GenRelativGravit(2015)47:11 DOI10.1007/s10714-014-1796-x REVIEW ARTICLE Gravitational waves: search results, data analysis and parameter estimation Amaldi10ParallelsessionC2 PiaAstone · AlanWeinstein · MichalisAgathos · MichałBejger · NelsonChristensen · ThomasDent · PhilipGraff · SergeyKlimenko · Giulio Mazzolo · Atsushi Nishizawa · Florent Robinet · Patricia Schmidt · RorySmith · JohnVeitch · MadelineWade · SofianeAoudia · SukantaBose · Juan Calderon Bustillo · Priscilla Canizares · Colin Capano · James Clark · AlbertoColla · ElenaCuoco · CarlosDaSilvaCosta · TitoDalCanton · EdgarEvangelista · EvanGoetz · AnuradhaGupta · MarkHannam · DavidKeitel · BenjaminLackey · JoshuaLogue · SatyanarayanMohapatra · FrancescoPiergiovanni · StephenPrivitera · ReinhardPrix · MichaelPürrer · VirginiaRe · RobertoSerafinelli · LeslieWade · LinqingWen · KarlWette · JohnWhelan · C.Palomba · G.Prodi Received:13December2013/Accepted:25August2014/Publishedonline:22January2015 ©TheAuthor(s)2015.ThisarticleispublishedwithopenaccessatSpringerlink.com Abstract The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results,dataanalysisandparameterestimationincludedthreelivelysessionsoflec- tures by 13 presenters, and 34 posters. The talks and posters covered a huge range ThisarticlebelongstotheTopicalCollection:TheFirstCenturyofGeneralRelativity:GR20/Amaldi10. GuestEditors:JerzyLewandowski,BalaIyer,SheilaRowan. P.AstoneandA.WeinsteinaretheC2sessionchairs. P.Astone·C.Palomba·F.Piergiovanni INFN,SezionediRoma,00185Rome,Italy B A.Weinstein ( )·S.Privitera LIGO-CaliforniaInstituteofTechnology,Pasadena,CA91125,USA e-mail:[email protected] M.Agathos·J.Veitch Nikhef,SciencePark105,1098XGAmsterdam,TheNetherlands M.Bejger N.CopernicusAstronomicalCenter,Bartycka18,00-716Warsaw,Poland N.Christensen CarletonCollege,Northfield,MN55057,USA 123 11 Page 2 of 26 P.Astoneetal. of material, including results and analysis techniques for ground-based GW detec- tors,targetinganticipatedsignalsfromdifferentastrophysicalsources:compactbinary inspiral,mergerandringdown;GWburstsfromintermediatemassbinaryblackhole mergers,cosmicstringcusps,core-collapsesupernovae,andotherunmodeledsources; continuouswavesfromspinningneutronstars;andastochasticGWbackground.There wasconsiderableemphasisonBayesiantechniquesforestimatingtheparametersof coalescingcompactbinarysystemsfromthegravitationalwaveformsextractedfrom the data from the advanced detector network. This included methods to distinguish deviationsofthesignalsfromwhatisexpectedinthecontextofGeneralRelativity. T.DalCanton·T.Dent·E.Goetz·D.Keitel·G.Mazzolo·R.Prix·K.Wette Albert-Einstein-Institut,Max-Planck-InstitutfürGravitationsphysik,30167Hannover,Germany P.Graff NASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA S.Klimenko UniversityofFlorida,Gainesville,FL32611,USA G.Mazzolo LeibnizUniversitatHannover,30167Hannover,Germany A.Nishizawa KyotoUniversity,6068502Kyoto,Japan F.Robinet LALOrsay,UniversiteParisSud,91898Orsay,France M.Hannam·M.Pürrer·P.Schmidt CardiffUniversitySchoolofPhysicsandAstronomy,CardiffCF243AA,UK R.Smith UniversityofBirmingham,EdgbastonB152TT,UK M.Wade·L.Wade UniversityofWisconsin-Milwaukee,Milwaukee,WI53201,USA S.Aoudia Albert-Einstein-Institut,Max-Planck-InstitutfürGravitationsphysik,14476Golm,Germany S.Bose WashingtonStateUniversity,Pullman,WA99164,USA J.CalderonBustillo UniversityoftheBalearicIslands,Palma,Spain P.Canizares InstituteofAstronomy,MadingleyRoad,CambridgeCB30HA,UK C.Capano UniversityofMaryland,CollegePark,MD20742,USA J.Clark UniversityofMassachusetts-Amherst,Amherst,MA01003,USA 123 Gravitationalwavedataanalysis Page 3 of 26 11 Keywords Gravitationalwaves·Parameterestimation·Testsofgeneralrelativity· Compactbinarymerger·Neutronstars·Stochasticbackground MathematicsSubjectClassification 60G35·62F99·62F15·62M05 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 C2parallelsessionlecturepresentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Searching for continuous gravitational wave signals from rotating neutron stars with the LIGOandVirgodetectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Perspectivesforintermediatemassblackholesearcheswithnetworks ofsecond-generationground-basedgravitational-wavedetectors . . . . . . . . . . . . . . 