ebook img

NASA Technical Reports Server (NTRS) 20150011467: Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor PDF

2.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20150011467: Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Observation of mountain lee waves with MODIS 10.1002/2013GL058770 NIR column water vapor KeyPoints: A.Lyapustin1,M.J.Alexander2,L.Ott1,A.Molod3,B.Holben1,J.Susskind1,andY.Wang1,4 (cid:129) Mountainwavesarediscoveredinthe MODISNIRcolumnwatervapor 1NASAGoddardSpaceFlightCenter,Greenbelt,Maryland,USA,2NWRA-CoRAOffice,Boulder,Colorado,USA,3EarthSystem (cid:129) Weobserve3-4to15kmleewaves ScienceInterdisciplinaryCenter,UniversityofMaryland,CollegePark,Maryland,USA,4JointCenterforEarthScienceTechnology, withanamplitudeof50-70%ofthe totalCWV UniversityofMaryland,BaltimoreCounty,Baltimore,Maryland,USA (cid:129) Theresultissupportedbyradiosonde andGEOS-5 atmospheric stability analysis Abstract Mountain lee waves have been previously observed in data from the Moderate Resolution ImagingSpectroradiometer(MODIS)“watervapor”6.7μmchannelwhichhasatypicalpeaksensitivityat 550hPainthefreetroposphere.Thispaperreportsthefirstobservationofmountainwavesgeneratedbythe Correspondenceto: AppalachianMountainsintheMODIStotalcolumnwatervapor(CWV)productderivedfromnear-infrared A.Lyapustin, (NIR)(0.94μm)measurements,whichindicateperturbationsveryclosetothesurface.TheCWVwavesare [email protected] usuallyobservedduringspringandlatefallorsomesummerdayswithlowtomoderateCWV(below~2cm). Theobservedleewavesdisplaywavelengthsfrom3–4to15kmwithanamplitudeofvariationoftencomparable Citation: to~50–70%ofthetotalCWV.Sincethebulkofatmosphericwatervaporisconfinedtotheboundarylayer,this Lyapustin,A.,M.J.Alexander,L.Ott,A. indicatesthattheimpactofthesewavesextendsdeepintotheboundarylayer,andthesemaybethelowestlevel Molod,B.Holben,J.Susskind,andY. Wang(2014),Observationofmountain signaturesofmountainleewavespresentlydetectedbyremotesensingovertheland. leewaveswithMODISNIRcolumn watervapor,Geophys.Res.Lett.,41, 710–716,doi:10.1002/2013GL058770. 1. Introduction Received19NOV2013 Watervaporisapotentgreenhousegasthebulkofwhichisconfinedtotheboundarylayer.Itisamajor Accepted3JAN2014 Acceptedarticleonline8JAN2014 componentoftheEarthenergyandwatercyclesandamajorparameterinweatherforecastingandclimate Publishedonline30JAN2014 modeling.Watervaporrespondstosurfacetemperaturechangesthroughradiativeeffectsandclimatefeed- backs[Trenberthetal.,2005;Wagneretal.,2006;Solomonetal.,2010].Accurateknowledgeofatmospheric watervaporiscrucialtocorrectthetimedelayandphasedistortionsfortherepeat-passInterferometricSynthetic ApertureRadarapplications[e.g.,Lietal.,2006,2009]especiallyforsmall-amplitudegeophysicalsignalswithlong wavelengths,includinginterseismicdeformationandsomeanthropogenicprocesses[e.g.,ZebkerandRosen, 1997].Satelliteandground-basedmeasurementsshowthatoverlanditmayexhibitlargespatialandtemporal variability[e.g.,Kumaretal.,2010].Alargepartofthisvariabilitymayberelatedtotheairmasstransportor