ebook img

NASA Technical Reports Server (NTRS) 20150008263: Gravitational Waves: Search Results, Data Analysis and Parameter Estimation. Amaldi 10 Parallel Session C2 PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20150008263: Gravitational Waves: Search Results, Data Analysis and Parameter Estimation. Amaldi 10 Parallel Session C2

GenRelativGravit(2015)47:11 DOI10.1007/s10714-014-1796-x REVIEW ARTICLE Gravitational waves: search results, data analysis and parameter estimation Amaldi10ParallelsessionC2 PiaAstone · AlanWeinstein · MichalisAgathos · MichałBejger · NelsonChristensen · ThomasDent · PhilipGraff · SergeyKlimenko · Giulio Mazzolo · Atsushi Nishizawa · Florent Robinet · Patricia Schmidt · RorySmith · JohnVeitch · MadelineWade · SofianeAoudia · SukantaBose · Juan Calderon Bustillo · Priscilla Canizares · Colin Capano · James Clark · AlbertoColla · ElenaCuoco · CarlosDaSilvaCosta · TitoDalCanton · EdgarEvangelista · EvanGoetz · AnuradhaGupta · MarkHannam · DavidKeitel · BenjaminLackey · JoshuaLogue · SatyanarayanMohapatra · FrancescoPiergiovanni · StephenPrivitera · ReinhardPrix · MichaelPürrer · VirginiaRe · RobertoSerafinelli · LeslieWade · LinqingWen · KarlWette · JohnWhelan · C.Palomba · G.Prodi Received:13December2013/Accepted:25August2014/Publishedonline:22January2015 ©TheAuthor(s)2015.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results,dataanalysisandparameterestimationincludedthreelivelysessionsoflec- tures by 13 presenters, and 34 posters. The talks and posters covered a huge range ThisarticlebelongstotheTopicalCollection:TheFirstCenturyofGeneralRelativity:GR20/Amaldi10. GuestEditors:JerzyLewandowski,BalaIyer,SheilaRowan. P.AstoneandA.WeinsteinaretheC2sessionchairs. P.Astone·C.Palomba·F.Piergiovanni INFN,SezionediRoma,00185Rome,Italy B A.Weinstein ( )·S.Privitera LIGO-CaliforniaInstituteofTechnology,Pasadena,CA91125,USA e-mail:[email protected] M.Agathos·J.Veitch Nikhef,SciencePark105,1098XGAmsterdam,TheNetherlands M.Bejger N.CopernicusAstronomicalCenter,Bartycka18,00-716Warsaw,Poland N.Christensen CarletonCollege,Northfield,MN55057,USA 123 11 Page 2 of 26 P.Astoneetal. of material, including results and analysis techniques for ground-based GW detec- tors,targetinganticipatedsignalsfromdifferentastrophysicalsources:compactbinary inspiral,mergerandringdown;GWburstsfromintermediatemassbinaryblackhole mergers,cosmicstringcusps,core-collapsesupernovae,andotherunmodeledsources; continuouswavesfromspinningneutronstars;andastochasticGWbackground.There wasconsiderableemphasisonBayesiantechniquesforestimatingtheparametersof coalescingcompactbinarysystemsfromthegravitationalwaveformsextractedfrom the data from the advanced detector network. This included methods to distinguish deviationsofthesignalsfromwhatisexpectedinthecontextofGeneralRelativity. T.DalCanton·T.Dent·E.Goetz·D.Keitel·G.Mazzolo·R.Prix·K.Wette Albert-Einstein-Institut,Max-Planck-InstitutfürGravitationsphysik,30167Hannover,Germany P.Graff NASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA S.Klimenko UniversityofFlorida,Gainesville,FL32611,USA G.Mazzolo LeibnizUniversitatHannover,30167Hannover,Germany A.Nishizawa KyotoUniversity,6068502Kyoto,Japan F.Robinet LALOrsay,UniversiteParisSud,91898Orsay,France M.Hannam·M.Pürrer·P.Schmidt CardiffUniversitySchoolofPhysicsandAstronomy,CardiffCF243AA,UK R.Smith UniversityofBirmingham,EdgbastonB152TT,UK M.Wade·L.Wade UniversityofWisconsin-Milwaukee,Milwaukee,WI53201,USA S.Aoudia Albert-Einstein-Institut,Max-Planck-InstitutfürGravitationsphysik,14476Golm,Germany S.Bose WashingtonStateUniversity,Pullman,WA99164,USA J.CalderonBustillo UniversityoftheBalearicIslands,Palma,Spain P.Canizares InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA,UK C.Capano UniversityofMaryland,CollegePark,MD20742,USA J.Clark