft 16.6417 1.5963 b/2,ft 62.4167 6.1262 Table1-ModelParameters Thewindtunneltestisdesignedtobeanexploratory,proof-of-conceptstudy. Theobjectiveofthewindtunnelexperiment istoexploretherelativemeritoftheVCCTEFdesignasadragreductioncontroldevice,andtheabilitytosimulatetheproblem inarelativelylow-costtest. Lift,drag,sideforce,pitchingmoment,yawingmoment,androllingmomentwererecordedfrom the external floor-mounted balance. In addition, aeroelastic deflections of the flexible wing model were also measured by a VICONmotiontrackingsystem. TheVICONsystemmeasuredthe3Ddisplacementofthewindtunnelmodelat54pointson themodel. To ensure that the wind tunnel model has correct aeroelastic properties, static load tests and frequency measurements were conducted. A detail 3D NASTRAN model was constructed by UWAL for comparison with the measurements.6 The 3D NASTRAN results demonstrate an excellent agreement with the static load test data and measured frequencies. A stick NASTRAN model was also constructed by UWAL to match the deflection information from the 3D NASTRAN model. In addition,aNASTRANDoubletLatticeflutteranalysiswasperformedbyUWALtoensurethatthewindtunnelisflutter-freein thewindtunnel.6 Flutterspeedsweredeterminedtobewellabovethetestsectionairspeedof39.54m/sec. III. WindTunnelTest Thetestwasconductedatanominaldynamicpressureof20psf. Off-conditiondataandadditionalrunsat10,15,25and 30psfwerealsocollectedforsomecases. ThenominaltestsectionairspeedwasMach0.1162. Figure9isaphotographofthe flexiblewingwindtunnelmodelintheUWALtestsection. Fig. 9-FlexibleWingWindTunnelModelinUWALTestSection(CourtesyofUniversityofWashingtonAeronautical Laboratory) Thewindtunnelmodelwastestedwithatotalof13VCCTEFconfigurationsrangingfromzerotofulldeflection. These VCCTEFconfigurationsaredesignatedas: 6of28 AmericanInstituteofAeronauticsandAstronautics • FLAP0-baselinezerodeflection • FLAP1-fulldeflectionforallflapsections • FLAP2-varyingfromamaximumdeflectionattheinboardandoutboardflapstoaminimumdeflectionatthemid-span flap • FLAP3-varyingfromaminimumdeflectionattheinboardandoutboardflapstoamaximumdeflectionatthemid-span flap • FLAP4-varyingmonotonicallyfromamaximumdeflectionattheinboardflaptozerodeflectionattheoutboardflap • FLAP5-varyingmonotonicallyfromzerodeflectionattheinboardflaptoamaximumdeflectionattheoutboardflap • FLAP6-similartoFLAP4configurationbutwithasmallerdeflection • FLAP7 - varying monotonically from a maximum positive deflection at the inboard flap to a negative deflection at the outboardflap • FLAP8-rigid-bodydeflectionwiththetwooutercambersegmentsatzerorelativedeflection • FLAP9-deflectionofthetrailingedgecambersegments • FLAP10-intermediatedeflection • FLAP11-fullnegativedeflection • FLAP12-FLAP6configurationplusagurneyflap Figure10illustratessomeoftheseflapconfigurations. Fig. 10-VCCTEFFlapConfigurations(CourtesyofUniversityofWashingtonAeronauticalLaboratory) ThetestrunmatrixfortheVCCTEFisshowninTable2. 