evaporationfromopenwaterbodiesandevapotranspirationofvegetationandsoils.Inthispaper,wereportnew observationspointingtoamechanismresponsibleforperiodicoscillationsinthecolumnwatervapor(CWV) relatedtomountainleewaves. Atmosphericgravitywavesaregeneratedbyloweratmosphericsources,e.g.,flowovermountains,sporadic diabaticheatinginconvectivesystems,andimbalanceinjetstreamsandfronts[Kimetal.,2003].Mountain leewavesarecausedbyanairflowovermountainridgeswithinastablystratifiedatmosphere[Smith,1976; Durran,1986].Breakingwavesandsmall-scalewavescanbeasourceofturbulenceandstrongverticalair currents,whichcanbeanaviationhazard[Uhlenbrocketal.,2007;Sharmanetal.,2012].Dependingon temperatureandavailablemoisture,cloudsmayformintheleeofmountainrangesinrowsquasi-parallelto theterrainandorthogonaltothedirectionoftheflow.Satelliteclassificationoforographiccloudsbeganwith thefirstweathersatellite,theTelevisionInfraredOperationalSatellite,whichwaslaunchedin1960[e.g.,Conover, 1964].Sincethen,manystudiesreportedmountainwavecloudsignaturesonEarth[e.g.,Fritz,1965;Ernst,1976], andevenMars[e.g.,KahnandGierasch,1982]. Atmosphericgravitywaveshavebeenwidelystudiedusinghigh-resolutionremotelysensedtemperature observationsfromspace.Aquasatelliteobservationshavebeenusedtoimageandstudyorographicgravity wavesinthestratosphere[e.g.,WuandZhang,2004;Eckermannetal.,2007;AlexanderandBarnet,2007; Alexanderetal.,2009;AlexanderandTeitelbaum,2011].LimbScanningmeasurementsfromspacealsoprovide observationsofstratosphericmountainwaves[e.g.,EckermannandPreusse,1999;Jiangetal.,2002;Alexander etal.,2008].Mountain-generatedgravitywavesfromtheAndesobservedbytheAtmosphericInfraredSounder havehorizontalscalesof~102kmandaltitudesof~20–40km[AlexanderandBarnet,2007;Jiangetal.,2013]. LYAPUSTINETAL. ©2014.AmericanGeophysicalUnion.AllRightsReserved. 710 Geophysical Research Letters 10.1002/2013GL058770 Mountain-generatedwavesarealsoregularlyobservedfromradiancein6.7μm(watervapor)channelwith mostradiancetypicallygeneratedataltitudesaboveapproximately550hPa[Uhlenbrocketal.,2007;Feltzetal., 2009]wherethewavescanpresentaviationhazards. Thehighspatialresolution(~1km)CWVisaremotesensingproductoftheModerateResolutionImaging Spectroradiometer(MODIS)[GaoandKaufman,2003]andMediumResolutionImagingSpectrometer[Bennartz andFischer,2001;Lindstrotetal.,2012].Inthiswork,weareusingcolumnwatervaporretrievedaspartofthe Multi-AngleImplementationofAtmosphericCorrection(MAIAC)algorithmdevelopedforMODIS.MAIACisa new-generationMODISalgorithmwhichusesatimeseriesanalysisandprocessingofgroupsofpixelsfor simultaneousretrievalsofatmosphericaerosolandlandsurfacereflectanceproperties[Lyapustinetal.,2011, 2012].Itincludesclouddetection[Lyapustinetal.,2008]aswellasaCWVretrieval(basedonnear-infrared(NIR) channelsat0.94μm)requiredforcorrectionofthewatervaporabsorption.DespitethefactthatCWVisan operationalMODISproduct(MOD05)[GaoandKaufman,2003],MAIACalsoderivesCWVbecausetheretrieval algorithmisfastandsimpleandsuchanapproachhelpsavoidunnecessarydatatransfersandcross-product dependence.TheMAIACCWVretrievalapproachisdescribedinsection2,followedbyadiscussionofthe mountainwavesobservedinCWVfieldinsection3. 