ebook img

NASA Technical Reports Server (NTRS) 20150010239: GRB 130427A: A Nearby Ordinary Monster PDF

2.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20150010239: GRB 130427A: A Nearby Ordinary Monster

REPORTS otherhand,whetheralsosuchbrightGRBsare GRB 130427A: A Nearby associatedwithSNe.Uptonow,SNehavebeen associatedonlytounder(ormildly)energeticGRBs inthelocaluniverse.Becauseasupernovaasso- Ordinary Monster ciatedwiththisburst,SN2013cq,hasbeende- tected(14),wearenowsurethatSNearealso associatedwithverypowerfulGRBs,notonlyto A. Maselli,1* A.Melandri,2 L.Nava,2,3 C.G.Mundell,4 N.Kawai,5,6 S.Campana,2 S. Covino,2 lowpowerbursts[fig.S6andfigure1of(14)]. J. R. Cummings,7 G.Cusumano,1 P.A. Evans,8 G.Ghirlanda,2 G.Ghisellini,2 C.Guidorzi,9 Naiveenergeticargumentsmightsuggestthatin S.Kobayashi,4P.Kuin,10V.LaParola,1V.Mangano,1,11S.Oates,10T.Sakamoto,12M.Serino,6 powerfulGRBs,thereisnotenoughpowerleft F.Virgili,4 B.-B. Zhang,11 S. Barthelmy,13 A.Beardmore,8 M.G.Bernardini,2 D.Bersier,4 forastrongSN;GRB130427Adefinitivelyproves D.Burrows,11 G.Calderone,2,14 M.Capalbi,1J. Chiang,15 P.D’Avanzo,2V. D’Elia,16,17 thatthisisnotthecase. M.DePasquale,10D. Fugazza,2 N.Gehrels,13 A. Gomboc,18,19 R. Harrison,4 H.Hanayama,20 The overall behavior of the x-ray afterglow J.Japelj,18J.Kennea,11D.Kopac,18C.Kouveliotou,21D.Kuroda,22A.Levan,23D.Malesani,24 lightcurvehasbeencharacterizedwiththemain F.Marshall,13 J. Nousek,11 P.O’Brien,8 J. P.Osborne,8 C.Pagani,8K. L.Page,8 M.Page,10 contributionoftheXRTonboardSwiftandtwo M.Perri,16,17T.Pritchard,11P.Romano,1Y.Saito,5B.Sbarufatti,2,11R.Salvaterra,25I.Steele,4 additional relevant detections from the Monitor N. Tanvir,8 G.Vianello,15 B.Wiegand,13 K.Wiersema,8 Y. Yatsu,5 T.Yoshii,5 G.Tagliaferri2 ofAll-skyX-rayImage(MAXI)experiment(15) inthegapbetweenthefirstandthesecondSwift- Long-duration gamma-raybursts(GRBs) are anextremely rare outcomeofthecollapseof XRTobservations(Fig.2).Theearlylightcurve, 5555 1111 massivestarsandare typically foundinthedistantuniverse. Becauseofitsintrinsicluminosity starting from t = 260 s, is characterized by an 0000 2222 (L∼3×1053ergs persecond) anditsrelativeproximity(z =0.34),GRB 130427Areached the initially steep decay with a slope a0,x = 3.32 T 8, 8, 8, 8, highestfluenceobserved intheg-rayband.Here, wepresentacomprehensive multiwavelength 0.17,whichisconsistentwithhigh-latitudeemis- y y y y viewofGRB130427A withSwift,the2-meter LiverpoolandFaulkestelescopes, andbyother sion (16,17); a breakat t = 424T 8 s; and aaaa 1,x MMMM ground-based facilities,highlightingthe evolutionoftheburstemissionfrom theprompttothe n n n n afterglow phase. ThepropertiesofGRB 130427Aare similartothoseofthe mostluminous, 1IstitutoNazionalediAstrofisica(INAF)–IstitutodiAstrofisica oooo high-redshift GRBs,suggestingthatacommoncentral engineisresponsible forproducing S1p5a3ziIa-9le01e46FisPiacalerCmoos,mIticaaly.