7of28 AmericanInstituteofAeronauticsandAstronautics FLAP 0 1 2 3 4 5 6 7 8 9 10 11 12 q =0−20psf,α =0o 18 25 32 42 55 73 79 86 93 ∞ 87 q =0−20psf,α =1o 19 26 33 38 43 49 56 64 74 80 94 ∞ 88 q =0−20psf,α =1.5o 27 34 ∞ q =0−20psf,α =2o 20 28 35 39 44 50 57 65 75 81 89 95 ∞ q =0−20psf,α =2.5o 29 36 ∞ q =0−20psf,α =3o 30 40 45 51 58 66 76 82 90 96 ∞ q =0−20psf,α =4o 22 41 46 52 59 67 77 83 91 97 ∞ q =0−20psf,α =4.5o 47 53 ∞ q =0−20psf,α =5o 23 60,61 68 78 84 92 98 ∞ q =0−20psf,α =5.5o 62 ∞ q =0−20psf,α =6o 99 ∞ q =0−20psf,α =6.5o 100 ∞ q =10psf,α =−2o−10.5o 117 121 ∞ q =15psf,α =−2o−8.5o 118 122 ∞ 104 106 109 q =20psf,α =−2o−7o 111 102 113 ∞ 116 107 123 q =25psf,α =−2o−5.5o 119 124 ∞ q =30psf,α =−2o−4.5o 120 125 ∞ Table2-TestUW2087RunMatrix TheVCCTEFsegmentpositionsfortheseconfigurationsareshowninTable3. Thefollowingconventionisused. Aflap sectionisaportionoftheVCCTEFalongthespanwisedirection. Thereare5flapsectionsnumberedfrom1attheinboardto 5 at the outboard. Each flap section is comprised of three camber segments labeled as A for the innermost camber segment, Bforthemiddlecambersegment, andCforthetrailingedgecambersegment. ThisisshowninFig. 11. Thepositionangle isdenotedby(a/b/c)wherea,b,andcareflappositionsindegreesrelativetotheforwardflapsegment. ForsegmentA,the positionangleiswithrespecttothefixedwingportion. Fig. 11-VCCTEFFlapNotation 8of28 AmericanInstituteofAeronauticsandAstronautics FLAP Run Section1 Section2 Section3 Section4 Section5 1 25 (5/4/9) (6/7/9) (9/7/10) (7/8/10) (6/9/9) 1* 106 (1/7/11) (3/9/7) (5/7/8) (5/9/7) (5/10/10) 1** 107 (1/7/11) (3/9/7) (5/7/8) (5/9/7) (5/10/10) 32 (3/2/10) (4/5/4) (5/3/4) (4/6/5) (5/10/10) 2 36 (2/3/9) (4/5/4) (5/3/5) (4/6/4) (4/10/10) 38 (2/3/5) (5/6/5) (6/6/11) (5/6/5) (4/6/5) 3 41 (2/3/5) (4/6/5) (4/6/11) (4/6/5) (3/6/5) 42 (2/5/9) (3/6/3) (4/1/6) (2/5/2) (0/0/0) 4 47 (1/4/9) (3/6/2) (4/1/6) (2/5/1) (0/0/0) 49 (0/0/0) (2/5/1) (4/2/7) (3/5/6) (3/8/9) 5 51 (0/0/0) (2/5/1) (4/2/7) (3/5/6) (3/8/9) 53 (0/0/0) (2/5/1) (4/2/7) (3/5/5) (3/8/9) 55 (1/1/1) (0/2/0) (0/0/2) (0/0/0.5) (0/0/0) 61 (1/1/1) (0/2/0) (0/0/2) (0/0/0.5) (0/0/0) 6 62 (1/1/1) (0/2/0) (0/0/2) (0/0/0.5) (0/0/0) 111 (1/1/1) (0/1/1) (0/0/2) (0/0/0) (0/0/0) 7 64 (3/3/4) (2/3/2) (0/0/3) (0/0/0) (0/0/−2) 7* 109 (3/4/3) (2/5/1) (2/0/2) (0/−1/0) (0/0/−2) 73 (4/0/0) (4/0/0) (5/0/0) (5/0/0) (4/0/0) 8 78 (3/0/0) (4/0/0) (5/0/0) (4/0/0) (4/0/0) 79 (0/0/6) (0/0/6) (0/0/8) (0/0/6) (0/0/6) 9 81 (0/0/6) (0/0/6) (0/0/8) (0/0/6) (0/0/6) 84 (0/0/6) (0/0/6) (0/0/8) (0/0/6) (0/0/6) 86 (2/3/2) (3/3/1) (4/2/5) (2/5/2) (2/5/3) 10 91 (2/3/2) (3/3/1) (4/2/5) (2/5/2) (2/5/3) 92 (1/3/2) (3/3/1) (4/2/5) (2/5/2) (2/5/2) 93 (−1/0/−3) (0/0/−6) (−1/−4/0) (−2/0/−5) (−4/0/−4) 11 100 (−1/0/−4) (0/0/−5) (−1/−3/0) (−2/0/−5) (−3/0/−4) Table3-VCCTEFDeflections IV. AeroelasticEffectsonLiftandDrag Theaeroelasticdeflectionsofaflexiblesweptbackwindtunnelmodelcontributesignificantlytotheaerodynamicperfor- manceduetothewash-outeffectresultingfromwingbendingandtwist. Additionally,theVCCTEFdeflectionsalsocontribute toangleofattackchanges. Theaeroelasticangleofattackofawingsectioncanbeexpressedas7 dW(y¯) N ∂α α (y)=α−α (y)−γ(y¯)cosΛ−Θ(y¯)cosΛ− sinΛ+∑ cδ (y )cosΛ (1) c i i h h dy¯ ∂δ i=1 i whereα isthegeometricangleofattackofthewingsectionaboutthepitchaxisy,α istheinducedangleofattackduetothe i downwashaboutthepitchaxisy,γ isthewingpre-twistangleabouttheelasticaxisy¯=y/cosΛ(positivenosedown),Θisthe wing torsional twist about the elastic axis y¯(positive nose down),W is wing vertical bending along the elastic axis (positive upward),Λisthesweepangleoftheelasticaxis,δ istheabsolutedeflectionofthei-thflapsegmentoftheVCCTEFaboutthe i hingeaxisy whichhasasweepangleofΛ ,and∂α /∂δ istheangleofattacksensitivityorcambercontrolderivativedueto h h c i theVCCTEFflapdeflection. Thefollowingconventionisused.Aquantityexpressedwiththeindependentvariableyisonewithrespecttothestreamwise direction,e.g.,c(y)isthesectionalchordinthestreamwisedirection. Aquantityexpressedwiththeindependentvariabley¯is onewithrespecttotheelasticaxis;e.g.,Θ(y¯)isthewingtwistabouttheelasticaxis. Thequantityδ (y )istheflapdeflection i h aboutthehingeaxis. In general, the aeroelastic deflections are functions of the angle of attack and the flap deflection. Therefore, they can be 9of28 AmericanInstituteofAeronauticsandAstronautics expressedas ∂Θ(y¯) N ∂Θ(y¯) Θ(y¯)=Θ (y¯)+ α+∑ δ (2) 0 i ∂α ∂δ i=1 i ∂W(y¯) N ∂W(y¯) W(y¯)=W (y¯)+ α+∑ δ (3) 0 i ∂α ∂δ i=1 i where Θ andW are the aeroelastic deflections at zero angle of attack, and the partial derivatives are the sensitivities of the 0 0 aeroelasticdeflectionswithrespecttotheangleofattackandtheflapdeflection. Therefore,theexpressionfortheaeroelasticangleofattackofawingsectioncanbewrittenas (cid:20) (cid:18) (cid:19) (cid:21) ∂Θ(y¯) ∂ dW(y¯) dW (y¯) α (y)=α 1− cosΛ− sinΛ −α (y)−γ(y¯)cosΛ−Θ (y¯)cosΛ− 0 sinΛ c i 0 ∂α ∂α dy¯ dy¯ N (cid:20)∂α ∂Θ(y¯) ∂ (cid:18)dW(y¯)(cid:19) (cid:21) +∑ ccosΛ − cosΛ− sinΛ δ(y ) (4) h h ∂δ ∂δ ∂δ dy¯ i=1 i i i Itcanbeseenthattheaeroelasticdeflectionscancausethedesiredsectionalangleofattacktobenon-optimal. Theeffect oftheadaptiveaeroelasticwingshapingcontrolbytheVCCTEFiscapturedinthelastterm. Theterm ∂αc istherigidcamber ∂δ (cid:16) (cid:17) controltocompensateforthenon-optimalsectionalangleofattack. Thetwoterms ∂Θ and ∂ dW aretheaeroelasticwing ∂δ ∂δ dy¯ shapingcontrolbyleveragingwingflexibilitytochangethewash-outtwistofawinginordertoachieveimprovedaerodynamic performance. Thus,theeffectofadaptiveaeroelasticwingshapingcontrolistooptimizethespanloadatanyoperatingpoint insideagivenflightenvelope. Thecambercontrolderivative ∂αc canbedirectlyestimatedfromthinairfoilpotentialflowtheorybyevaluatingthefollow- ∂δi ingintegraltransformwiththepotentialkernelfunction f(θ)=cosθ−1as8 ˆ ˆ ∂α 1 θi+1 1 θi+1 =− f(θ)dθ =− (cosθ−1)dθ (5) ∂δ π π i θi θi where (cid:48) c (cid:48) x = (1−cosθ) (6) 2 (cid:48) c (cid:48) (cid:48) c −x = (1−cosθ) (7) i 2 i (cid:48) (cid:48) andc istheairfoilchordandx istheflaphingepositionofthei-thflapsegmentmeasurednormaltothehingeaxisfromthe i trailingedgeandisgivenby (cid:48) (cid:48) x =(n+1−i)c (8) i f (cid:48) wherec istheflapchordofacambersegmentmeasurednormaltothehingeaxis. f (cid:48) (cid:48) (cid:48) (cid:48) (cid:48) Sothefirsthingepositionisatx =Nc ,thelasthingepositionisatx =c ,andthetrailingedgepositionisatx =0. 1 f N f N+1 Thisintegralisevaluatedas √ (cid:12)c∗ ∂α cos−1(−c∗)− 1−c∗2(cid:12) i+1 c = (cid:12) (9) ∂δ π (cid:12) i (cid:12)c∗ i where (cid:48) x c∗=1−2 i (10) c(cid:48) Thesectionalliftcoefficientisexpressedas (cid:34) (cid:35) dW(y¯) N ∂α c (y)=c (y)+c (y) α(y)−γ(y¯)cosΛ−Θ(y¯)cosΛ− sinΛ+∑ cδ (y )cosΛ (11) L L0 Lα dy¯ ∂δ i h h i=1 i wherec isthesectionalliftcoefficientatzeroangleofattackandc isthesectionalliftcurveslope,bothofwhichaccount L0 Lα fortheinducedangleofattack. 10of28 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.