2. MAIAC WaterVapor Retrieval MAIACretrievescolumnwatervaporoverthelandsurfacesandtheinlandorcoastalwaterswithglint.The algorithmusesthreeMODISNIRwatervaporchannelswiththefollowingbandcenterandwidth(nm):17 (905,30),18(936,10),and19(940,50).Theabsorptionishighestinband18anddecreasesinbands19and 17.Theretrievalsarebasedonthefollowingapproximateformulaforthetopofatmospherereflectance: Ttotðμ ;μÞ Rλðμ0;μ;φÞ≅RDλðμ0;μ;φÞþ1(cid:2)λqλðμ00Þc0;λρλðμ0;μ;φÞ; (1) where(μ ,μ,φ)arecosinesofsolarandviewzenithanglesandrelativeazimuth, RD isapathreflectance, 0 λ Ttλotðμ0;μÞ=〈T↓(μ0)T↑(μ0)〉λ is a total two-way atmospheric transmittance, c0,λ is spherical albedo of atmo- sphere,andρλ(μ0,μ,φ)andqλ(μ0)aresurfacereflectanceandalbedo.The terms RDλ and Ttλot arespectrally integratedwiththespectralresponsefunctionofagivenchannelandsolarirradiance.Duetostrongwater vaporabsorptionandusuallylowaerosolscatteringintheNIR,thepathreflectanceandthemultiplescatter- ingoflightbetweenthesurfaceandtheatmosphere(denominatorinthesecondterm)canbeomitted.Ifthe surfacereflectancechangeslittleinanarrowabsorptionintervalof0.9–0.94μm,thenatwo-channelratio algorithmcanbeusedtoderiveCWV: Ttot R Ttot R 18 ¼ 18;and 19 ¼ 19: (2) Ttot R Ttot R 19 19 17 17 Foragivenviewgeometry,thesolutionisfoundbysearchingthelook-uptable(LUT)oftransmittanceratio. TheLUTwascomputedwithInterpolationandProfileCorrection(IPC)algorithm[Lyapustin,2003]designed forfastandaccurateradiativetransfercomputationsinabsorptionbandswitharbitraryspectralresolution. Themonochromaticwatervaporabsorptionwascomputedwithresolutionof0.01cm(cid:2)1basedonHITRAN- 2000[Rothmanetal.,2003]usingthestandardatmosphericprofiles.Toaccountfordifferenteffectiveabsorption andsensitivityofdifferentbandratios,wefollow[GaoandKaufman,2003]andcomputethemeanwatervapor asfollows: W ¼f W þf W ; (3) 1 1 2 2 whereW arewatervaporvaluesderivedfromdifferentchannelratiosandf areweightingfunctionsrelated i i tothesensitivitiesofthetwobandpairs.TheyarecomputednumericallyfromtheratiosTtotðμ ;μ;WÞ= 18 0 Ttotðμ ;μ;WÞandTtotðμ ;μ;WÞ=Ttotðμ ;μ;WÞstoredintheLUT. 19 0 19 0 17 0 ThedevelopedalgorithmwasvalidatedagainstAerosolRoboticNetwork(AERONET)[Holbenetal.,1998]CWV groundmeasurementsfor156stationsgloballywhichshowedthatincloud-freeconditionstheretrievalsare generallyunbiasedandaccurateto5–10%.Thesenumbersagreewithaccuracyassessmentsofoperational MOD05product.Similarly,wefoundloweraccuracy(20–30%)overareaswithrediron-richsoils(e.g.,Canberra, Australia),whosereflectancechangesconsiderablyinthe0.9–1μmspectralregionduetoabsorptionofthe ironcompounds.Ontheotherhand,MAIACCWVisfoundtobelowerthanMOD05by~5–20%,providingmore LYAPUSTINETAL. ©2014.AmericanGeophysicalUnion.AllRightsReserved. 