(I2AINSFA)F–POalsesremrvoa,toVriioaAUstgroonLoamMicoalfdai org org org org GRBs inboththecontemporary andtheearlyuniverse andoverthefullrangeofGRB Brera,viaE.Bianchi46,I-23807Merate,Italy.3AstroParticule g.g.g.g. isotropic energies. etCosmologie,UniversitéParisDiderot,CNRS/IN2P3,Commis- mamamama sariatàl'EnergieAtomiqueetauxEnergiesAlternatives/Institut eeee Gamma-rayburst(GRB)130427Awasthe servedforaGRBbySwift.The0.02-to10-MeV deRecherchessurlesloisFondamentalesdel’Univers,Observatoire ncncncnc brightestburstdetectedwithSwift(1),as fluencemeasuredbyKonus-Wind(8)forthemain tdueteP,arLiisv,eSrpoorboolnJnoehnPaMrisoCoriteés,UFrnainvceer.si4tyA,stLroivpehrypsoicoslRSecsieeanrccehPInasrtki-, ciecieciecie boardothwerelslpaacsewmitihssisoenvse.rIatlwga-sraaylsodethteecbtorirgshotens-t 1em0−i3sseirogncempi−s2o,dwei(th0taos1p8e.c7trus)misp(e2a.k6i8ng+/a−t0E.01)=× 1To4k6yoBrIonwsntiltouwteHoilfl,TLeivcehrnpooloolgLy3,52R-1F2,U-1K.O5oDkeapyaarmtmae,nMtoefguPhroy-skicus,, w.sw.sw.sw.s peak wwww andlongestburstdetectedabove100MeV,with 1028T8keV,whereasthefluenceoftheemission Tokyo152-8551,Japan.6CoordinatedSpaceObservationand wwww themostenergeticphotondetectedat95GeV(2). episodeat(120to250s)is∼9×10−5ergcm−2, ExperimentResearchGroup,RIKEN,2-1Hirosawa,Wako,Saitama m m m m 351-0198,Japan.7UniversityofMaryland,BaltimoreCounty/ ItwasdetectedwithFermi–Gamma-rayBurstMon- withaspectrumpeakingat∼240keV(9). oooo CenterforResearchandExplorationinSpaceScience&Technology/ rrrr itor(GBM)(3)atT0,GBM=47:06.42UTon27April Thiseventwasextremelybrightalsointhe NASAGoddardSpaceFlightCenter,Code661,Greenbelt,MD d fd fd fd f 2013.Hereafter,thistimewillbeourreferencetime opticalanditwasimmediatelydetectedwithvar- 20771,USA.8DepartmentofPhysicsandAstronomy,University dededede T.TheBurstAlertTelescope(BAT)(4)onboard ious robotic telescopes. In particular, the Raptor ofLeicester,Leicester,LE17RH,UK.9DepartmentofPhysics,Uni- aaaa 0 versityofFerrara,viaSaragat1,I-44122,Ferrara,Italy.10Mullard oooo S51w.1ifts,trwighgeenreSdwoifntcGoRmBple1t3ed04a27prAepalatntnimedes(lte)w=. rpoabrottaiclrteealdesycoaptetd=ete0c.5tedsa(1b0r)ig.hOtpotpictiaclalspcoecutnrtoesr-- SStp.aMcearSyc,ieDnocrekinLagb,oSruartroeryy,RUHn5iv6eNrsTi,tyUCKo.l1le1DgeepLaorntmdoenn,tHofolAmstbrounry- ownlownlownlownl TheSwiftslewtothesourcestartedatt=148s copyoftheafterglowdeterminedtheredshiftto omy and Astrophysics, Pennsylvania State University, 525 DDDD andendedatt=192s.TheSwiftUltraVioletOp- bez= 0.34(11);aUVOTUVgrism spectrum DaveyLab,UniversityPark,PA16802,USA.12Departmentof ticalTelescope(UVOT)(5)beganobservationsat (7)was alsoacquired.Atthisdistance,therest PhysicsandMathematics,AoyamaGakuinUniversity,5-10-1 Fuchinobe,Chuo-ku,Sagamihara,Kanagawa252-5258,Japan. t = 181 s, whereas observations with the Swift frame1-keVto10-MeVisotropicenergyisEiso= 13NASAGoddardSpaceFlightCenter,Greenbelt,MD20771, X-rayTelescope(XRT)(6)startedatt=195s(7). 8.1×1053erg,andthepeakluminosityisL = USA.14DipartimentodiFisica“G.Occhialini,”UniversitàdiMilano- iso Thestructureoftheg-raylightcurverevealedby 2.7×1053ergs−1.Accordingtotheluminosity Bicocca,PiazzadellaScienza3,I-20126Milano,Italy.15W.W. theSwift-BATinthe15-to350-keVband(Fig.1) functionofSalvaterraetal.(12),weexpectone HansenExperimentalPhysicsLaboratory,KavliInstituteforPar- ticleAstrophysicsandCosmology,DepartmentofPhysics,and canbedividedinthreemainepisodes:aninitial eventlikeGRB130427Aevery>60years.Inthe SLACNationalAcceleratorLaboratory,StanfordUniversity,Stanford, peak,beginningatt=0.1sandpeakingatt= nearbyuniverse (z ≲0.4,corresponding to an CA94305,USA.16INAF/RomeAstronomicalObservatory,via 0.5s; asecond largepeak, showing acomplex ageof∼10billionyears),onlyahandfuloflong Frascati33,00040MonteporzioCatone(Roma),Italy.17Agenzia structure with a duration of ∼20 s; and a third, GRBshavebeendetected.TheseGRBsareusual- SpazialeItaliana(ASI)ScienceDataCentre,ViaGalileoGalilei, 00044 Frascati (Roma), Italy. 