MNRAS Advance Access published January 21, 2013 MNRAS(2013) doi:10.1093/mnras/sts481 The Suzaku view of highly ionized outflows in AGN – I. Statistical detection and global absorber properties Jason Gofford,1‹ James N. Reeves,1,2 Francesco Tombesi,3,4 Valentina Braito,5,6 T. Jane Turner,2 Lance Miller7 and Massimo Cappi8 1AstrophysicsGroup,KeeleUniversity,KeeleST55BG,UK 2DepartmentofPhysics,UniversityofMarylandBaltimoreCounty,Baltimore,MD21250,USA 3X-rayAstrophysicsLaboratoryandCRESST,NASA/GSFC,Greenbelt,MD20771,USA 4DepartmentofAstronomy,UniversityofMaryland,CollegePark,MD20742,USA 5INAF-OsservatorioAstronomicodiBrera,ViaBianchi46,I-23807Merate,Italy 6DepartmentofPhysicsandAstronomy,UniversityofLeicester,UniversityRoad,LeicesterLE17RH,UK 7DepartmentofPhysics,OxfordUniversity,DenysWilkinsonBuilding,KebleRoad,OxfordOX13RH,UK D 8INAF-IASFBologna,ViaGobetti101,I-40129Bologna,Italy o w n lo a d e Accepted2012November22.Received2012November22;inoriginalform2012October14 d fro m h ttp ABSTRACT ://m WepresenttheresultsofanewspectroscopicstudyofFeK-bandabsorptioninactivegalactic n ra nuclei (AGN). Using data obtained from the Suzaku public archive we have performed a s.o statisticallydrivenblindsearchforFeXXVHeαand/orFeXXVILyαabsorptionlinesinalarge xfo sample of 51 Type 1.0−1.9 AGN. Through extensive Monte Carlo simulations we find that rdjo u statisticallysignificantabsorptionisdetectedatE(cid:2)6.7keVin20/51sourcesatthePMC ≥ rna 95percentlevel,whichcorrespondsto∼40percentofthetotalsample.Inallcases,individual ls.o absorption lines are detected independently and simultaneously amongst the two (or three) arg/ available X-ray imaging spectrometer detectors, which confirms the robustness of the line t N A detections. The most frequently observed outflow phenomenology consists of two discrete S A absorptiontroughscorrespondingtoFeXXVHeαandFeXXVILyαatacommonvelocityshift. G o FromxstarfittingthemeancolumndensityandionizationparameterfortheFeKabsorption dd a components are log(N /cm−2) ≈ 23 and log(ξ/ergcms−1) ≈ 4.5, respectively. Measured rd H S outflow velocities span a continuous range from <1500 km s−1 up to ∼100000 km s−1, pa c withmeanandmedianvaluesof∼0.1cand∼0.056c,respectively.Theresultsofthiswork e F areconsistentwiththoserecentlyobtainedusingXMM–Newtonandindependentlyprovides ligh sfrtarocntigonevoifdebnocthefroadritoh-eqeuxieistteanncderoadfivoe-rlyouhdigAhlGyNioinniztehdecloirccaulmunniuvcelresaer.materialinasignificant t Ctr on A p Keywords: line:identification–galaxies:active–galaxies:nuclei–X-rays:galaxies. ril 5 , 2 0 1 3 gravitational radii (R = GM/c2) in size (Morgan et al. 2008; 1 INTRODUCTION g Chartas et al. 2009; Dai et al. 2010) and so the spectral analysis Observational evidence for outflows and winds in active galactic of absorption features imprinted on the X-ray continuum by cir- nuclei (AGN) is seen in multiple energy regimes, ranging from cumnuclear material in an AGN is a powerful diagnostic of the the prominent radio-jets seen in radio-loud sources, to the broad physicalconditionsoftheenvironmentinthevicinityofthecen- absorptionlinesobservedinbroadabsorptionline(BAL)quasars, tralsuper-massiveblackhole(SMBH),ofthedynamicsandkine- through to the photoionized ‘warm absorber’ which is frequently matics of the outflowing material, its chemical composition and observed in the soft X-rays (e.g. Crenshaw, Kraemer & George its ionization state. Understanding how such winds are formed, 2003;Blustinetal.2005;McKernan,Yaqoob&Reynolds2007). their physical characteristics and their energetic output are of vi- Gravitational micro-lensing studies have shown that the primary tal importance when it comes to studying how the interplay be- X-ray emission region in AGN is of the order of a few tens of tweentheaccretionandejectionflowsatsmallradiicanaffectthe hostgalaxyonlargerscales(e.g.Ferrarese&Merritt2000;King & Pounds 2003; Sazonov et al. 2005; Ciotti, Ostriker & Proga (cid:4)E-mail:[email protected] 2009). (cid:5)C 2013TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety 2 