UniversityofMassachusetts-Amherst,Amherst,MA01003,USA 123 Gravitationalwavedataanalysis Page 3 of 26 11 Keywords Gravitationalwaves·Parameterestimation·Testsofgeneralrelativity· Compactbinarymerger·Neutronstars·Stochasticbackground MathematicsSubjectClassification 60G35·62F99·62F15·62M05 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 C2parallelsessionlecturepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Searching for continuous gravitational wave signals from rotating neutron stars with the LIGOandVirgodetectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Perspectivesforintermediatemassblackholesearcheswithnetworks ofsecond-generationground-basedgravitational-wavedetectors . . . . . . . . . . . . . . 6 2.3 Inverseproblemforgravitationalwavetransients . . . . . . . . . . . . . . . . . . . . . . 7 2.4 SearchingforcosmicstringswiththeLIGO-Virgogravitational-waveexperiments. . . . . 7 2.5 Untanglingprecessiontoproducegenericwaveformmodels . . . . . . . . . . . . . . . . 7 2.6 Searchingforstellar-massbinaryblackholecoalescenceswithground-basedinterferometers 8 2.7 StochasticgravitationalwavebackgroundsearcheswithadvancedLIGO andadvancedVirgo:strategiesandgoals . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 R.Serafinelli·A.Colla UniversityofRome“Sapienza”,00185Rome,Italy E.Cuoco EuropeanGravitationalObservatory(EGO),56021Cascina,Pisa,Italy C.DaSilvaCosta·E.Evangelista InstitutoNacionaldePesquisasEspaciais(INPE),AvenidadosAstronautas1758,12227-010SaoJosedos Campos,Brazil A.Gupta TataInstituteforFundamentalResearch,HomiBhabhaRoad,Colaba,Mumbai400005,India B.Lackey DepartmentofPhysics,PrincetonUniversity,JadwinHall,Princeton08544,NJ,USA J.Logue SchoolofPhysicsandAstronomy,UniversityofGlasgow,G128QQGlasgow,UK S.Mohapatra SyracuseUniversity,Syracuse,NY13244,USA V.Re Universita’diRomaTorVergataandINFNsezionediRomaTorVergata,00133Rome,Italy L.Wen UniversityofWesternAustralia,Crawley,Perth6009,Australia J.Whelan RochesterInstituteofTechnology,Rochester,NY14623,USA G.Prodi INFN,GruppoCollegatodiTrento,38050Povo,Trento,Italy G.Prodi Universit‘adiTrento,38050Povo,Trento,Italy 123 11 Page 4 of 26 P.Astoneetal. 2.8 Probingformassivestochasticgravitational-wavebackgroundwithadetectornetwork . . 10 2.9 ParameterestimationforcompactbinarycoalescencesignalswithLIGO-Virgo . . . . . . 10 2.10 Effectofmergerandringdownsignalsontheestimationofparameters ofbinaryblackholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.11 TIGER:adataanalysispipelinefortestingGRwithgravitationalwaves fromcoalescingbinaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.12 AdvancedLIGO’sabilitytodetectapparentviolationsofthecosmiccensorshipconjecture andtheno-hairtheoremthroughcompactbinarycoalescencedetections . . . . . . . . . . 12 2.13 Towardsrapidparameterestimationoncbcsourceswithadvanceddetectors . . . . . . . . 12 3 C2parallelsessionpostersubmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1 Introduction Thedirectobservationofgravitationalwaves(GWs)fromastrophysicalsourceswill beamajormilestoneinphysicsandastrophysics.Thestudyofthedetectedwaveforms willbeauniquewindowintoastrophysicalsourcesassitesofstrong-fieldandhighly dynamical gravity. They will provide powerful insights into general relativity (GR) andperhapsintofundamentalphysicsbeyondGR. Theseconsiderationshavedriventhedevelopmentofkilometer-scalegravitational wavedetectors.TheInitialLIGO[1]andVirgo[2]detectorsoperatedinthelastdecade withunprecedentedprecision,butnoGWsignalsweredetected. The advanced detectors, Advanced LIGO [3] in the United States, Advanced Virgo[4]inItaly,andKAGRA[5]inJapan,willbeginobservingtheskyinthenextfew years.TheGWcommunityfullyexpectstodetectandstudyGWswiththesedetectors. In parallel, techniques for detecting and analyzing the detected waveforms have