6 2.3 Inverseproblemforgravitationalwavetransients . . . . . . . . . . . . . . . . . . . . . . 7 2.4 SearchingforcosmicstringswiththeLIGO-Virgogravitational-waveexperiments. . . . . 7 2.5 Untanglingprecessiontoproducegenericwaveformmodels . . . . . . . . . . . . . . . . 7 2.6 Searchingforstellar-massbinaryblackholecoalescenceswithground-basedinterferometers 8 2.7 StochasticgravitationalwavebackgroundsearcheswithadvancedLIGO andadvancedVirgo:strategiesandgoals . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 R.Serafinelli·A.Colla UniversityofRome“Sapienza”,00185Rome,Italy E.Cuoco EuropeanGravitationalObservatory(EGO),56021Cascina,Pisa,Italy C.DaSilvaCosta·E.Evangelista InstitutoNacionaldePesquisasEspaciais(INPE),AvenidadosAstronautas1758,12227-010SaoJosedos Campos,Brazil A.Gupta TataInstituteforFundamentalResearch,HomiBhabhaRoad,Colaba,Mumbai400005,India B.Lackey DepartmentofPhysics,PrincetonUniversity,JadwinHall,Princeton08544,NJ,USA J.Logue SchoolofPhysicsandAstronomy,UniversityofGlasgow,G128QQGlasgow,UK S.Mohapatra SyracuseUniversity,Syracuse,NY13244,USA V.Re Universita’diRomaTorVergataandINFNsezionediRomaTorVergata,00133Rome,Italy L.Wen UniversityofWesternAustralia,Crawley,Perth6009,Australia J.Whelan RochesterInstituteofTechnology,Rochester,NY14623,USA G.Prodi INFN,GruppoCollegatodiTrento,38050Povo,Trento,Italy G.Prodi Universit‘adiTrento,38050Povo,Trento,Italy 123 11 Page 4 of 26 P.Astoneetal. 2.8 Probingformassivestochasticgravitational-wavebackgroundwithadetectornetwork . . 10 2.9 ParameterestimationforcompactbinarycoalescencesignalswithLIGO-Virgo . . . . . . 10 2.10 Effectofmergerandringdownsignalsontheestimationofparameters ofbinaryblackholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.11 TIGER:adataanalysispipelinefortestingGRwithgravitationalwaves fromcoalescingbinaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.12 AdvancedLIGO’sabilitytodetectapparentviolationsofthecosmiccensorshipconjecture andtheno-hairtheoremthroughcompactbinarycoalescencedetections . . . . . . . . . . 12 2.13 Towardsrapidparameterestimationoncbcsourceswithadvanceddetectors . . . . . . . . 12 3 C2parallelsessionpostersubmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1 Introduction Thedirectobservationofgravitationalwaves(GWs)fromastrophysicalsourceswill beamajormilestoneinphysicsandastrophysics.Thestudyofthedetectedwaveforms willbeauniquewindowintoastrophysicalsourcesassitesofstrong-fieldandhighly dynamical gravity. They will provide powerful insights into general relativity (GR) andperhapsintofundamentalphysicsbeyondGR. Theseconsiderationshavedriventhedevelopmentofkilometer-scalegravitational wavedetectors.TheInitialLIGO[1]andVirgo[2]detectorsoperatedinthelastdecade withunprecedentedprecision,butnoGWsignalsweredetected. The advanced detectors, Advanced LIGO [3] in the United States, Advanced Virgo[4]inItaly,andKAGRA[5]inJapan,willbeginobservingtheskyinthenextfew years.TheGWcommunityfullyexpectstodetectandstudyGWswiththesedetectors. In parallel, techniques for detecting and analyzing the detected waveforms have beenunderdevelopmentformorethantwodecades[6].Manyofthesemethodshave beenemployedtosearchforGWsinInitialLIGOandVirgodata,whicharedominated byinstrumentalnoiseandwhichcontainsignificantnon-Gaussianandnon-stationary