J.Goffordetal. IntheX-rayregimethepresenceofphotoionizedmaterialinAGN sorptionfeatures–pointtoanoriginmorelikelyassociatedwitha iswellestablished,withatleast50percentofobjectsshowingdirect windwhichislaunchedfromthesurfaceoftheaccretiondiscitself spectroscopicevidencefordiscreteabsorptionlinesandphotoelec- (e.g.Poundsetal.2003b;Reevesetal.2009;Goffordetal.2011; tric edges in their soft-band (E < 3 keV) spectra (e.g. Reynolds Tombesietal.2012).Inthisscenariotheinferredmassoutflowrates 1997;Crenshawetal.2003;Blustinetal.2005),withtypicalline- fordiscwindsareoftencomparabletothoseofthematterwhich of-sightvelocitiesrangingfromafewhundredtoaroundathousand accretesontothecentralblackholeandtheconsequentmechani- kms−1(Blustinetal.2005;McKernanetal.2007).Detailedmod- calpowercanalsobeasizeablefraction(i.e.≥fewpercent)ofan ellingathighspectralresolutionwithphotoionizationcodessuchas AGN’sbolometricluminosity(e.g.Chartasetal.2002;Poundsetal. xstar(Kallmanetal.2004)oftenfindsthesoft-bandabsorberto 2003b;Gibsonetal.2005;Reevesetal.2009;Goffordetal.2011; bedescribedbycolumndensitiesandionizationparameters1inthe Tombesietal.2012)makingthemapromisingmeansoflinkingthe range of log(N /cm−2)∼20−23 and log(ξ/ergcms−1)∼0−3, small-andlarge-scaleprocessesatplayingalacticevolutionover H respectively.Theseparametersimplythatthewarmabsorbersare cosmictime. typically located on fairly large distances from the central black hole,andperhapsassociatedwithawindoriginatingfromthepu- 1.1 WhySuzaku? tative parsec scale torus (Blustin et al. 2005) or with the latter stagesofanaccretiondiscwindwhichhaspropagatedouttolarger InthisworkweusearchivalSuzakuobservationsofalargesampleof D radii(Proga&Kallman2004).Byvirtueoftheirlowoutflowve- AGNtocharacterizethepropertiesofhighlyionizedoutflowsinthe ow locitiesthesoftX-raywarmabsorbersarethoughttoonlyhavea FeKband.Todate,themostcomprehensivestudyoftheseoutflows nlo a weakfeedbackeffectintheirhostgalaxy.Indeed,themechanical hasbeenconductedbyTombesietal.(2010a,hereafterT10A)who de d plooww,etryipmicpaalrlyted(cid:3)b0y.0i1ndpievridceunatlwofaramnaAbGsoNrp’stiboonlcoommeptroicnelnutmsiinsovseirtyy p4e2rsfoourmrceeds(awsiytshte1m01atoibcsnearrvraotwio-nbsa)nodb(tai.ien.e3d.5fr–o1m0.t5hkeeXVM)Man–aNlyeswistoonf from (thLebo∼l)0(e.5.gp.eBrcluesnttinofetLbaoll.t2h0o0u5g)h,twnheiccehssiasrysigfonrififceaendtblyaclkowtoeraftfheacnt atirncuhuivme,inustihnegFaesKimbpalnedb.aTsheelinbeasmeloindeelmtooddeelsccorinbseistthedeoAfGaNpocwoner- http://m the host galaxy (Hopkins & Elvis 2010). However, Crenshaw & law, narrow Gaussians and, where required, neutral absorption to n Kraemer(2012)haverecentlyshownthatthis∼0.5percentthresh- approximateforanyspectralcurvature.Thisphenomenologicalap- ras.o oldcanbeexceededprovidedthemechanicalpowerisintegrated proachyieldedafittothe4–10keVenergybandofmostsources xfo oovfearfaelwlUmVodaenrdatXe--lruamyianbossoitryptlioocnalcAomGpNo.nents,atleastinthecase awnhdicFhewXXasVIsLufyfiαciaebnstotropteinoanbllienethsewsiythstoeumtanteiecdsienagrctohtoafkFeeadXdXiVtiHoneaαl rdjourn ferMedobreyrXecMenMtl–yNtehwethoinghaenrdthSruozuagkhupautthaingdhelarrgXe-rraeyffeecnteivrgeieasre(aEo∼f- sappepcrtoraaclhcroemsupllteexditiyncinotnotiancucuomunpta.rMamoreeteorvsewr,hTic1h0Awefroeulnadrgtehlaytctohnis- als.o rg 5–10keV)haveshownthatabsorption,specificallyintheformof sistentwiththosefoundbyauthorswhoconductedamorethorough a/ very highly ionized resonant absorption lines associated with the fit using the entire XMM–Newton bandpass. However, while this t N K-shell(1s→2p)transitionsofFeXXVandFeXXVI,isalsomani- approachissuitableformostsourcesitisimportanttonotethatin AS A festedinthehardX-rayspectrumofasignificantfractionoflocal thosewhichhavemorecomplexX-rayspectra,e.g.thosewhichare G AGN.Whileevidenceforsuchabsorptionlineswasinitiallycon- veryheavilyabsorbedorthosewithstronghardexcesses,usinga od d fined to detailed studies of individual sources (e.g. Pounds et al. narrow-band fit can yield a model which is a poor representation ard 2003b;Reeves,O’Brien&Ward2003;Risalitietal.2005;Turner ofthedatawhenextrapolatedtoconsiderthehigherandloweren- S