18Faculty of Mathematics and muchweakerepisodestartingatt∼120s,show- lycharacterizedbyalowoverallisotropicenergy Physics,UniversityofLjubljana,Jadranska191000,Ljubljana, ing a fast rise/exponential decay behavior. The (Eiso ≤ 1052 erg) and are associated with super- Slovenia. 19Centre of Excellence Space-si, Askerceva cesta 12, overalldurationofthepromptemissionwasT novae(SNe)typesIbandIc,characterizedby 1000Ljubljana,Slovenia.20IshigakijimaAstronomicalObservatory, 90 (15to150keV)=276T5s(thetimecontaining broadspectrallinesindicatinghighexpansionve- National Astronomical Observatory of Japan, 1024-1 Arakawa, 90%ofthefluence)calculatedoverthefirst1830s locities,calledhypernovae(13).GRB130427Ais Ishigaki,Okinawa907-0024,Japan.21SpaceScienceOffice,VP62, NASA/MarshallSpaceFlightCenter,Huntsville,AL35812,USA. of BAT observation from T0, GBM. During the insteadapowerfulGRB,suchastheonestypically 22OkayamaAstrophysicalObservatory,NationalAstronomicalOb- earlyphasesoftheg-rayemission,strongspectral detectedatmuchhigherredshifts(z>1,witha servatoryofJapan,3037-5Honjo,Kamogata,Asaguchi,Okayama variabilitywasobserved(Fig.1).Amarkedspec- meanz∼2correspondingtoanageof∼3billion 719-0232.23DepartmentofPhysics,UniversityofWarwick,Co- ventryCV47AL,UK.24DarkCosmologyCentre(DARK),NielsBohr tral hardening was observed during the prompt years).Thedetectionofanearbyandextremely Institute,UniversityofCopenhagen,JulianeMariesVej30,2100 main event. With a total fluence F = (4.985 T powerfulGRBgivesustheopportunitytotest, Copenhagen,Denmark.25INAF-IASFMilano,viaE.Bassini15, 0.002)×10−4ergcm−2inthe15-to150-keVband, ontheonehand,whetherthisGRBhasthesame I-20133Milano,Italy. GRB130427Areachedthehighestfluenceob- propertiesofthecosmologicalGRBsand,onthe *Correspondingauthor.E-mail:[email protected] 48 3JANUARY2014 VOL343 SCIENCE www.sciencemag.org REPORTS followed by a flatter decay with index a = 1,x 1.28T0.01.Afurtherbreakatt =48T22ks 2,x is statisticallyneeded(3.8s)toaccountforafur- thersteepeningtoa =1.35T 0.02(allerrors 2,x arederivedfor∆c2=2.7). The light curves in the optical and UV de- rivedfromtheUVOT,aswellasfromground- based telescopes (Liverpool telescope, Faulkes Telescope North, and MITSuME Telescopes) areshowninFig.2.Allopticallightcurvesare well fitted by a broken power law with a = 1 0.96 T 0.01, t ¼37:4þ4:7 ks, and a ¼ break −4:0 2 1:36þ0:01. Fittingthex-ray lightcurvetogether −0:02 withtheopticalones,wefindthesameparam- etersfrom26.6ksonward,buttofittheearlypart oftheX-raylightcurve,weneedanotherpower- lawsegmentwithaslopeof1:29þ0:02andabreak −0:01 at 26:6þ4:5 ks (Fig. 2). Therefore, from 26.6 ks −6:6 onward a common description of all the op- tical,UV,andx-raybehaviorispossible,where- asat earlier times,anextrax-ray component is required. Weinterprettheearlyx-raylightcurve(upto 26.6 ks) as the superposition of a standard after- glow (forward shock emission) and either the prolongedactivityofthecentralengineor/and Fig.1.DetailsoftheSwiftBATlightcurveinthe15-to350-keVband.