711 Geophysical Research Letters 10.1002/2013GL058770 Figure1.MODIS(top)Terraand(bottom)AquaRGBandCWVimageforthemid-AtlanticU.S.regionon2June2011.The differenceinTerra-Aquaoverpasstimeis1h40min. accurateresult.ThisisconfirmedbyvariousMOD05CWVvalidationstudiesagainstradiosonde,GPS,and MicrowaveWaterRadiometerdatashowingthewetbias(highervalues)ofMOD05productinthesamerange of~5–20%[Liuetal.,2013;Luetal.,2011;Albertetal.,2005;Lietal.,2003;PrasadandSingh,2009;Kumaretal., 2010].Atthesametime,validationstudiesreportaverygoodagreementofAERONETCWVwithGPSand radiosondemeasurementswithr2~0.95–0.99[Liuetal.,2013;PrasadandSingh,2009;Kumaretal.,2010].Itis worthmentioningthatAERONETCWValgorithmusesWV-bandmodelcoefficientsgeneratedbytheIPCcode [Lyapustin,2003]foreachindividualSunphotometerfilterfunction. Apartfrompossiblespectroscopy-relateddifferencesincomputingatmospherictransmittancethatremoves wetbias,theMAIACapproachisalsosimplerthanMOD05algorithm.Thelatterassumesalinearchangeof surfacereflectanceacross0.9–0.94μmintervalandusestwoadditionalMODISchannelsB2(0.865μm)andB5 (1.24μm)topredictsurfacereflectanceinbands17–19.GaoandKaufman[2003]assessedtheaccuracyofthe linearmodelas2.4–3.9%formostsoils,rocks,vegetation,andsnowand8.4%fortheiron-richsoils.Wetried theGaoandKaufman[2003]five-bandapproachandfoundahighernoise,oftenbyafactorof2–3,thanthe selectedthree-bandmethod,basedoncomparisonwithAERONET.Theerrormaygrowfromusingmuch widerspectralintervalwhenthelinearspectralmodelisnotagoodpredictorforthesurfacereflectancein the0.85–1.24μmregion. Athighaerosolloadingandelevatedprofiles,theaerosolscatteringincreasesthemeasuredsignalandtheband ratiothusreducingretrievedCWV[seealsoBennartzandFischer,2001;Lindstrotetal.,2012].OurAERONET-based analysisshowsthathighaerosoloutbreaksexplainover90%ofcaseswhenretrievedWVwassignificantlylower thantheAERONETvalue.Thesedatashowtheneedforaerosolcorrectiononhazydayswhichiscurrentlynot implementedineitherMAIACorMOD05. 3. Mountain WavesinMODIS CWV AnexampleofmountainwavesinMAIACNIRCWVisshowninFigure1.TheTerra(top)andAqua(bottom) imagescoveranareaof400×400km2for2June(dayofyear153)2011.TheMODISRGBimages(left)show clearconditionswithlowcloudiness.TheaverageMAIACaerosolopticaldepthat0.47μmwaslessthan0.2. LYAPUSTINETAL. ©2014.AmericanGeophysicalUnion.AllRightsReserved. 712 Geophysical Research Letters 10.1002/2013GL058770 Figure2.MODISAquaRGBandCWVimagefor18March2011.ThecolorscaleisthesameasinFigure1butwiththemaximal valueof2.5cm. TherightimagesshowtheretrievedCWV;theblack(fill)valuescorrespondtoeitherdarkwaterordetectedclouds. ThegeneratedwavetrainroughlyparalleltotheAppalachianmountainsiswellvisibleinthelower-middlepartof theimagewithadissipationdistanceof~150km.Weakerwaveswithalargerperiodcanbeseeninthenortheast sectionoftheTerraCWVimage.TheAquaimagewasobtained1hand40minaftertheTerraoverpass,sothe wavetrainappearstobestationary.AnapparentreductionincontrastintheAquaCWVrelativetotheTerraCWVis aconsequenceoftheviewgeometry,withanAquaviewzenithangleof~40°asopposedtothenadirviewof Terra.Intheareaofmaximalcontrast,TerraCWVwaveshaveanaveragewavelengthof~6kmwithanamplitude of~1.0cm,withCWVrangingfrom~0.5cminthetroughto~1.5cminthecrest. Figure2showsanotherexamplefromAquaduring18March2011withwavelength~7km,inwhichcloud formationonthecrestsofthewavescanbeseenintheRGBimageontheleft.Finally,Figure3showstwo