p etal.2008;Cappietal.2009;Giustinietal.2011)therecentsys- ergies.Theonlywaytoovercomethislimitationisbyperforming ac e (te2m01a0tiac,a2r0c1h1ivaa,l2X01M2M)h–aNseswhtoownnsttuhdaytFceonXdXuVc–tXeXdVbIyabTsoomrpbtieosnielitnaels. aobdseetravialetodrbyrowahdi-cbhanodffaenrsalayssius.ffiScuizeanktluyisbrcouardrenbtalnydtphaesson(liy.e.X0-r.6ay– Fligh ainrethperelsoecnatliunntihveeXrs-era(yzs<pe0c.t1r)a.oMfo(cid:2)r4eo0vpeerr,cseuncthoofurtafldoiow-squhiaevteAaGlsNo 5ex0ckeessV)antodathlleowCofomrptthoenerfefflecetcstioofnscooftm-bpaonndenatbstoorpbteiocno,ntshterasinoeftd- t Ctr on been detected in a small sample of local broad line radio galax- simultaneously. This makes it the ideal instrument to confidently A p ies (BLRGs; Tombesi et al. 2010b, hereafter T10B) which thus constraintheunderlyingcontinuumandtorobustlyassessforthe ril 5 suggeststhattheymayrepresentanimportantadditiontothecom- presenceofhighlyionizedoutflowsinAGN. , 2 0 monlyheldAGNunificationmodel(e.g.Antonucci1993;Urry& 1 3 Padovani1995). 2 SAMPLE SELECTION In comparison to the soft-band absorbers these hard X-ray absorbers generally have much more extreme parameters, with The sample was selected from the Data Archive and Transmis- log(NH/cm−2) ≈ 23–24 and log(ξ/ergcms−1) ≈ 3–6, and their sion System2 (DARTS; Tamura et al. 2004) which contains all outflowvelocitiesrelativetothehostgalaxycanreachmildlyrela- publiclyavailableSuzakuobservationscategorizedbytheclassifi- tivisticvalues.Whilealternativeexplanationshavebeenpositedin cation ofthetargetsource.AninitialsampleofAGN was drawn the literature, e.g. resonant absorption by highly ionized material bypositionallycross-correlatingthetargetedpointingcoordinates inacorotatingandopticallythinplasmaabovetheaccretiondisc ofallpubliclyavailable(asoftheendof2011December)Suzaku (Gallo & Fabian 2011), the large inferred velocities – combined observations of extragalactic compact sources against the known withtheshorttime-scalevariabilitysometimesexhibitedbytheab- positions of sources contained in the VERONCAT catalogue of Quasars&AGN(Ve´ron-Cetty&Ve´ron2010).TheVERONCAT hasanextensivelistoflocalAGN,allofwhichhavebeenquan- 1Theionizationparameterisdefinedasξ =Lion/nR2 (Tarter,Tucker& titatively classified based upon their optical properties using the Salpeter1969),whereLion isthe1−1000Rydbergionizingluminosity,n istheelectrondensityandRisthedistanceoftheionizingsourcefromthe absorbingclouds. 2http://darts.jaxa.jp/astro/suzaku/ TheSuzakuviewofhighlyionizedoutflowsinAGN 3 criteria introduced by Winkler (1992). Observations of non-AGN which were matched by virtue of their having a similar position toaknownAGNonthesky,suchasthoseofextragalacticultra- luminousX-raysources(ULXs;Feng&Soria2011)orX-raybright supernovae,weresystematicallyexcluded.Onlythoseobservations with exposures long enough to ensure that the net source counts between2and10keVinthesourcerest-frameexceeded∼15000 wereretained(typicalexposureswere(cid:2)50ks)suchthatanarrow (i.e.EW=30eV)absorptionfeaturewasdetectableat95percent fromMonteCarlosimulationsatsourcerest-frameenergiesofup to8–9keV(seeSection4.4).Inthecaseofthehighred-shiftquasar APM08279+5255,whichshowsevidenceforabsorptionlinesat rest-frameenergiesofE>10keV(e.g.Chartasetal.2009;Saez, Chartas&Brandt2009;Saez&Chartas2011),themeasureofnet sourcecountswasinsteadtakenfortheentireX-rayimagingspec- trometer (XIS) bandpass (i.e. 0.6–10 keV in the observer frame) Figure1. Histogramshowingthedistributionofsourcesincludedinthis D becausetheFeKfeaturesareshiftedtolowerenergiesduetothe work. The high red-shift QSO APM 08279+5255 (z = 3.91) has been ow highred-shiftoftheAGN. omittedforscalingpurposes. nlo a Ashighlyionizedoutflowsarethoughttooriginateatrelatively d e d sTmomalbledsiisteatnacle.s20fr1o1ma,t2h0e1c2e,nhterraelanftuecrleTu1s1(aen.gd.TG1o2f,forersdpeetctailv.e2ly0)1,1i;t from isimportantthattheprimarycontinuumemissionfromthecentral http nucleus,ratherthanthatwhichisreprocessed/scatteredbycircum- ://m nuclear material out of line of sight, is directly observed so