(Top)TheBATlightcurve withabinningtimeof64ms.(Inset)TheBATlightcurveupto300s,plottedonalogintensityscale, the contribution from the reverse shock emis- showingafastrise/exponentialdecayfeaturestartingatt∼120s.(Bottom)Thephotonindexvalues sion(18–20).After26.6ks,theopticalandx-ray ofapower-lawmodelfittotheBATspectruminthe15to150keVenergyrange. light curves share the same behavior and decay slopes(Fig.2),includingabreakatt ∼37ks. break This achromatic break is suggestive of a jet 108 break,althoughthepost-breakdecay(a =1.36) 2 is shallower than predicted in the simplest the- ory[anincreaseindecayslope>1wouldbeex- 105 pected (21)]. This could be due to additional components contributing to the flux, to a time dependence of the microphysical parameters governing the fraction of shock energy going 102 to electrons (∈) and magnetic field (∈ ), or to e B the fact that we observed a canonical jet not exactly on axis, but still within the jet opening 10-1 angle(22,23). Because the optical and the x-ray emission belongtothesamespectralpower-lawsegment, 10-4 it is possible to constrain the characteristic fre- quencies of the afterglow spectra, in turn con- straining the microphysical parameters of the 10-7 relativisticshock.Additionalinformationcomes 103 104 105 106 from the high-energy g-ray emission (2). The g-rayfluxabove100MeVpeaksat∼20s.Ifthis emission is due to afterglow radiation, the peak Fig.2.LightcurvesforGRB130427Aindifferentwavebands.SwiftUVandvisiblefilters(w2,m2, timeimpliesabulkLorentzfactorG ∼500(2,7). w1,u,b,v);B,V,r′,andi′filterscorrespondtoFaulkesTelescopeNorth;r′,andi′totheLiverpoolTelescope; 0 Furthermore,thepresenceofthegiga-electonvolt g′,r′,andi′totheMITSuMEtelescopes(7).Thescalingfactorsforthefluxdensityindifferentfiltersisshown peaksuggestsahomogeneouscircumburstden- intheinset;thescalingfactorforthex-raylightcurve(fluxintegratedinthe0.3to10keVrange)(7)isalso sityprofile(24).Guidedbytheseconstraintsin shown. The x-ray light curve also includes two MAXI data points at t = 3257 s and t = 8821 s (empty ourchoiceofparameters,weusedtheBOXFIT squares).Thefitperformedoverallthelightcurvesrequired24freeparameters(curvenormalizations,host codedevelopedbyvanEertenetal.(25)tomod- galaxyopticalfluxineachband,threetemporalslopes,andtwobreaks).Becauseofshort-termlow-level el theafterglow. Rather than trying to performa variabilitysuperposedtothelong-termbehaviorandpossiblyresidualinhomogeneityofopticaldatataken fromdifferenttelescopes,weaddedinquadraturea9%systematicerrorintheopticaland5%inthex-rays. formal fit to the data, we checked whether this Finalfityieldedc2=543.02/565degreesoffreedom.Acontributionfromthehostgalaxyhasbeentakeninto burst,withanunprecedenteddatacoverageand account in the optical bands by fitting a constant flux of ∼ 0.01 millijansky for the reddest bands, richness,canbeinterpretedintheframeworkof correspondingtor =21.26magastabulatedintheSloanDigitalSkySurveycatalog.Asatestof the standard model for the afterglow emission, HG consistency,weperformedthefitusingabrokenpowerlawfortheB,g′,r′,andi′filtersindividually. or else whether it forces us to abandon the stan- Uncertaintiesarelarger,butwedofindthatthevaluesoft ,aswellasthedecayindicesbeforeand