noise fluctuations. Recent efforts have focused on optimal and statistically rigorous extractionofastrophysicalparametersfromdetectedwaveforms,andtestsofGeneral Relativitywiththesedetections. TheAmaldi10ParallelSessionC2onGWsearchresults,dataanalysisandparame- terestimationincludedthreelivelysessionsoflecturesby13presenters,andover30 posters.Thetalksandposterscoveredahugerangeofmaterial,includingresultsand analysistechniquesforground-basedGWdetectors,targetinganticipatedsignalsfrom differentastrophysicalsources:compactbinaryinspiral,mergerandringdown;GW burstsfromintermediatemassbinaryblackholemergers,cosmicstringcusps,core- collapsesupernovae,andotherunmodeledsources;continuouswavesfromspinning neutronstars;andastochasticGWbackground. We heard a comprehensive status report on searches for continuous waves from rotating neutron stars, including several innovative analyses in progress (Sect. 2.1). Therewasanoverviewofcurrentandfuturesearchesforcosmologicalandastrophys- icalstochasticbackground signals,includingawarningaboutcorrelatedinstrumen- tal noise between detector sites in the network due to global Schumann resonances (Sect.2.7). TherewerepresentationsonresultsfromLIGOandVirgoonsearchesforbinary black hole mergers, using matched filtering techniques to target systems with total 123 Gravitationalwavedataanalysis Page 5 of 26 11 massintherangeoftensofsolarmasses(Sect.2.6),andunmodeledbursttechniques for systems of up to 1,000 solar masses, using anticipated data from the advanced detectors(Sect.2.2).WealsoheardaboutasearchforGWburstsfromcosmicstring cusps(Sect.2.4). Itischallengingtoapplymatchedfilteringtechniquestocoverthelargeparameter spaceofpossiblesignalsfrombinarycoalescence,especiallyinthepresenceofcom- ponent spin, for which two component masses and two component spin vectors, or eight“intrinsic”parameters,arerequired.Ifthespinsarenotalignedwiththeorbital angularmomentum,theorbitalplanewillprecessaboutthetotalangularmomentum axis,inducingsignificantamplitudeandfrequencymodulationoftheobservedwave- form. We heard about ongoing efforts to simplify the parameterization of spinning binarycoalescencewaveformsbycapturingtheeffectsofprecession(Sect.2.5). TherewasconsiderableemphasisonBayesiantechniquesforestimatingthepara- meters of coalescing compact binary systems from the gravitational waveforms extractedfromnoisydetectordata(Sect.2.9).Theeffectofmergerandringdownon binaryinspiralparameterestimationwasdiscussed(Sect.2.10).Estimatingparame- tersinthepresenceofspinandprecessionisespeciallycomputationallyexpensive;we heardabouttheapplicationofreducedordermodellingtogreatlyspeedupthecompu- tationofthewaveforms(Sect.2.13).Alsopresentedweremethodsforusingdatafrom the coherent detector network to extract unmodeled transient burstwaveforms from sourcessuchashighmassbinarycoalescencesorcore-collapsesupernovae(Sect.2.3). Parameterestimationisincreasinglyappliedtohelpdistinguishdeviations ofthe GWwaveformsignalsfromwhatisexpectedinthecontextofGeneralRelativity.In thecaseofbinaryinspiralwaveforms,beyond-GReffectscanbesearchedforusing binaryinspiralwaveforms(Sects.2.11,2.12).Theeffectsofamassivegravitonwith non-GRpolarizationscanbedetectedinthestochasticGWbackground(Sect.2.8). Theanalysistechniquescontinuetogrowinscope,sophistication,power,variety andgenerality,inpreparationfortheadvanceddetectornetwork.Itwasevidentfrom boththetalksandthemanyrelevantpostersthattheGWcommunityistransitioning fromthesettingofupperlimitsusinginitialLIGOandVirgodata,topreparationsfor discovery and detailed study of GW signals with data from the advanced detectors. Attendeesgotthestrongsensethatthecommunityisreadyforthosedataandthose discoveries,andareeagertoextractasmuchphysicsandastrophysicsfromtheobser- vationsaspossible.Thismadeforaverystimulatingandforward-lookingsession! InSect.2,theauthorsprovidesummariesoftheirpresentations,intheorderthat theyweregiveninSessionC2.Section3givesbriefabstractsofthe34postersthat weresubmittedtotheSession. 