that n suchoutflowscanbedetected.TothisendweexcludeallType2 ras .o sourcestomakesurethatallsourceswereopticallythintoX-rays x fo below 10 keV. Therefore only those sources with a Type 1.0–1.9 rd jo orientation to the line of sight, as per the classifications listed on u rn the NASA/IPAC Extragalactic Database (hereafter NED), in the a ls VERONCATcatalogueitselfandthroughliterarysourceswerein- .o rg cluded. Note that we conservatively include the radio-quiet AGN a/ ESO 103-G035 (z = 0.01329) which, despite being classified as t N A Type2.0intheVERONCATandonNED,isoftenregardedasa S A Type1.9Seyfertintheliterature(e.g.Warwick,Pounds&Turner G 1988)byvirtueofthepresenceofamoderatelybroadHαlineinits od d opticalspectrum(Phillipsetal.1979).Observationdetailsforall Figure2. Histogramshowingthelogarithmofthetotalfront-illuminated ard sourcesincludedintheheterogeneouslyselectedsamplearelisted XIS2–10keVcountsinallfittedspectra.Instackedspectra(seeTableA1) S p inAppendixAintheonlinesupportinginformation.Thereare99 thetotalco-addedcountsareconsideredhere,ratherthanthecountsineach ac observations of 51 AGN spanning a wide range of spectral types individualsequence. e F andradio-properties.AsshowninTable1thesampleisdominated ligh bylow–moderateinclinationSeyfert1.0–1.5galaxies(28/51;34/51 0.1040), PKS 0558−504 (z = 0.1372) and PBC J0839.7−1214 t C ifNarrowLineSeyfert1sareincluded)andcontainscomparatively (z=0.198).ThegravitationallylensedquasarAPM08279+5545 tr o n fewhigh-inclination(Type1.8–1.9)Seyferts(6/51).Therearesix is by far the most distant object in the sample with a red-shift A radio-loudsourcesinthesample,includingallfiveoftheBLRGs tohfezfi=tted3.9sp1e.cAtrsasshpoawnntwino oFridge.r2s othfemtoatganlit2u–d1e0bkuetVarecoaupnptsrofxoir- pril 5 includedintheT10Boutflowcasestudy,andfiveQSOs.Thedistri- , 2 mately normally distributed about the peak and mean number of 0 butionsofsourcered-shiftandtotal2–10keVcounts(fortheXIS 1 105counts. 3 front-illuminateddetector)areshowninFigs1and2,respectively. TheAGNarepredominantlylocal,with∼90percentofthesam- plebeinglocatedatared-shiftofz(cid:3)0.1,butalsoincludesmore 3 DATA REDUCTION distantobjectssuchasPDS456(z=0.1840),1H0419−577(z= 3.1 XISreduction Table1. Sourceclassifications. TherearefourXISCCDcamerasaboardSuzakuwhichcoverthe energy range of 0.3–12.0 keV. The XIS 0, XIS 2 and XIS 3 are Sourceclassification Number front-illuminated,whiletheXIS1isback-illuminatedandprovides Sy1.0–1.2 17 superiorsensitivitybelow∼1keVbutalowereffectiveareaanda Sy1.5 11 higherbackgroundatharderX-rayenergies.TheXIS2suffereda Sy1.8–1.9 6 chargeleakin2006November3 andisthereforeonlyavailablein NLSy1 6 observationstakenbeforethisdate.Allspectrawerereducedusing BLRG 6 QSO 5 Total 51 3http://heasarc.gsfc.nasa.gov/docs/suzaku/news/xis2.html 4 J.Goffordetal. v6.11oftheHEASoft4 suitefollowingtheprocessoutlinedinthe fitstatistic.HardX-rayfaintand/orhighbackgroundobservations SuzakuABCDataReductionGuide.5 Eventswereselectedusing wheresourcecountrateswere<4percentofthePINtotalwerenot ASCAX-raygrades0,2,3,4and6,adoptingthestandardscreening consideredinouranalysis.OnlyAPM08279+5255andPDS456, criteriasuchthatdatawereexcludediftaken:(1)within436sof amounting to a total of five observations, meet this criterion (see passagethroughtheSouthAtlanticAnomaly(SAA),(2)withinan TableA1).AswiththeXISdata,thefinalPINexposuresandthe Earth elevation angle (ELV) <5◦ and/or (3) with Earth day-time totalbackground-subtractedrest-frame15–50keVcountsarelisted elevation angles <20◦. Hot and flickering pixels were removed inTableA1. fromtheXISimagesusingtheCLEANSISscript.Sourcespectrawere extractedfromwithincircularregionsofradius1.5≤r<3.0arcmin 4 ANALYSIS to ensure good coverage of the source events, while background spectra were typically extracted from offset circles of the same 4.1 Spectralfitting radiuswithcaretakentoavoidthechipcornerscontainingtheFe55 calibrationsources.Forintrinsicallyfaintsourcesthebackground Adetailedbroad-bandspectralanalysisofallsourceswasconducted spectrawereextractedfromcircleslargerthanthoseofthesource