beenunderdevelopmentformorethantwodecades[6].Manyofthesemethodshave beenemployedtosearchforGWsinInitialLIGOandVirgodata,whicharedominated byinstrumentalnoiseandwhichcontainsignificantnon-Gaussianandnon-stationary noise fluctuations. Recent efforts have focused on optimal and statistically rigorous extractionofastrophysicalparametersfromdetectedwaveforms,andtestsofGeneral Relativitywiththesedetections. TheAmaldi10ParallelSessionC2onGWsearchresults,dataanalysisandparame- terestimationincludedthreelivelysessionsoflecturesby13presenters,andover30 posters.Thetalksandposterscoveredahugerangeofmaterial,includingresultsand analysistechniquesforground-basedGWdetectors,targetinganticipatedsignalsfrom differentastrophysicalsources:compactbinaryinspiral,mergerandringdown;GW burstsfromintermediatemassbinaryblackholemergers,cosmicstringcusps,core- collapsesupernovae,andotherunmodeledsources;continuouswavesfromspinning neutronstars;andastochasticGWbackground. We heard a comprehensive status report on searches for continuous waves from rotating neutron stars, including several innovative analyses in progress (Sect. 2.1). Therewasanoverviewofcurrentandfuturesearchesforcosmologicalandastrophys- icalstochasticbackground signals,includingawarningaboutcorrelatedinstrumen- tal noise between detector sites in the network due to global Schumann resonances (Sect.2.7). TherewerepresentationsonresultsfromLIGOandVirgoonsearchesforbinary black hole mergers, using matched filtering techniques to target systems with total 123 Gravitationalwavedataanalysis Page 5 of 26 11 massintherangeoftensofsolarmasses(Sect.2.6),andunmodeledbursttechniques for systems of up to 1,000 solar masses, using anticipated data from the advanced detectors(Sect.2.2).WealsoheardaboutasearchforGWburstsfromcosmicstring cusps(Sect.2.4). Itischallengingtoapplymatchedfilteringtechniquestocoverthelargeparameter spaceofpossiblesignalsfrombinarycoalescence,especiallyinthepresenceofcom- ponent spin, for which two component masses and two component spin vectors, or eight“intrinsic”parameters,arerequired.Ifthespinsarenotalignedwiththeorbital angularmomentum,theorbitalplanewillprecessaboutthetotalangularmomentum axis,inducingsignificantamplitudeandfrequencymodulationoftheobservedwave- form. We heard about ongoing efforts to simplify the parameterization of spinning binarycoalescencewaveformsbycapturingtheeffectsofprecession(Sect.2.5). TherewasconsiderableemphasisonBayesiantechniquesforestimatingthepara- meters of coalescing compact binary systems from the gravitational waveforms extractedfromnoisydetectordata(Sect.2.9).Theeffectofmergerandringdownon binaryinspiralparameterestimationwasdiscussed(Sect.2.10).Estimatingparame- tersinthepresenceofspinandprecessionisespeciallycomputationallyexpensive;we heardabouttheapplicationofreducedordermodellingtogreatlyspeedupthecompu- tationofthewaveforms(Sect.2.13).Alsopresentedweremethodsforusingdatafrom the coherent detector network to extract unmodeled transient burstwaveforms from sourcessuchashighmassbinarycoalescencesorcore-collapsesupernovae(Sect.2.3). Parameterestimationisincreasinglyappliedtohelpdistinguishdeviations ofthe GWwaveformsignalsfromwhatisexpectedinthecontextofGeneralRelativity.In thecaseofbinaryinspiralwaveforms,beyond-GReffectscanbesearchedforusing binaryinspiralwaveforms(Sects.2.11,2.12).Theeffectsofamassivegravitonwith non-GRpolarizationscanbedetectedinthestochasticGWbackground(Sect.2.8). Theanalysistechniquescontinuetogrowinscope,sophistication,power,variety andgenerality,inpreparationfortheadvanceddetectornetwork.Itwasevidentfrom boththetalksandthemanyrelevantpostersthattheGWcommunityistransitioning fromthesettingofupperlimitsusinginitialLIGOandVirgodata,topreparationsfor discovery and detailed study of GW signals with data from the advanced detectors. Attendeesgotthestrongsensethatthecommunityisreadyforthosedataandthose discoveries,andareeagertoextractasmuchphysicsandastrophysicsfromtheobser- vationsaspossible.Thismadeforaverystimulatingandforward-lookingsession! InSect.2,theauthorsprovidesummariesoftheirpresentations,intheorderthat theyweregiveninSessionC2.Section3givesbriefabstractsofthe34postersthat weresubmittedtotheSession. 