2 C2parallelsessionlecturepresentations 2.1 Searchingforcontinuousgravitationalwavesignalsfromrotatingneutronstars withtheLIGOandVirgodetectors PresentedbyM.Bejger,fortheLIGOScientificCollaborationandtheVirgoCollab- oration 123 11 Page 6 of 26 P.Astoneetal. Rotating neutron stars that emit continuous gravitational waves are among the most promising targets of the LIGO and Virgo detectors: sufficiently large non- axisymmetric deformation with respect to the axis of rotation of a star generates a time-varyingmass-quadrupolemomentandgravitationalwaveemission.Thedepar- turefromanaxisymmetricshapemaybecausedbytheinternalmagneticfieldand/or elasticstressesinthecrustorcore—ifdetected,itwillprovideaninterestinginsight intothepresentlyobscureddetailsoftheinteriorneutron-starstructure.Thepresen- tation summarized basic types of searches for such signals: targeted searches from knownpulsars;directedsearchesfromknownlocationsonthesky;andall-skywide parametersearchesforunknownobjects.Statisticalmethodsusedinthedataanalysis and to calculate the upper limits on the gravitational waves in the initial phase of LIGO and Virgo projects were briefly described. The presentation of recent results includebeatingthespin-downlimitfortheCrabandVelapulsars[8,10];thesearch foracoherentsignalfromthedirectionoftheCasAsupernovaremnant[7],aswellas Sco-X1binary,SN1987AandtheGalacticcenterwiththecross-correlationmethod [9];andtheall-skysearchesforsignalsofunknownpositionandfrequency,withthe useofthePoweflux[11]andEinstein@Home[12]pipelines. 2.2 Perspectivesforintermediatemassblackholesearcheswithnetworks ofsecond-generationground-basedgravitational-wavedetectors PresentedbyGiulioMazzolo,incollaborationwithF.Salemi,M.Drago,V.Necula, C.Pankow,G.A.Prodi,V.Re,V.Tewari,G.Vedovato,I.YakushinandS.Klimenko Strongevidencefortheexistenceofintermediatemassblackholes(IMBH,masses from ∼102 to ∼105 M(cid:3)) is still lacking [13]. Compelling proof would be provided by the detection of GWs from coalescing IMBH binaries (IMBHB) [14,15]. The sensitivity achieved by the GW detectors operating in the past years is insufficient to challenge the expected IMBHB merger rates [16]. However, in a few years, the second-generation(2G)interferometricdetectorswillcomeonline[17].Thenewclass of instruments will consist of the upgraded LIGO and Virgo observatories and the KAGRA detector [3–5]. Compared to the previous detectors, the 2G observatories willsharesignificantlyhighersensitivityoverabroaderfrequencyband.Weconducted simulationstudiestoassessthesensitivityofnetworksof2Gdetectorstocoalescing, non-spinning IMBHs. Waveforms modeling the gravitational radiation emitted by merging IMBHBs are added to 2G-detector simulated noise and searched for with thecoherentWaveBurstdata-analysispipeline[18].Resultsarepresentedforsource- frametotalmassesbetween50and1,050M(cid:3)andmassratiosfrom1:6to1:1.Wefind thatthe2GobservatoriescouldbesensitivetothetestedbinarysystemsuptotheGpc range.AtheoreticalmodelisappliedtoestimatetheIMBHBobservationratewhich mightbeachievedwiththefutureinstruments,yieldinguptoafewtensofeventsper year. 123 Gravitationalwavedataanalysis Page 7 of 26 11 2.3 Inverseproblemforgravitationalwavetransients PresentedbyS.Klimenko Theinverseproblem—reconstructionofGWeventsandtheirparametersfromsig- nals recorded by detectors—is central in GW data analysis. Usually it is divided in twoparts:separationofGWsignalsfromthedetectornoise,andestimationofthesig- nalparameters.Thisresultsinvariousdetectionstatisticsandmethodsforthesource