moreexamplesofCWVwaveswithverydifferentwavelengths,intherangeof3–4kmon3June(top)and 10–15kmon15October(bottom)of2011. Generally,mountain-generatedleewavescanbefrequentlyobservedeastoftheAppalachianrangedur- ingwinter,spring,andlatefallintheMODISNIRCWVimageryandonsomesummerdayswithlowto moderatehumidity.Onsuchdays,theairofadrycolderupperlayerisalternatelyliftedandloweredby Figure3.MODISAquaRGBandCWVimagesfor(top)3Juneand(bottom)15October2011.Thecolorscaleisthesameas inFigure1butwiththemaximalvaluesof2cm(top)and2.5cm(bottom). LYAPUSTINETAL. ©2014.AmericanGeophysicalUnion.AllRightsReserved. 713 Geophysical Research Letters 10.1002/2013GL058770 gravitywaves,causingconvergenceand divergenceofairinthewarmermoist bottomlayer,whichisseenasbandsinthe CWVfield. Atmosphericprofilesoftemperatureand windfieldswereusedtoassesstheability oftheatmospheretosustaintrapped gravitywaves.Theverticalprofileofthe Scorerparameter(L)calculatedasN/U [Smith,1976]fromradiosondesandfrom theGEOS-5analysis[Rieneckeretal.,2008] fieldsforthe2Junecase(Figure1)isshown inFigure4.HereNisstaticstabilityandUis Figure4.Radiosonde(blackandblue)andGEOS-5(red)derivedpro- windspeedapproximatelynormaltowave filesoftheScorerparameter(L/2π)atIADon2June.Thedottedportion phaselines.TheScorerparameter[Scorer, oftheGEOS-5profileindicatestheunstableplanetaryboundarylayer (PBL).Thedashedlineindicatesthehorizontalwavenumberofthe 1949]arisesfromthedispersionrelationfor wavesobservedinMODISCWVon2June. atmosphericgravitywavesolutionstothe Taylor-Goldsteinequationandisusedasan indicatoroftrappedleewaves.WhenLdecreasesstronglywithheight,trappedleewavesofcertainfre- quenciesarepossible.Theverticaldashedlineinthefigureisthehorizontalwavenumber(k=1/wavelength) ofthewavemotionsseeninFigure1,andthelevelatwhichLdescendsbelowthedashedlinegivesthe trappingheightofthegravitywaves.Belowthislevel(L>k),thewavesaretrappedorpropagatevertically, andabovethislevel(L<k)thebuoyancy-restoringforcescannotsustainoscillationsatthosehighintrinsic frequenciesandthewavemotionsdecay.Inaddition,theunstablestratificationintheatmosphericboundary layernearthesurface(theregionwheretheredlineisdotted)alsocannotsustaingravitywaves.Thetrapped waves,therefore,basedontheseatmosphericconditions,canexistinalayerbetweenapproximately1and 2kmabovethesurface,whereenoughwatervaporexiststorevealoscillationsintheCWVofMODIS. Althoughthewavesdecaybelow1kmaccordingtotheanalysis,theystillpenetratesomedistanceintothe moistersurfacelayer.Thenetresultisaseriesofcolumnsofalternatelymoisteranddrierair1–2kmdeep nearthesurfacethataredetectedbytheMODISsensor.Similarresultswerefoundfortheothereventsin Figures2and3,althoughtrappinginasomewhatdeeperlayerbelow3kmwasindicatedintheOctobercase withthelongerhorizontalwavelength. ThesewavesarenotobservedontypicalsummerdayswhenCWVvaluesof3–5cmareubiquitousforthe EastCoastoftheU.S.TheabsenceofMODISCWVobservationsofmountainleewavesinthisseasonislikely relatedtodeeperunstablePBLheightsandatmosphericconditionsthatwillnotsustaingravitywaves. HigherCWVwouldalsoincreasethechanceofformingcloudsthatcanobscurethewaves. 