2 C2parallelsessionlecturepresentations 2.1 Searchingforcontinuousgravitationalwavesignalsfromrotatingneutronstars withtheLIGOandVirgodetectors PresentedbyM.Bejger,fortheLIGOScientificCollaborationandtheVirgoCollab- oration 123 11 Page 6 of 26 P.Astoneetal. Rotating neutron stars that emit continuous gravitational waves are among the most promising targets of the LIGO and Virgo detectors: sufficiently large non- axisymmetric deformation with respect to the axis of rotation of a star generates a time-varyingmass-quadrupolemomentandgravitationalwaveemission.Thedepar- turefromanaxisymmetricshapemaybecausedbytheinternalmagneticfieldand/or elasticstressesinthecrustorcore—ifdetected,itwillprovideaninterestinginsight intothepresentlyobscureddetailsoftheinteriorneutron-starstructure.Thepresen- tation summarized basic types of searches for such signals: targeted searches from knownpulsars;directedsearchesfromknownlocationsonthesky;andall-skywide parametersearchesforunknownobjects.Statisticalmethodsusedinthedataanalysis and to calculate the upper limits on the gravitational waves in the initial phase of LIGO and Virgo projects were briefly described. The presentation of recent results includebeatingthespin-downlimitfortheCrabandVelapulsars[8,10];thesearch foracoherentsignalfromthedirectionoftheCasAsupernovaremnant[7],aswellas Sco-X1binary,SN1987AandtheGalacticcenterwiththecross-correlationmethod [9];andtheall-skysearchesforsignalsofunknownpositionandfrequency,withthe useofthePoweflux[11]andEinstein@Home[12]pipelines. 2.2 Perspectivesforintermediatemassblackholesearcheswithnetworks ofsecond-generationground-basedgravitational-wavedetectors PresentedbyGiulioMazzolo,incollaborationwithF.Salemi,M.Drago,V.Necula, C.Pankow,G.A.Prodi,V.Re,V.Tewari,G.Vedovato,I.YakushinandS.Klimenko Strongevidencefortheexistenceofintermediatemassblackholes(IMBH,masses from ∼102 to ∼105 M(cid:3)) is still lacking [13]. Compelling proof would be provided by the detection of GWs from coalescing IMBH binaries (IMBHB) [14,15]. The sensitivity achieved by the GW detectors operating in the past years is insufficient to challenge the expected IMBHB merger rates [16]. However, in a few years, the second-generation(2G)interferometricdetectorswillcomeonline[17].Thenewclass of instruments will consist of the upgraded LIGO and Virgo observatories and the KAGRA detector [3–5]. Compared to the previous detectors, the 2G observatories willsharesignificantlyhighersensitivityoverabroaderfrequencyband.Weconducted simulationstudiestoassessthesensitivityofnetworksof2Gdetectorstocoalescing, non-spinning IMBHs. Waveforms modeling the gravitational radiation emitted by merging IMBHBs are added to 2G-detector simulated noise and searched for with thecoherentWaveBurstdata-analysispipeline[18].Resultsarepresentedforsource- frametotalmassesbetween50and1,050M(cid:3)andmassratiosfrom1:6to1:1.Wefind thatthe2GobservatoriescouldbesensitivetothetestedbinarysystemsuptotheGpc range.AtheoreticalmodelisappliedtoestimatetheIMBHBobservationratewhich mightbeachievedwiththefutureinstruments,yieldinguptoafewtensofeventsper year. 123 Gravitationalwavedataanalysis Page 7 of 26 11 2.3 Inverseproblemforgravitationalwavetransients PresentedbyS.Klimenko Theinverseproblem—reconstructionofGWeventsandtheirparametersfromsig- nals recorded by detectors—is central in GW data analysis. Usually it is divided in