reconstruction. However, in general, these two parts should be considered together within the same analysis framework, called coherent network analysis, which com- binesdatafromalldetectors.InthistalkIdescribethecoherentnetworkanalysisin applicationtodetectionofpoorlymodeledtransientGWsignals.Itemploysthesparse time-frequencyrepresentationofGWdata,dualstreamanalysisandconstraints,which addresstheambiguityoftheinverseproblem.AlsoIdiscusstheexisting/futureGW detectornetworksandtheircapabilitiesfordetection,skylocalizationandreconstruc- tionofsourceparameters. 2.4 SearchingforcosmicstringswiththeLIGO-Virgogravitational-wave experiments Presented by Florent Robinet for the LIGO Scientific Collaboration and the Virgo Collaboration Cosmic strings are linear topological defects which are expected to form during symmetry-breakingphasetransitionsintheearlyuniverse[19].Someinflationmodels based on stringtheory predict that fundamental strings and D-stringscould grow to cosmic scales and constitute a network of cosmic superstrings [20]. When forming loops,cosmicstringsradiateenergythroughburstsofgravitationalwavesinthepres- ence of cuspy features [21]. This mechanism represents one of the most promising observationalsignaturestodetecttheexistenceofcosmicstrings. Wesearchedforburstsofgravitationalwavesproducedbycosmicstringcuspsin 625daysofdatafromground-basedinterferometersLIGOandVirgo.Noevidencefor suchevents wasfound.However, itispossibletosignificantlyconstrainparameters ofcosmicstringmodels.Followingthemethodsin[22],weconstrainedcosmicstring networksdescribedbythreeparameters:thestringtensionGμ,theloopsizeparameter ε and the reconnection probability p. This result [23] improves and complements existinglimitsfromsearchesforastochasticbackgroundofgravitationalwavesusing cosmic microwave background and pulsar timing data. In particular, if the size of theloopsisgivenbygravitationalback-reaction,weplaceupperlimitsonthestring tensionGμbelow10−8 insomeregionsoftheparameterspace. 2.5 Untanglingprecessiontoproducegenericwaveformmodels PresentedbyPatriciaSchmidt,incollaborationwithMarkHannam One of the greatest theoretical challenges in the build-up to the Advanced GW detectoreraisthemodelingofcompletegenericwaveforms,inparticularofprecessing compactbinaries.Precessionoccurswhenthespinangularmomentaoftheindividual 123 11 Page 8 of 26 P.Astoneetal. holesaremisalignedwiththebinarysorbitalangularmomentum,causingtheorbital plane of the binary, as well as the spins, to precess. The time-dependent motion of the orbital plane is directly reflected in the emitted GWs in the form of phase and amplitudemodulations. Inrecentworkwehaveintroducedanapproximationthathassignificantlysimpli- fiedtheproblemofmodelingprecessingsignals:weshowedthatgenericprecessing- binaryinspiralwaveforms,coveringthefullseven-dimensionalparameterspace,can be mapped to the two-dimensional subspace of non- precessing binaries, character- izedbythemassratioandasingleeffectivetotalspin.Asopposedtoearliermodeling attempts, we identified the inspiral rate as the one of a very particular spin-aligned system via analyzing the waveforms in a co-precessing frame [26,27], determined by maximizing the dominant harmonic. The mapping between precessing and non- precessing binaries then simply consists of three time-dependent rotations applied to the precessing waveforms. We found that this identification is extremely accu- rate,yieldingmatches≥0.99withparameterbiasesintheeffectivetotalspinofless than0.02.Weconcludedthattheinspiralandprecessiondynamicsdecoupleapprox- imately.Inordertoutilizethisapproachtosystematicallymodelprecessingbinaries, weappliedtheinverserotationstothecorrespondingnon-precessingwaveforms.We demonstratedtheefficacyofthisapproachforpurepost-Newtonianinspiralsaswell as for complete hybrid waveforms, obtaining matches ≥0.97 for most binary orien- tations [24]. This led to the proposal of the following general strategy to produce precessing waveforms, to “twist-up” corresponding non-precessing waveforms by applying the appropriate time-dependent rotations to them, as outlined in [24] [see Eq.