dardframework.Wegavemoreweighttotheop- break afterthebreaktime,arestillconsistent,withintheerrors,withthevaluesobtainedbytheoverallfit. ticalandhigherenergyfluxesbecausetheycarry www.sciencemag.org SCIENCE VOL343 3JANUARY2014 49 REPORTS mostoftheafterglowluminosity,whichisorders ofmagnitudegreaterthantheradioflux. Neither reverse shock nor inverse Compton (IC)emissionareincludedinthemodel,butthis doesnotaffectourconclusions,whichprimarily concernthelatetimesynchrotronafterglow(7). The synchrotron flux predicted by the model re- produces theoptical emission and thex-ray light curve after ∼10 ks reasonably well, whereas the earlyx-rayfluxislikelyduetoanadditionalcom- ponent (Fig. 3). Our model underestimates the GeVemission,butthis,giventhelarge∈/∈ ratio, e B canbeduetosynchrotronSelf-Comptonemission, asenvisaged by (2,26,27).Themodelcanalso roughlyreproducetheradioemission(7). Consistentwiththelightcurveanalysis,the synchrotronfluxpredictedbythemodelreproduces reasonablywelltheopticalandx-raypartsofthe spectral energy distribution (SED) of the after- glow (Fig. 4), but it underestimates the GeV emission.Althoughthemodeldoesnotentirely reproducethecomplexityshownbythedata,it does capture the main features of the emission Fig.3.Radio,optical,x-ray,andg-raylightcurvesofGRB130427A.Radiodataarefrom(31): propertiesinthepureafterglowphase. Allmeasurementsaretakenat6.8GHzexceptthelaterone,at7.3GHz.X-raydataarethesamereported Overall,thepropertiesofGRB130427Aare inFig.2(7).LATg-raydataarefrom(2).Correspondingmodelpredictionsadoptadescriptionintermsof similartothoseofthepowerfulGRBstypically thevanEertenetal.model(25).Toproperlyfittheradiodata,onlyafractionoftheelectronsmustbe seenatz∼1−2[acomparisonisavailablein acceleratedafter∼70ks(tableS10)[discussionisavailablein(7)]. (7)].ThisisthemostpowerfulGRBatz<0.9. Itobeysthespectralenergycorrelations,suchas theE −E (28)correlationandtheE − peak iso peak L (29)correlation.Interpretingasajetbreak peak thebreakobservedat∼37ksmakesGRB130427A consistentwiththecollimationcorrectedenergy– -2 0 2 4 6 peak energy correlation (7, 30). GRB 130427A -4 is also associated with a supernova, extending the GRB-SN connection also to such powerful 52 and high-z bursts. GRB 130427A stands as an exceptional example indicating that a common engine is powering these huge explosions at all -6 powers, and from the nearby to the very far, 50 earlyuniverse. ReferencesandNotes -8 1. A.Masellietal.,GRBCoordinatesNetwork14448, 1(2013). 48 2. M.Ackermannetal.,Science343,42–47(2014). 3. C.Meeganetal.,Astrophys.J.702,791–804(2009). 4. S.D.Barthelmyetal.,SpaceSci.Rev.120,143–164 (2005). -10 5. P.W.A.Romingetal.,SpaceSci.Rev.120,95–142 46 (2005). 6. D.N.Burrowsetal.,SpaceSci.Rev.120,165–195 (2005). 7. Materialsandmethodsareavailableassupplementary -12 materialsonScienceOnline. 44 8. R.L.Aptekaretal.,SpaceSci.Rev.71,265–272 (1995). 9. S.Golenetskiietal.,GRBCoordinatesNetwork14487, 14 16 18 20 22 24 1(2013). 10. W.T.Vestrandetal.,Science343,38–41(2014). 