twoparts:separationofGWsignalsfromthedetectornoise,andestimationofthesig- nalparameters.Thisresultsinvariousdetectionstatisticsandmethodsforthesource reconstruction. However, in general, these two parts should be considered together within the same analysis framework, called coherent network analysis, which com- binesdatafromalldetectors.InthistalkIdescribethecoherentnetworkanalysisin applicationtodetectionofpoorlymodeledtransientGWsignals.Itemploysthesparse time-frequencyrepresentationofGWdata,dualstreamanalysisandconstraints,which addresstheambiguityoftheinverseproblem.AlsoIdiscusstheexisting/futureGW detectornetworksandtheircapabilitiesfordetection,skylocalizationandreconstruc- tionofsourceparameters. 2.4 SearchingforcosmicstringswiththeLIGO-Virgogravitational-wave experiments Presented by Florent Robinet for the LIGO Scientific Collaboration and the Virgo Collaboration Cosmic strings are linear topological defects which are expected to form during symmetry-breakingphasetransitionsintheearlyuniverse[19].Someinflationmodels based on stringtheory predict that fundamental strings and D-stringscould grow to cosmic scales and constitute a network of cosmic superstrings [20]. When forming loops,cosmicstringsradiateenergythroughburstsofgravitationalwavesinthepres- ence of cuspy features [21]. This mechanism represents one of the most promising observationalsignaturestodetecttheexistenceofcosmicstrings. Wesearchedforburstsofgravitationalwavesproducedbycosmicstringcuspsin 625daysofdatafromground-basedinterferometersLIGOandVirgo.Noevidencefor suchevents wasfound.However, itispossibletosignificantlyconstrainparameters ofcosmicstringmodels.Followingthemethodsin[22],weconstrainedcosmicstring networksdescribedbythreeparameters:thestringtensionGμ,theloopsizeparameter ε and the reconnection probability p. This result [23] improves and complements existinglimitsfromsearchesforastochasticbackgroundofgravitationalwavesusing cosmic microwave background and pulsar timing data. In particular, if the size of theloopsisgivenbygravitationalback-reaction,weplaceupperlimitsonthestring tensionGμbelow10−8 insomeregionsoftheparameterspace. 2.5 Untanglingprecessiontoproducegenericwaveformmodels PresentedbyPatriciaSchmidt,incollaborationwithMarkHannam One of the greatest theoretical challenges in the build-up to the Advanced GW detectoreraisthemodelingofcompletegenericwaveforms,inparticularofprecessing compactbinaries.Precessionoccurswhenthespinangularmomentaoftheindividual 123 11 Page 8 of 26 P.Astoneetal. holesaremisalignedwiththebinarysorbitalangularmomentum,causingtheorbital plane of the binary, as well as the spins, to precess. The time-dependent motion of the orbital plane is directly reflected in the emitted GWs in the form of phase and amplitudemodulations. Inrecentworkwehaveintroducedanapproximationthathassignificantlysimpli- fiedtheproblemofmodelingprecessingsignals:weshowedthatgenericprecessing- binaryinspiralwaveforms,coveringthefullseven-dimensionalparameterspace,can be mapped to the two-dimensional subspace of non- precessing binaries, character- izedbythemassratioandasingleeffectivetotalspin.Asopposedtoearliermodeling attempts, we identified the inspiral rate as the one of a very particular spin-aligned system via analyzing the waveforms in a co-precessing frame [26,27], determined by maximizing the dominant harmonic. The mapping between precessing and non- precessing binaries then simply consists of three time-dependent rotations applied to the precessing waveforms. We found that this identification is extremely accu- rate,yieldingmatches≥0.99withparameterbiasesintheeffectivetotalspinofless than0.02.Weconcludedthattheinspiralandprecessiondynamicsdecoupleapprox- imately.Inordertoutilizethisapproachtosystematicallymodelprecessingbinaries, weappliedtheinverserotationstothecorrespondingnon-precessingwaveforms.We demonstratedtheefficacyofthisapproachforpurepost-Newtonianinspiralsaswell as for complete hybrid waveforms, obtaining matches ≥0.97 for most binary orien- tations [24]. This led to the proposal of the following general strategy to produce precessing waveforms, to “twist-up” corresponding non-precessing waveforms by applying the appropriate time-dependent rotations to them, as outlined in [24] [see Eq.