(5.4)].Additionally,weshowedevidencethattheleading-orderprecessioneffects can be efficiently modeled with a small number of parameters [28]. This “twisting- up”approachhasrecentlyleadtotheconstructionofacompletephenomenological inspiral-merger-ringdown waveform model in the frequency domain [25] as well as toaprecessingeffective-one-bodymodel[29].Here,wesummarizedtheindividual components of the modeling process, discussed the modeling of precession effects withasingleprecession parameter and briefly presented thecomplete, phenomeno- logicalfrequency-domaininspiral-merger-ringdownwaveformmodelforprecessing binary-black-holes,PhenomP. 2.6 Searchingforstellar-massbinaryblackholecoalescenceswithground-based interferometers PresentedbyThomasDentfortheLIGOScientificCollaborationandtheVirgoCol- laboration Binaryblackholeswithcomponentsinthe3–50solarmassrangearepotentially the brightest GW sources in their sensitive frequency band. Both the properties of these binaries (masses and spins) and their coalescence rates are subject to large uncertainties; thus positive detections, or even stringent rate limits, could provide uniqueinformationthatwouldallowustoselectbetweenmodelsofbinaryformation andevolution. 123 Gravitationalwavedataanalysis Page 9 of 26 11 I present the results of searches for these binaries in the most recent joint LSC- Virgosciencerun[30,31].Themaximumsensitivedistanceofthedetectorsoverthis period for a (20, 20) solar mass coalescence was 300 Mpc. No gravitational-wave signalsweredetected.Wefind90%-confidenceupperlimitsonthecoalescencerates ofbinaryblackholesystemswithnon-spinningcomponentsasfollows:forsystems withcomponentsof5±1solarmasses,alimitof6.4×10−6/Mpc3/year;forsystems withcomponentsbetween19and28solarmasses,alimitof3.3×10−7/Mpc3/year. IalsodiscussthesciencecaseandprospectsfordetectionintheAdvanceddetector era,andtechnicalchallengesfacedbycurrentandfuturesearches. 2.7 StochasticgravitationalwavebackgroundsearcheswithadvancedLIGO andadvancedVirgo:strategiesandgoals PresentedbyNelsonChristensenfortheLIGOScientificCollaborationandtheVirgo Collaboration The Advanced LIGO [3] and Advanced Virgo [4] detectors are expected to start acquiringdatain2015,andworktowardtheirtargetsensitivityoverthesubsequent years.AmajorgoalforLIGOandVirgowillbetodetectorsetlimitsontheenergy density of a stochastic background of gravitational waves. A stochastic background of gravitational waves is expected to arise from a superposition of a large number ofunresolvedcosmologicaland/orastrophysicalsources.Acosmologicallyproduced backgroundwouldcarryuniquesignaturesfromtheearliestepochsintheevolution of the Universe. Similarly, an astrophysical background would provide information aboutthesourcesthatgeneratedit.AdvancedLIGOandAdvancedVirgoobservations shouldbeabletoprobeinterestingregionsofparameterspaceforthesemodels.LIGO andVirgo’ssearchstrategiesforthesesignalswerereportedinthetalk. UsingLIGOsciencerunS5data,anupperlimitontheenergydensityofgravita- tionalwaves(from41to169Hz)wassettobeΩ <6.9×10−6[32].AsAdvanced GW LIGOandAdvancedVirgocomeonlineandworkthroughcommissioningtoachieve theirtargetsensitivities,therewillbeafewdatacollectionscienceruns[33].With70 daysofearlycommissioningLIGOobservations,anupperlimitofΩ <6.9×10−7 GW can be achieved (15–200 Hz). During the mid-commissioning time period and with 