11. A.J.Levan,S.B.Cenko,D.A.Perley,N.R.Tanvir,GRB Fig.4.SpectralEnergyDistributions(SEDs)ofGRB130427Atakenatdifferenttimes,from CoordinatesNetwork14455,1(2013). the optical to the GeV bands. LAT data are from (2). For SED 1 and SED 2, the model is a Band 12. R.Salvaterraetal.,Astrophys.J.749,68(2012). function;forSED3,themodelisaBand+powerlaw.Shortdashedlinesindicatephenomenologicalfits 13. S.E.Woosley,J.S.Bloom,Annu.Rev.Astron.Astrophys. to the BAT + LAT data. Long dashed lines indicate results of the van Eerten et al. model (25), with 44,507–556(2006). parametersdiscussedin(7).ThedifferentSEDsrefertothefollowingtimeintervals:1,0to6.5s;2,7.5to 14. D.Xuetal.,Astrophys.J.776,98(2013). 8.5s;3,8.5to196s;4,352to403s;5,406to722s;6,722–1830s;7,~3ks;8,~23ks;9,~59ks; 15. M.Matsuokaetal.,Publ.Astron.Soc.Jpn.61,999 (2009). 10,~220ks(hostgalaxycontributionhasbeensubtractedinthiscase).FromtheopticalSEDanalysis,the 16. G.Tagliaferrietal.,Nature436,985–988(2005). intrinsicextinctionisnegligible. 17. J.A.Nouseketal.,Astrophys.J.642,389–400(2006). 50 3JANUARY2014 VOL343 SCIENCE www.sciencemag.org REPORTS 18. P.Mészáros,Rep.Prog.Phys.69,2259–2321(2006). 30. G.Ghirlanda,G.Ghisellini,D.Lazzati,Astrophys.J.616, MullardSpaceScienceLaboratoryisfundedbytheUKSpace 19. G.Ghisellini,M.Nardini,G.Ghirlanda,A.Celotti, 331–338(2004). Agency.C.G.M.acknowledgesfinancialsupportfromthe Mon.Not.R.Astron.Soc.393,253–271(2009). 31. T.Laskaretal.,Astrophys.J.776,119(2013). RoyalSociety,theWolfsonFoundation,andtheScienceand 20. A.Panaitescu,W.T.Vestrand,Mon.Not.R.Astron.Soc. TechnologyFacilitiesCouncil.A.G.acknowledgesfundingfrom 414,3537–3546(2011). Acknowledgments:ThisworkhasbeensupportedbyASI theSlovenianResearchAgencyandfromtheCentreof 21. R.Sari,T.Piran,J.P.Halpern,Astrophys.J.519, grantI/004/11/0andbyProgettodiRicercadiInteresse ExcellenceforSpaceSciencesandTechnologiesSPACE-SI,an L17–L20(1999). Nazionale(PRIN)–Ministerodell’Istruzione,dell'Universitàe operationpartlyfinancedbytheEuropeanUnion,European 22. H.vanEerten,W.Zhang,A.MacFadyen,Astrophys.J. dellaRicerca(MIUR)grant2009ERC3HT.Developmentofthe RegionalDevelopmentFund,andRepublicofSlovenia.DARK 722,235–247(2010). BOXFITcode(25)wassupportedinpartbyNASAthrough isfundedbytheDanishNationalResearchFoundation. 23. H.J.vanEerten,A.I.MacFadyen,Astrophys.J.751,155 grantNNX10AF62GissuedthroughtheAstrophysicsTheory SupplementaryMaterials (2012). ProgramandbytheNSFthroughgrantAST-1009863.This www.sciencemag.org/content/343/6166/48/suppl/DC1 24. L.Nava,L.Sironi,G.Ghisellini,A.Celotti,G.Ghirlanda, researchwaspartiallysupportedbytheMinistryofEducation, Mon.Not.R.Astron.Soc.433,2107–2121(2013). Culture,Sports,ScienceandTechnologyofJapan(MEXT), MaterialsandMethods SupplementaryText 25. H.vanEerten,A.vanderHorst,A.MacFadyen,Astrophys. grants-in-aid14GS0211,19047001,19047003,and Figs.S1toS7 J.749,44(2012). 24740186.TheLiverpoolTelescopeisoperatedbyLiverpool TablesS1toS10 26. R.Liu,X.Wang,X.Wu,Astrophys.J.Lett.773,L20(2013). JohnMooresUniversityattheObservatoriodelRoquedelos References(32–62) 27. P.-H.T.Tam,Q.-W.Tang,S.-J.Hou,R.-Y.Liu,X.