usingversion12.6.0qoftheXSPECspectralfittingpackage.Allspec- andtheratioofsource/backgroundareawasaccountedforwithan tralmodelsaremodifiedbytheappropriatecolumndensityofGalac- appropriatebackgroundscalingfactor.Redistributionmatricesand ticabsorptionusingvaluestakenfromtheLeiden/Argentine/Bonn D ancillaryresponsefilesforeachobservationweregeneratedusing SurveyofGalacticHI(Kalberlaetal.2005)whichwereobtained ow n thetasksXISRMFGENandXISSIMARFGEN,respectively. fromtheon-lineversionoftheNH FTOOL.6 ThevaluesofGalactic loa Wherepossiblespectraobtainedfromthefront-illuminatedXIS absorptionforeachsourcearelistedinTableA1.XIS-FIdatawere de d detectorswerecombinedintoasinglesourcespectrum(hereafter typicallyconsideredbetween0.6and10.0keV,whileXIS-BIwere fro XIS-FI)usingMATHPHAinordertomaximizesignal-to-noiseratio only included between 0.6 and 5.0 keV due todecreasing S/Nin m (S/N)intheFeKband.Mostoftheobservationsinthesamplehave theFeKbandwhichcouldhamperabsorptionlinedetection.All http dataforatleasttheXIS0andXIS3withafurther22alsohaving XISspectrawereexcludedbetween1.6and2.1keVduetouncer- ://m datafortheXIS2(seeTableA1).ForSWIFTJ2127.4+5654(OB- taintiesincalibrationassociatedwiththeSiKdetectoredge.Where n ra SID702122010)onlydataforthefront-illuminatedXIS3camera available,PINdatawereincludedtocoveratleastthe15–40keV s.o areavailablebecausetheXIS0wasnotoperationalduringtheob- energyrange. xfo servation.Spectrafortheback-illuminatedXIS1(hereafterXIS-BI) A constant multiplicative factor was included in all models to rd jo werereducedusingthesameprocessasoutlinedaboveandwere accountfortheXIS/PINcross-normalizationwhosevaluedepends urn analysedsimultaneouslyasaseparateinputspectrum.AllXISspec- not only on the nominal pointing of the observation, but also the als traweregroupedtohaveaminimumof50countsperenergybin versionoftheSuzakupipelinewithwhichthedatahavebeenpro- .org toenabletheuseoftheχ2 fitstatistic.NetXISexposuresandthe cessed.ThecurrentXIS/PINratiossuitableforversion2processed a/ total background-subtracted 2–10 keV count rates (in the source dataare1.16(1.18)fortheXIS(HXD)nominalpointingpositions.7 t N A rest-frame),forboththeco-addedXIS-FIandtheXIS-BIdetectors, However,thecross-normalizationwasupto∼5–6percentlowerfor S A arelistedinTableA1. dataprocessedwithversion1ofthepipeline,correspondingtoan G o XIS/PIN ratio of 1.09(1.13)7 in the XIS (PIN) nominal pointing d d a positions.Whilethedifferenceisonlysmalltheadditionaluncer- rd 3.2 HXD/PINreduction taatinEty>ca1n0hkaveVe,apcaorntisciudlearralbyleinefhfeacrdtoXn-trhaeycbornigtihntusuomurpcaersamweittheras Space Spectra from the Hard X-ray Detector (HXD) Positive Intrinsic high PIN count rate where the model can become driven by the Flig Negative(PIN)siliconediodeswerealsoreducedusingthemethod hardX-rayband.Toaccountforanysystematiceffectsassociated h t C oacuctloirndeidnginttohethSeuzsackrueeDnaintagRcerdituecritaiondeGscuriidbeedanpdr,eavgiaoiuns,lpy.roAcessstehde wstaitnhttphaerainmsetrtuemriennetaalcchromsos-dcealltiobrvaatiroyn±w5eptehrecreefnotraebaolulotwthtehveacluoens- tr on A HXD/PINisacollimatingratherthananimaginginstrument,the suggestedbytheSuzakuteamtotakeintoaccountanysystematic p contributionofboththeinstrumentalnon-X-raybackground(NXB) errors. ril 5 andthecosmicX-raybackground(CXB)needstobeindependently Thereare20AGNinthesamplewhichhavetwoormoreSuzaku , 2 0 accounted for when estimating the total background. The NXB observations. In APM 08279+5255, IC 4329A, MCG -6-30-15, 13 wasgeneratedusingtheappropriateresponseandtunedeventfiles Mrk 841, NGC 5506, NGC 5548 and PKS 0558−504 the differ- (backgroundmodelD)foreachobservation.Commongoodtime ent observations are similar in spectral shape which allows them intervals (GTIs) in the event and background files were selected tobeco-addedusingtheappropriaterelativeweightingfactorsto usingMGTIMEandspectralfileswereextractedusingXSELECT.PIN takeintoaccountdifferencesinindividualexposures,withthere- detectordead-timewasaccountedforusingtheHXDDTCORtaskand sultant time-averaged spectra for these sources