4. Conclusions Mountainleewavesareanimportantphenomenonintroposphericmeteorologywithpracticalimplications (e.g.,aviationhazards).ThispaperreportsthefirstobservationofleewavesintheMODISNIRcolumnwater vaporeastoftheAppalachianmountainsathigh1kmresolution.Generationandverticalpropagationof thesewavesrequiresastablystratifiedatmospherewithstabilityandwindconditionsleadingtotrappingof shorterhorizontalwaves.Bothradiosondeandatmosphericanalysisprofilesestablishedthatconditionsfor leewavetrappingbelow2–3kmaltitudeexistedonthedayswhentheoscillationsintheMODISCWVwere observed.Importantly,incontrasttopreviousstudiesbasedonsoundingdatawhichreportedgravitywaves ataltitudesofthemidtroposphereandstratosphere,theCWVshowsperhapsthelowestnear-surfacewaves thatcanbedetectedfromremotesensingdataoverland.KnowledgeofvariabilityinCWVatthesescaleswill informregionalandglobalmodelsofmoistprocesses,whichrelyonassumptionsaboutthesubgridscale probabilitydistributionfunctionsfortotalwater[e.g.,Molod,2012].Remotesensingmeasurementsof greenhousegases,suchasCO andCH ,willalsobenefitfromimprovedcharacterizationofCWVvariability 2 4 becausesuchinformationallowsformoreaccuraterepresentationofthelinebroadeningbywatervaporand potentialerrorreductioninsuchobservations. LYAPUSTINETAL. ©2014.AmericanGeophysicalUnion.AllRightsReserved. 714 Geophysical Research Letters 10.1002/2013GL058770 References Acknowledgments TheresearchofA.Lyapustin,Y.Wang, Albert,P.,R.Bennartz,R.Preusker,R.Leinweber,andJ.Fischer(2005),RemotesensingofatmosphericwatervaporusingtheModerate andM.J.Alexanderwasfundedbythe ResolutionImagingSpectroradiometer,J.Atmos.OceanicTechnol.,22,309–314,doi:10.1175/JTECH1708.1. NASAProgramScienceofTerraand Alexander,M.J.,andC.Barnet(2007),Usingsatelliteobservationstoconstrainparameterizationsofgravitywaveseffectsforglobalmodels, Aqua(M.J.A.bycontractNNH11CD34C). J.Atmos.Sci.,64,1652–1665. Alexander,M.J.,H.Teitelbaum,S.Eckermann,J.Gille,J.Barnett,andC.Barnet(2008),High-resolutionsatelliteobservationsofmountain TheEditorthanksJuergenFischerand waves,Bull.Am.Meteorol.Soc.,89(2),151–152. ananonymousreviewerfortheirassis- Alexander,M.J.,andH.Teitelbaum(2011),Three-dimensionalpropertiesofAndesmountainwavesobservedbysatellite:Acasestudy, tanceinevaluatingthispaper. J.Geophys.Res.,116,D23110,doi:10.1029/2011JD016151. Alexander,M.J.,S.D.Eckermann,D.Broutman,andJ.Ma(2009),MomentumfluxestimatesforSouthGeorgiaIslandmountainwavesinthe stratosphereobservedviasatellite,Geophys.Res.Lett.,36,L12816,doi:10.1029/2009GL038587. Bennartz,R.,andJ.Fischer(2001),Retrievalofcolumnarwatervapouroverlandfromback-scatteredsolarradiationusingtheMedium ResolutionImagingSpectrometer(MERIS),RemoteSens.Environ.,78,271–280. Conover,J.H.(1964),Leewavecloudsphotographedfromanaircraftandasatellite,Weather,19,79–85. Durran,D.R.