-Y.Wang, MuchachosoftheInstitutodeAstrofísicadeCanarias.The Astrophys.J.771,L13(2013). FaulkesTelescopes,nowownedbyLasCumbresObservatory, 21June2013;accepted16October2013 28. L.Amatietal.,Astron.Astrophys.390,81–89(2002). areoperatedwithsupportfromtheDillFaulkesEducational Publishedonline21November2013; 29. D.Yonetokuetal.,Astrophys.J.609,935–951(2004). Trust.SwiftsupportattheUniversityofLeicesterandthe 10.1126/science.1242279 The First Pulse of the Extremely Bright 100photonss–1cm–2inthe10to1000keVrange andthefluence,integratedoverthesameenergy GRB 130427A: A Test Lab for rangeandatotaldurationof~350s,is(2.4T 0.1)×10−3ergcm–2.Thelongestcontinuously runningGRBdetector,KonusontheWindspace- Synchrotron Shocks craft,hasbeenobservingtheentireskyfornearly 18 years, and only one burst had a larger peak flux,by~30%(GRB110918A)(5).GRB130427A R. Preece,1* J. MichaelBurgess,2*A. vonKienlin,3* P.N.Bhat,2 M.S.Briggs,2 D.Byrne,4 isthemostfluentburstintheerastartingwiththe V.Chaplin,2W.Cleveland,5A.C.Collazzi,6,7V.Connaughton,2A.Diekmann,8G.Fitzpatrick,4 1991 launch of the Burst and Transient Source S. Foley,4,3 M.Gibby,8M. Giles,8 A. Goldstein,6,7 J. Greiner,3 D.Gruber,3 P.Jenke,2 Experiment(BATSE)ontheComptonGamma- R. M.Kippen,9 C.Kouveliotou,6S. McBreen,4,3 C.Meegan,2 W. S.Paciesas,5V. Pelassa,2 RayObservatory.Finally,theenergyofthespec- D.Tierney,4 A. J. van der Horst,10 C.Wilson-Hodge,6 S.Xiong,2 G.Younes,5,6 H.-F. Yu,3 tralpeakinthefirsttimebin(T –0.1to0.0s), 0 M.Ackermann,11M.Ajello,12M.Axelsson,13,14,15L.Baldini,16G.Barbiellini,17,18M.G.Baring,19 5400 T 1500 keV, is the second highest ever D.Bastieri,20,21R.Bellazzini,22E.Bissaldi,23E.Bonamente,24,25J.Bregeon,22M.Brigida,26,27 recorded(6). P. Bruel,28 R. Buehler,11 S. Buson,20,21 G.A. Caliandro,29 R. A.Cameron,30 P.A. Caraveo,31 Theinitialpulse(Fig.1),lastingupto2.5s C.Cecchi,24,25E.Charles,30A.Chekhtman,32J.Chiang,30G.Chiaro,21S.Ciprini,33,34R.Claus,30 after the trigger, stands on its own as being so J. Cohen-Tanugi,35 L.R. Cominsky,36 J. Conrad,37,14,38,39 F.D'Ammando,40 A.de Angelis,41 bright(170T10photonss–1cm–2peakfluxfor F.de Palma,26,27 C.D.Dermer,42*R. Desiante,17 S. W.Digel,30L. DiVenere,30 P.S.Drell,30 10to1000keVinthe64-mstimebinatT +0.51s) 0 A.Drlica-Wagner,30C.Favuzzi,26,27A.Franckowiak,30Y.Fukazawa,43P.Fusco,26,27F.Gargano,27 astoberankedamongthe10brightestGBMor N.Gehrels,44S.Germani,24,25N.Giglietto,26,27F.Giordano,26,27M.Giroletti,40G.Godfrey,30 BATSEbursts(7–9).Thebrightnessallowsusto J.Granot,45I.A.Grenier,46S.Guiriec,44,7D.Hadasch,29Y.Hanabata,43A.K.Harding,44 trackthespectralevolutionoftherisingportion M.Hayashida,30,47S.Iyyani,14,15,37T.Jogler,30G.Jóannesson,48T.Kawano,43J.Knödlseder,49,50 ofawell-separatedpulsewithunprecedentedde- D.Kocevski,30M.Kuss,22J.Lande,30J.Larsson,15,14S.Larsson,37,14,13L.Latronico,51F.Longo,17,18 tail (10).Evident in theGBM low-energy light F.Loparco,26,27 M.N.Lovellette,42 P.Lubrano,24,25 M.Mayer,11 M.N.Mazziotta,27 curve[Fig.1;aswellasthe15to350keVlight P. F.Michelson,30 T.Mizuno,52 M. E.Monzani,30 E. Moretti,15,14A. Morselli,53 S.Murgia,30 curvepresentedin(11)]arefluctuationsstarting R.Nemmen,44E.Nuss,35T.Nymark,15,14M.Ohno,54T.Ohsugi,52A.Okumura,30,55N.Omodei,30* ataround1sthatarenotpresentathigherener- M.Orienti,40D.Paneque,56,30J.S.Perkins,44,57,58M.Pesce-Rollins,22F.Piron,35G.Pivato,21 gies. If these represent additional low-energy T.A.Porter,30J.L.Racusin,44S.Rainò,26,27R.Rando,20,21M.Razzano,22,59S.Razzaque,60 pulses,theirpresenceclearlydoesnotdominate A. Reimer,23,30 O. Reimer,23,30 S.Ritz,59 M.Roth,61 F.Ryde,15 A. Sartori,31 J. D.Scargle,62 theanalysespresentedbelow. A.Schulz,11C.Sgrò,22E.J.Siskind,63G.Spandre,22P.Spinelli,26,27D.J.Suson,64H.Tajima,30,55 