(5.4)].Additionally,weshowedevidencethattheleading-orderprecessioneffects can be efficiently modeled with a small number of parameters [28]. This “twisting- up”approachhasrecentlyleadtotheconstructionofacompletephenomenological inspiral-merger-ringdown waveform model in the frequency domain [25] as well as toaprecessingeffective-one-bodymodel[29].Here,wesummarizedtheindividual components of the modeling process, discussed the modeling of precession effects withasingleprecession parameter and briefly presented thecomplete, phenomeno- logicalfrequency-domaininspiral-merger-ringdownwaveformmodelforprecessing binary-black-holes,PhenomP. 2.6 Searchingforstellar-massbinaryblackholecoalescenceswithground-based interferometers PresentedbyThomasDentfortheLIGOScientificCollaborationandtheVirgoCol- laboration Binaryblackholeswithcomponentsinthe3–50solarmassrangearepotentially the brightest GW sources in their sensitive frequency band. Both the properties of these binaries (masses and spins) and their coalescence rates are subject to large uncertainties; thus positive detections, or even stringent rate limits, could provide uniqueinformationthatwouldallowustoselectbetweenmodelsofbinaryformation andevolution. 123 Gravitationalwavedataanalysis Page 9 of 26 11 I present the results of searches for these binaries in the most recent joint LSC- Virgosciencerun[30,31].Themaximumsensitivedistanceofthedetectorsoverthis period for a (20, 20) solar mass coalescence was 300 Mpc. No gravitational-wave signalsweredetected.Wefind90%-confidenceupperlimitsonthecoalescencerates ofbinaryblackholesystemswithnon-spinningcomponentsasfollows:forsystems withcomponentsof5±1solarmasses,alimitof6.4×10−6/Mpc3/year;forsystems withcomponentsbetween19and28solarmasses,alimitof3.3×10−7/Mpc3/year. IalsodiscussthesciencecaseandprospectsfordetectionintheAdvanceddetector era,andtechnicalchallengesfacedbycurrentandfuturesearches. 2.7 StochasticgravitationalwavebackgroundsearcheswithadvancedLIGO andadvancedVirgo:strategiesandgoals PresentedbyNelsonChristensenfortheLIGOScientificCollaborationandtheVirgo Collaboration The Advanced LIGO [3] and Advanced Virgo [4] detectors are expected to start acquiringdatain2015,andworktowardtheirtargetsensitivityoverthesubsequent years.AmajorgoalforLIGOandVirgowillbetodetectorsetlimitsontheenergy density of a stochastic background of gravitational waves. A stochastic background of gravitational waves is expected to arise from a superposition of a large number ofunresolvedcosmologicaland/orastrophysicalsources.Acosmologicallyproduced backgroundwouldcarryuniquesignaturesfromtheearliestepochsintheevolution of the Universe. Similarly, an astrophysical background would provide information aboutthesourcesthatgeneratedit.AdvancedLIGOandAdvancedVirgoobservations shouldbeabletoprobeinterestingregionsofparameterspaceforthesemodels.LIGO andVirgo’ssearchstrategiesforthesesignalswerereportedinthetalk. UsingLIGOsciencerunS5data,anupperlimitontheenergydensityofgravita- tionalwaves(from41to169Hz)wassettobeΩ <6.9×10−6[32].AsAdvanced GW LIGOandAdvancedVirgocomeonlineandworkthroughcommissioningtoachieve theirtargetsensitivities,therewillbeafewdatacollectionscienceruns[33].With70 daysofearlycommissioningLIGOobservations,anupperlimitofΩ <6.9×10−7 GW can be achieved (15–200 Hz). During the mid-commissioning time period and with 6 months