being used in all theNXBbackgroundexposurewasincreasedbytentimestoreduce subsequentanalyses.1H0419−577andNGC2992bothhadob- theeffectsofphotonnoise.TheCXBcontributionwassimulated servationswhichweretakenindifferentSuzakunominalpointing usingtheformofBoldt(1987),combinedwiththeNXBtoforma positionswhichcouldinfluenceco-adding.However,effectivearea totalbackgroundspectrumusingMATHPHA,whichwassubsequently wasalwaysconsistenttowithin±10percentandsothespectrawere subtractedfromthesourcespectrumwithinXSPEC. stillco-addedusingthemeanoftheresponsefiles.Anyadditional Allbackground-subtractedPINspectrawerebinnedtoatleastthe systematicuncertaintyintroducedwasadequatelyaccountedforby 3σ levelabovebackground(typically>5σ)toenabletheuseofχ2 6http://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl 4http://heasarc.nasa.gov/lheasoft/ 7http://www.astro.isas.jaxa.jp/suzaku/doc/suzakumemo/suzakumemo- 5ftp://legacy.gsfc.nasa.gov/suzaku/doc/suzaku_abc_guide.pdf 2007-11.pdf TheSuzakuviewofhighlyionizedoutflowsinAGN 5 thevariableXIS/PINcross-normalization.In3C120andMrk509, listed in Tables D2 and D3 for single- and multi-epoch spectra, whichbothshowednotablevariabilitybetweenobservations,spec- respectively.Adescriptionoftheunderlyingmodellingassumptions tra were jointly fitted depending on the extent of their spectral and associated caveats is presented in Appendix C in the online variability between epochs. In 3C 120 we followed the analysis supportinginformation. methodofKataokaetal.(2007)andT10Bbyco-addingOBSIDs 700001020, 70001030 and 70001040, which are all of a similar spectralshapeandfluxlevel,andjointlyfittedthemwithOBSID 4.2.1 WarmabsorptionI:fullcovering 700001010 which has a more prominent underlying soft-excess. Dependingonthepropertiesoftheinterveningmaterial(suchasits InMrk509,whichiswellknownforhavingastrongsoft-excess ionizationstateandcolumndensity)absorptionbycircumnuclear (Mehdipouretal.2011),OBSID701093010,thestackedOBSIDs materialcanaddsignificantspectralcurvaturetotheobservedX-ray 701093020,701093030,701093040andOBSID705025010were spectrumandcanthereforehaveadirecteffectonthecontinuum fittedsimultaneouslytoaccountfortheobservedvariabilityinthe andlineparametersmeasuredinbroad-bandmodels.Inthiswork softX-rayband. wemodelwarmabsorptioncomponentsusingasuiteofxstar(v. The remaining nine sources with more than one observation 2.2.1bc)tableswhichareallgeneratedassuminginputvalueswhich (3C111,Fairall9,Mrk766,NGC1365,NGC3227,NGC3516, are ‘typical’ for local Seyfert galaxies8 (e.g. T11). The resultant NGC3783,NGC4051andPDS456)showedstrongspectralvari- xstar tables cover a wide range of parameter space in terms of D ability in both the shape of the spectrum and/or drastic changes column densities [1018 < log(N /cm−2) ≤ 1024], and ionization ow in flux state which made co-adding impractical. In these sources parameter[−3<log(ξ/ergcmsH−1)≤6]whichmakesthemwell nlo a the available spectra were fitted simultaneously and a model was d suitedforaccountingforallmannersofwarmabsorption. e d cfeownsatrdudcitteiodnatolfdreeescpraibraemtheteerosbasserpvoesdsibsplee.cItnraNl GvaCria1b3i6li5ty,OwBitShIDass whFeurell-nceocveesrsinargywtoaramchaiebvseoraptgioonodzofintetsoathreeisnocfltuXde-drayinbmanodd;eilns from 702047010and705031010aredominatedbyverydeepFeKab- somecasesmorethanoneabsorptionzoneisneeded.Inthesecases http sorption lines. These lines are not present in OBSID 705031020, thecolumndensityandionizationparameterofeachzoneareal- ://m pdoomssiinbalyteddusetateto(steheeMsaoiuorlcineodertoaplp.in2g010intfooradeqtauialssio-sfctahtetervianrgi-- lwohwiecdhtcoovnasirsytsinodfempeunldtiepnletlylaaynedrsreopfrgesaesn.tAatnthabeseonrpertgioynrgeesoomluetitoryn nras.o ability patterns in this source). For simplicity we therefore only x of the XIS CCDs the bound–bound absorption lines required to fo simultaneously fitted OBSID 702047010 and OBSID 705031010 constraintheoutflowvelocitiesofindividualsoftX-rayabsorption rdjo inTNhGeCχ1236m5i,naimndizfiatttieodnOteBcShnIDiqu7e05i0s3u1s0e2d0tsherpoaurgahteoluyt. this