(1986),Mountainwaves,inMesoscaleMeteorologyandForecasting,editedbyP.S.Ray,pp.472–492,Amer.Meteor.Soc.,Boston,Mass. Eckermann,S.D.,andP.Preusse(1999),Globalmeasurementsofstratosphericmountainwavesfromspace,Science,286,1534,doi:10.1126/ science.286.5444.1534. Eckermann,S.D.,J.Ma,D.L.Wu,andD.Broutman(2007),Athree-dimensionalmountainwaveimagedinsatelliteradiancethroughoutthe stratosphere:Evidenceoftheeffectsofdirectionalwindshear,Q.J.R.Meteorol.Soc.,133,1959–1975. Ernst,J.A.(1976),SMS-1nighttimeinfraredimageryoflow-levelmountainwaves,Mon.WeatherRev.,104,207–209. Feltz,W.F.,K.M.Bedka,J.A.Otkin,T.Greenwald,andS.A.Ackerman(2009),Understandingsatellite-observedmountain-wavesignatures usinghigh-resolutionnumericalmodeldata,WeatherForecasting,24(1),76–86. Fritz,S.(1965),Thesignificanceofmountainleewavesasseenfromsatellitepictures,J.Appl.Meteorol.,4,31–37. Gao,B.C.,andY.J.Kaufman(2003),WatervaporretrievalsusingModerateResolutionImagingSpectroradiometer(MODIS)near-infrared channels,J.Geophys.Res.,108(D13),4389,doi:10.1029/2002JD003023. Holben,B.N.,etal.(1998),AERONET—Afederatedinstrumentnetworkanddataarchiveforaerosolcharacterization,RemoteSens.Environ., 66,1–16. Jiang,J.H.,D.L.Wu,andS.D.Eckermann(2002),UpperAtmosphereResearchSatellite(UARS)MLSobservationofmountainwavesoverthe Andes,J.Geophys.Res.,107(D20),8273,doi:10.1029/2002JD002091. Jiang,Q.,J.D.Doyle,A.Reinecke,R.B.Smith,andS.D.Eckermann(2013),AmodelingstudyofstratosphericwavesovertheSouthernAndes andDrakePassage,J.Atmos.Sci.,70(6),1668–1689. Kahn,R.,andP.Gierasch(1982),LongcloudobservationsonMarsandimplicationsforboundarylayercharacteristicsoverslopes,J.Geophys. Res.,87(A2),867–880. Kim,Y.-J.,S.D.Eckermann,andH.-Y.Chun(2003),Anoverviewofthepast,presentandfutureofgravity-wavedragparameterizationfor numericalclimateandweatherpredictionmodels,Atmos.Ocean,41(1),65–98. Kumar,S.,A.K.Singh,A.K.Anup,andR.P.Singh(2010),VariabilityofGPSderivedwatervaporandcomparisonwithMODISdataoverthe Indo-Gangeticplains,J.Phys.Chem.Earth,55,11–18,doi:10.1016/j.pce.2010.03.040. Li,Z.,J.-P.Muller,andP.Cross(2003),Comparisonofprecipitablewatervaporderivedfromradiosonde,GPS,andModerate-Resolution ImagingSpectroradiometermeasurements,J.Geophys.Res.,108(D20),4651,doi:10.1029/2003JD003372. Li,Z.,E.J.Fielding,P.Cross,andJ.-P.Muller(2006),Interferometricsyntheticapertureradaratmosphericcorrection:MEdiumResolution ImagingSpectrometerandAdvancedSyntheticApertureRadarintegration,Geophys.Res.Lett.,33,L06816,doi:10.1029/2005GL025299. Li,Z.,E.J.Fielding,P.Cross,andR.Preusker(2009),AdvancedInSARatmosphericcorrection:MERIS/MODIScombinationandstackedwater vapourmodels,Int.J.Rem.Sens.,30,3343–3363. Lindstrot,R.,R.Preusker,H.Diedrich,L.Doppler,R.Bennartz,andJ.Fischer(2012),1D-Varretrievalofdaytimetotalcolumnarwatervapour fromMERISmeasurements,Atmos.Meas.Tech.,5,631–646,doi:10.5194/amt-5-631-2012. Liu,Z.,M.S.Wong,J.Nichol,andP.W.Chan(2013),Amulti-sensorstudyofwatervapourfromradiosonde,MODISandAERONET:Acase studyofHongKong,Int.J.Climatol.,33,109–120. Lu,N.,J.Qin,K.Yang,Y.Gao,X.Xu,andT.Koike(2011),OntheuseofGPSmeasurementsforModerateResolutionImagingSpectrometer precipitablewatervaporevaluationoversouthernTibet,J.Geophys.Res.,116,D23117,doi:10.1029/2011JD016160. Lyapustin,A.