Paststudiesoftime-resolvedspectraofsim- H.Takahashi,43 J. G.Thayer,30 J. B. Thayer,30 L.Tibaldo,30 M.Tinivella,22 D.F.Torres,29,65 plepulsesinGRBsindicatethattherearebroadly G. Tosti,24,25 E.Troja,44,66 T.L. Usher,30 J.Vandenbroucke,30 V.Vasileiou,35 G.Vianello,30,67 twoclassesofspectralevolution.Thesearecalled V.Vitale,53,68 M.Werner,23 B.L. Winer,69 K.S. Wood,42 S.Zhu66 “hard-to-soft”and“tracking”pulses(12,13),de- pendingonwhethertheenergyofthepeakinthe Gamma-ray burst(GRB) 130427Aisoneofthemost energeticGRBs ever observed. Theinitial nFn spectrum (generically called Epeak herein) pulseupto2.5secondsispossiblythebrightestwell-isolatedpulseobservedtodate.Afinetime monotonicallydecaysindependentlyoftheflux resolutionspectralanalysisshowspower-lawdecaysofthepeakenergyfromtheonsetofthepulse, evolution or else generally follows therise and consistent withmodelsofinternalsynchrotronshockpulses.However,astronglycorrelated falloftheflux.Typically,thereareatmostoneor power-lawbehavior isobserved betweentheluminosity andthespectral peakenergythatis twospectraavailableforfittingduringtherising inconsistent withcurvatureeffectsarisingintherelativistic outflow.Itisdifficultforanyofthe portionofthefluxhistory.Whatmakesthisevent existingmodelstoaccountforalloftheobservedspectralandtemporalbehaviorssimultaneously. uniqueisthatthereareroughlysixtimebinswith excellentcountsstatisticsbeforethepeakinthe In the context of Gamma-ray burst (GRB) RaySpaceTelescopeon27April2013atT = 10to1000keVflux. 0 130427A,whichtriggeredtheGamma-Ray 07:47:06.42UTC(2–4)isanextremecase.The AsseeninFig.1,thereisacleartrendinthe BurstMonitor(GBM)(1)ontheFermiGamma- peak flux on the 64-ms time scale is 1300 T individualdetector’slightcurves:the>20MeV www.sciencemag.org SCIENCE VOL343 3JANUARY2014 51 GRB 130427A: A Nearby Ordinary Monster A. Maselli et al. Science 343, 48 (2014); DOI: 10.1126/science.1242279 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this information is current as of May 8, 2015 ): 5 1 A correction has been published for this article at: 0 2 http://www.sciencemag.org/content/343/6174/969.2.full.html 8, Updated information and services, including high-resolution figures, can be found in the online ay version of this article at: M http://www.sciencemag.org/content/343/6166/48.full.html n o g Supporting Online Material can be found at: r o http://www.sciencemag.org/content/suppl/2013/11/20/science.1242279.DC1.html g. a m A list of selected additional articles on the Science Web sites related to this article can be e found at: c n http://www.sciencemag.org/content/343/6166/48.full.html#related e ci s This article cites 55 articles, 17 of which can be accessed free: w. http://www.sciencemag.org/content/343/6166/48.full.html#ref-list-1 w w This article has been cited by 7 articles hosted by HighWire Press; see: m o http://www.sciencemag.org/content/343/6166/48.full.html#related-urls r d f This article appears in the following subject collections: e d Astronomy a o http://www.sciencemag.org/cgi/collection/astronomy nl w o D Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2014 by the American Association for the Advancement of Science; all rights reserved. The title Science is a registered trademark of AAAS.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.