work, componentsareunresolvedandallabsorptionzonesaretherefore urna fittedasstationaryinthesourcerest-frame(i.e.fixedoutflowve- ls w((cid:7)itχh2al=ls2ta.7ti1stifcoarloenrreoprsarqaumoetetedrtoofthinete9r0epste)r.cWenhtecreontfihedesntacteislteivceall sloocfittiXes-roayfvaobusto=rbe0rktmo vsa−r1y).aAlwllaoywsinhgasthaenoeugtlfligoiwbleveelfofceicttyoonftthhee a.org/ significanceofcomponentsisquotedintermsofa(cid:7)χ2 valuethe reportedFeKabsorptionlineparameters. t N A componentinquestionhasbeenremovedfromthemodelandthe S A datarefittedtoensurethattheorderinwhichcomponentsareadded G tothemodelhasnoinfluenceonthederivedstatistics.Whenrefer- 4.2.2 WarmabsorptionII:partialcovering od d orifntghteofistt,awtishtiilcealacnheagnagteivseto(cid:7)aχfi2tianpdoicsaittievsea(cid:7)sχta2tidsetincoatleismapwroovresmeneinntg. Wealsoconsiderthepossibilitythatthesightlinetoasourceispar- ard S Positiveoutflowvelocitiescorrespondtoanetblue-shiftrelativeto tiallycovered.Inthisabsorptiongeometryafractionfcov<1ofthe pac thesystematicofthehostgalaxy,whileanegativevelocityindicates sourcefluxisabsorbedwiththeremaining1−fcovleakingthrough e F anetred-shift. theabsorptionlayer.Forsimplicityweaccountforpartial-covering ligh absorptionlayersusingacustomizedversionofthezxipcfmodel9 t C whichmodelsthepartial-coveringabsorptionbypartiallyionized tr o 4.2 Modelconstruction gas(seeReevesetal.2008a)withoutneedingtousecomplicated n A All spectra were first fitted with a power law modified solely nraemsteetderpsoiwneorulrawcusstaonmdizxesdtatarblteabmleosd.eAlsarienczoxluimpcnfdethnesitfyre(eNpa)-, pril 5 by Galactic absorption. Additional components were added to ionization parameter (logξ), covering fraction (f ) and red-shHift , 20 the model and retained provided their significance exceeded cov 1 the>99percentconfidencelevelbytheF-test.Anyemissionlines relativetotheobserver(z).Themodelisbasedonthesametables 3 inthesoftX-raybandwerefittedwithnarrowGaussians(σ∼5eV). asdiscussedinSection4.2.1andthereforehasaslightlylowertur- bulentvelocitythanzxipcf,atv =100kms−1,butcoversthe Insourceswithmultiplespectraweinitiallyfoundabroad-bandfit turb same parameter space in terms of column density and ionization to the observation with the highest flux; later observations were parameter. thenaddedsequentiallyandthecontinuum/absorptionparameters Partial-covering absorption can have a strong effect on the ob- wereallowedtotovaryindependentlyuntilasimultaneousfittoall servedcontinuumwithmoderatecolumndensitiesofmaterial(N ∼ spectrahadbeenachievedusingasfewfreeparametersaspossible. H 1023 cm−2)addingconsiderablespectralcurvatureatE<10keV Once a statistically acceptable fit to the broad-band spectrum of (Reevesetal.2004;Risalitietal.2005;Braitoetal.2011;Turner eachsourcehadbeenfound,wefittedanynecessaryemissioncom- ponentsandthenperformedasystematicandmethodicalsearchfor FeKabsorptionlinesbetween5and10keVusingenergy–intensity 8Absorptiongridsaredescribedbyanilluminatingphotonindexof(cid:8) = planecontourplots(Section4.3)anddetailedMonteCarlosimula- 2.1,agasdensityofn=1010cm−3,amicro-turbulentvelocityofvturb= tions(Section4.4). 100kms−1andanintegratedmodelluminosityofL=1044ergs−1between Themodellingapproachforindividualspectralcomponentsare 1and1000Rydbergs. outlined below, with the continuum parameters for each source 9Thestandardzxipcfusesaspecificgridwiththefollowingparameters: being noted in Table D1 and those for the warm absorber being (cid:8)=2.2,n=1010cm−3,vturb=200kms−1,L=1044ergs−1. 