(2003),InterpolationandProfileCorrection(IPC)methodforshortwaveradiativetransferinspectralintervalsofgaseous absorption,J.Atmos.Sci.,60,865–871. Lyapustin,A.,Y.Wang,andR.Frey(2008),AnautomaticcloudmaskalgorithmbasedontimeseriesofMODISmeasurements,J.Geophys.Res., 113,D16207,doi:10.1029/2007JD009641. Lyapustin,A.,Y.Wang,I.Laszlo,R.Kahn,S.Korkin,L.Remer,R.Levy,andJ.S.Reid(2011),Multi-angleImplementationofAtmospheric Correction(MAIAC):2.Aerosolalgorithm,J.Geophys.Res.,116,D03211,doi:10.1029/2010JD014986. Lyapustin,A.,Y.Wang,I.Laszlo,T.Hilker,F.Hall,P.Sellers,J.Tucker,andS.Korkin(2012),Multi-angleImplementationofAtmospheric CorrectionforMODIS(MAIAC)3:Atmosphericcorrection,RemoteSens.Environ.,127,385–393,doi:10.1016/j.rse.2012.09.002. Molod,A.(2012),ConstraintsonthetotalwaterPDFinGCMsfromAIRSdataandahighresolutionmodel,J.Clim.,25,8341–8352. Prasad,A.K.,andR.P.Singh(2009),ValidationofMODISTerra,AIRS,NCEP/DOE,AMIP-IIreanalysis-2,andAERONETSunphotometer derivedintegratedprecipitablewatervaporusingground-basedGPSreceiversoverIndia,J.Geophys.Res.,114,D05107, doi:10.1029/2008/JD011230. Rienecker,M.M.,etal.(2008),TheGEOS-5dataassimilationsystem—Documentationofversions5.0.1,5.1.0,and5.2.0.TechnicalReport SeriesonGlobalModelingandDataAssimilation,27. Rothman,L.S.,etal.(2003),TheHITRANmolecularspectroscopicdatabase:Editionof2000includingupdatesthrough2001,J.Quant. Spectrosc.Radiat.Transfer,82,5–44. Scorer,R.S.(1949),Theoryofwavesintheleeofmountains,Q.J.R.Meteorol.Soc.,6(323),41–56. Sharman,R.D.,S.B.Trier,T.P.Lane,andJ.D.Doyle(2012),Sourcesanddynamicsofturbulenceintheuppertroposphereandlowerstratosphere: Areview,Geophys.Res.Letters,39,L12803,doi:10.1029/2012GL051996. Smith,R.B.(1976),ThegenerationofleewavesbytheBlueRidge,J.Atmos.Sci.,33,507–519. Solomon,S.,etal.(2010),Contributionsofstratosphericwatervaportodecadalchangesintherateofglobalwarming,Science,327,1219, doi:10.1126/science.1182488. LYAPUSTINETAL. ©2014.AmericanGeophysicalUnion.AllRightsReserved. 715 Geophysical Research Letters 10.1002/2013GL058770 Trenberth,K.E.,J.Fasullo,andL.Smith(2005),Trendsandvariabilityincolumnintegratedwatervapour,Clim.Dyn.,24,741–758,doi:10.1007/ s00382-005-0017-4. Uhlenbrock,N.L.,K.M.Bedka,W.F.FeltzandS.A.Ackerman(2007),MountainwavesignaturesinMODIS6.7-μmimageryandtheirrelation topilotreportsofturbulence,WeatherForecasting,22,662–670,doi:10.1175/WAF1007.1. Wagner,T.,S.Beirle,andM.Grzegorski(2006),Globaltrends(1996–2003)oftotalcolumnprecipitablewaterobservedbyGlobalOzoneMonitoring Experiment(GOME)onERS-2andtheirrelationtonear-surfacetemperature,J.Geophys.Res.,111,D12102,doi:10.1029/2005JD006523. Wu,D.L.,andF.Zhang(2004),AstudyofmesoscalegravitywavesovertheNorthAtlanticwithsatelliteobservationsandamesoscalemodel, J.Geophys.Res.,109,D22104,doi:10.1029/2004JD005090. Zebker,H.A.,andP.A.Rosen(1997),AtmosphericartifactsininterferometricSARsurfacedeformationandtopographicmaps,J.Geophys. Res.,102(B4),7547–7563. LYAPUSTINETAL. ©2014.AmericanGeophysicalUnion.AllRightsReserved. 716

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.