6 months of observations, there could be an upper limit of Ω < 2.4×10−8. A GW 9-monthperiodofobservationduringthelatecommissioningerawillgiveanupper limitofΩ <5.0×10−9.Finally,whenthetargetsensitivitiesareachieved,ayear GW long observation run will allow for an upper limit of Ω < 1.0×10−9, while 3 GW yearsofobservationswillgiveanupperlimitofΩ <5.8×10−10. GW Inaddition,therewasadiscussiononhowglobalelectromagneticnoise(Schumann resonances)willaffecttheLIGOandVirgosearchforastochasticgravitationalwave background, and possible strategies were presented on how to monitor and subtract this potential source of correlated noise in a the global detector network [34]. This correlatednoisecouldpotentiallybeaproblemforLIGOandVirgoastheystriveto setthesestringentupperlimitsormakeadetection. 123 11 Page 10 of 26 P.Astoneetal. 2.8 Probingformassivestochasticgravitational-wavebackgroundwithadetector network PresentedbyAtsushiNishizawa Inageneralmetrictheoryofgravitationinfourdimensions,sixpolarizationsofa gravitational wave are allowed: two scalar and two vector modes, in addition to the two tensor modes predicted in general relativity. Also graviton mass, which could bedifferentineachpolarization,isanothercharacteristicofmodificationofgravity. Thus, testing the existence of additional polarization modes and graviton mass can beamodel-independenttestofgravitytheories.Inthispresentation,wehavestudied the search method for a massive stochastic gravitational-wave background (GWB) withtensor,vector,andscalarpolarizationmodes,extendingtheordinarymethodfor masslessgraviton.IfaGWBismassive,thephasevelocity,whichislargerthanthe speed of light, affects the cross-correlation statistics.A GWB spectrum has a lower frequency cutoff corresponding to the graviton mass. Using the Fisher information matrix, we have investigated the detectability of graviton mass with ground-based detectors.WefindthatifaGWBisdetectedatthelevelofh20Ωgw,0 =10−7,wecan determinethemassofgravitonintherangeof7×10−15eV < m < 2×10−13eV g foreachpolarizationmode.WealsoshowedthateveniftheGWBsignalisamixture ofthreepolarizationmodes,wecansafelyseparatethemanddeterminethemassof thegraviton.EvenifaGWBisdetectedbutthelowerfrequencycutoffisnotdetected, wecansetanupperlimitongravitonmass,whichisthelowercutoffofdetectornoise curve,say,∼10Hzor∼7×10−15eV. 2.9 ParameterestimationforcompactbinarycoalescencesignalswithLIGO-Virgo PresentedbyJohnVeitchincollaborationwithVivienRaymond,fortheLIGOSci- entificCollaborationandtheVirgoCollaboration Thesignalsemittedbycoalescenceofcompactbinaries(blackholesandneutron stars)willencodedetailsofthesourcesthatareuniquelymeasurablewithgravitational waves,includingthemassesofthecompactobjects,theirspins,positionanddistance. However,theaccuracyofsuchinferencesislimitedbythedetectornoise(including unmodeledartefactspresentinthedata),uncertaintiesinthewaveformmodels,and inthedetectorcalibration. Recentprogresshasbeenmadeinthedevelopmentofrobustandefficientmethods ofsolvingtheparameterestimationproblemforcompactbinaries[35].Thesemake use of probabilistic Bayesian methods (MCMC and nested sampling) to estimate theposteriorprobabilitydistributionforthesignalparameters.Thesemethodswere appliedtodatacollectedduringthemostrecentjointsciencerunoftheLIGOandVirgo detectors, which contained a range of hardware and software injections, including a “blind injection” where the presence of the simulated signal was initially hidden fromthecollaboration[30].Theresultsofthesesimulationsdemonstratethatweare able to recover the source parameters for systems which span the neutron-star and black-holebinaryparameterspacebetween1and25 M(cid:3),andincludespinsonboth bodies in the analyzed models. Further development of the analysis methods will 123