of observations, there could be an upper limit of Ω < 2.4×10−8. A GW 9-monthperiodofobservationduringthelatecommissioningerawillgiveanupper limitofΩ <5.0×10−9.Finally,whenthetargetsensitivitiesareachieved,ayear GW long observation run will allow for an upper limit of Ω < 1.0×10−9, while 3 GW yearsofobservationswillgiveanupperlimitofΩ <5.8×10−10. GW Inaddition,therewasadiscussiononhowglobalelectromagneticnoise(Schumann resonances)willaffecttheLIGOandVirgosearchforastochasticgravitationalwave background, and possible strategies were presented on how to monitor and subtract this potential source of correlated noise in a the global detector network [34]. This correlatednoisecouldpotentiallybeaproblemforLIGOandVirgoastheystriveto setthesestringentupperlimitsormakeadetection. 123 11 Page 10 of 26 P.Astoneetal. 2.8 Probingformassivestochasticgravitational-wavebackgroundwithadetector network PresentedbyAtsushiNishizawa Inageneralmetrictheoryofgravitationinfourdimensions,sixpolarizationsofa gravitational wave are allowed: two scalar and two vector modes, in addition to the two tensor modes predicted in general relativity. Also graviton mass, which could bedifferentineachpolarization,isanothercharacteristicofmodificationofgravity. Thus, testing the existence of additional polarization modes and graviton mass can beamodel-independenttestofgravitytheories.Inthispresentation,wehavestudied the search method for a massive stochastic gravitational-wave background (GWB) withtensor,vector,andscalarpolarizationmodes,extendingtheordinarymethodfor masslessgraviton.IfaGWBismassive,thephasevelocity,whichislargerthanthe speed of light, affects the cross-correlation statistics.A GWB spectrum has a lower frequency cutoff corresponding to the graviton mass. Using the Fisher information matrix, we have investigated the detectability of graviton mass with ground-based detectors.WefindthatifaGWBisdetectedatthelevelofh20Ωgw,0 =10−7,wecan determinethemassofgravitonintherangeof7×10−15eV < m < 2×10−13eV g foreachpolarizationmode.WealsoshowedthateveniftheGWBsignalisamixture ofthreepolarizationmodes,wecansafelyseparatethemanddeterminethemassof thegraviton.EvenifaGWBisdetectedbutthelowerfrequencycutoffisnotdetected, wecansetanupperlimitongravitonmass,whichisthelowercutoffofdetectornoise curve,say,∼10Hzor∼7×10−15eV. 2.9 ParameterestimationforcompactbinarycoalescencesignalswithLIGO-Virgo PresentedbyJohnVeitchincollaborationwithVivienRaymond,fortheLIGOSci- entificCollaborationandtheVirgoCollaboration Thesignalsemittedbycoalescenceofcompactbinaries(blackholesandneutron stars)willencodedetailsofthesourcesthatareuniquelymeasurablewithgravitational waves,includingthemassesofthecompactobjects,theirspins,positionanddistance. However,theaccuracyofsuchinferencesislimitedbythedetectornoise(including unmodeledartefactspresentinthedata),uncertaintiesinthewaveformmodels,and inthedetectorcalibration. Recentprogresshasbeenmadeinthedevelopmentofrobustandefficientmethods ofsolvingtheparameterestimationproblemforcompactbinaries[35].Thesemake use of probabilistic Bayesian methods (MCMC and nested sampling) to estimate theposteriorprobabilitydistributionforthesignalparameters.Thesemethodswere appliedtodatacollectedduringthemostrecentjointsciencerunoftheLIGOandVirgo detectors, which contained a range of hardware and software injections, including a “blind injection” where the presence of the simulated signal was initially hidden fromthecollaboration[30].Theresultsofthesesimulationsdemonstratethatweare able to recover the source parameters for systems which span the neutron-star and black-holebinaryparameterspacebetween1and25 M(cid:3),andincludespinsonboth bodies in the analyzed models. Further development of the analysis methods will 123

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.