6 J.Goffordetal. etal.2011).Bound-freetransitionsinsimilarcolumndensityma- 4.2.4 Lowlyionizedreflection terialcanalsofitbroadresidualemissionprofilesintheFeKband Coldreflectionfromlargecolumndensitiesofneutralorlowlyion- (Inoue&Matsumoto2003;Miller,Turner&Reeves2008,2009; izedmaterialoutsideofthesightlinecanhaveastronginfluence Tatumetal.2012),andpartialcoveringbyCompton-thickmaterial (N (cid:2)1024cm−2)canreducetheobservedemissionbelow10keV ontheobservedX-rayspectrum.Thestrongestobservationalchar- H acteristicsofsuchreflectionincludetheCompton-reflectionhump withthetrueintrinsiccontinuumonlybecomingapparentathigher at∼30−40keVandthealmostubiquitousFeKα andFeKβ flu- energies as a ‘hard excess’ of emission relative to that expected orescencelinesat∼6.4and∼7.06keV(Nandraetal.2007;Shu, fromstandardreflectionmodels(Reevesetal.2009;Risalitietal. Yaqoob&Wang2010),respectively.Comptondown-scatteringof 2009;Turneretal.2009;Tatumetal.2013). both Kα line photons and high energy continuum emission also We include partially-covering absorbers in our models if and gives rise to a ‘Compton shoulder’ at ∼6.2 keV (e.g. Matt 2002; whentheyarerequiredbythedataattheP ≥99percentconfidence F Yaqoob & Murphy 2011) and resonant line emission in the soft levelandasatisfactoryfittothedatacouldnotbeachievedusing X-ray band (e.g. Ross & Fabian 2005; Garc´ıa & Kallman 2010) solely fully-covering absorption; several sources appear to need whichcanfurthercomplicatetheemergentspectrum. multiple partially-covering absorption zones which suggests the Naturally, owing to the important effect it can have on the presence of a clumpy stratified absorber along the line of sight. observed X-ray spectrum there are numerous models available Again, all absorber parameters are listed in Tables D2 and D3 in for modelling the reflection component (e.g. pexrav/pexriv, D AinpspoemndeicxirDcuminsttahneceosntlhineenesuedppoofratinhgighincfoorlummatniodne.nWsiteypnaortteiatlhlya-t Mreafgldizoianrxz, R&osZsd&ziaFrasbkiian1929050;5;pxeixlmlovne,r,N10anGdarrac´ıaet&alK.al2l0m0a7n; ownloa coveringcomponentcanbecontingentonthemeanswithwhichthe d 2010;MYTorus,11Murphy&Yaqoob2009).Inthisworkweusea ed udnegdeenrleyriancgierse.flHecotwioenvecro,maspowneendtisicsumssodinelAlepdpleenaddiixngCt,orseogmaredlmesosdoefl combinationofreflionxandpexrav,bothofwhicharepublicly from whetherthehardX-raydataarefittedwithreflectionornot,partial afovraitlhaibsleitatnhdatebxetecnasuisveelryeufsleidoinnxthinetleirtperoaltauteres.tThheeopbrsiemrvaerydrreeaflseocn- http covering has little measurable effect on the parameters measured tionspectrumfromapre-generatedgridoftablemodelsitissignifi- ://m foranyhighlyionizedabsorptionlinesystems. cantlyfasteratfittingspectrathan,forexample,pexrav,pexrivor nra s pexmon,whichanalyticallycalculatetheComptonreflectionspec- .o x trumontheflyateachstepofthefittingprocess,orMYToruswhich fo rd 4.2.3 Thesoft-excess requiresthemodeltobetailoredforeachindividualsource.Using jo u reflionxasourprimarymeansoffittingthereflectionspectrum rn Relative to the low energy extrapolation of the power-law con- a ensurestheleasttime-consumingMonteCarlosimulationswhich ls tinuum in the 2–10 keV band the X-ray spectrum of AGN often .o &shoPwosunadssm19o8o8th;Pinocrrqeuaesteeitnale.m2i0tt0e4d).flTuhxebtehleorwma∼l1temkepVera(tTuurrenoefr ittshinaiutmucpmoonrwstiadintehtroewudthietnhnethdsiesiamwliunolgrtakwn.eSiotehucsoancldoalrnygs,etwrashianemtnpofilfetttiohnfegoFrbeejfleKecctαstilosiunncechothnaes- at NArg/ this‘soft-excess’suggeststhatitisunlikelytobethedirectemis- reflection fraction, R, reported by pexrav (and pexriv) can be- SA s(Sioonbofrloemwsakast&andDaorndea2c0cr0e7t;ioDnodniescetwailt.h2o0u1t2a)d.dAitlitoenrnalatrievperoexcpeslasninag- comedegeneratewiththephotonindexoftheprimarypowerlaw, God withahardeningreflectioncomponentcompensatedforbyasofter d tionspositthatthesoft-excessmaybeduetoanincreaseinoptical primarycontinuum.Bysimultaneouslyfittingthereflectioncontin- ard dsietpiothnsaasstoEci(cid:3)ate0d.7wkiethVcwirhcuicmhncuacnleeanrhOanVcIeI–eVitIIhIearntdheFetraLn-ssmheiltltetrdaonr- uum,theFeKαlineandthesoftX-rayresonancelines,reflionx Spac reflectedfluxalongthesightlinethroughsmearedabsorption(e.g. isabletoovercomethesemodellingdegeneracieswhichleadstoa e F CDhoenvea2ll0ie0r7)eotrabl.lu2r0re0d6;reDfloecnteio&n(Ne.agy.aCkrsuhminm2y0e0t7a;l.S2o0b0o6l;ewBrseknan&e- ctoonthfiedoenbtsecrovnesdtrsapinetctornumth.erceofnltriiobnutxioanlsoofhthasetrheefleacdtdioitniocnoanltainduvuanm- light C manetal.2011;Nardinietal.2011;Nardini,Fabian&Walton2012) tageofallowingtheionizationstateofthereflector,ξ,tobeafree tr o effects.Furthermore,insomesources(e.g.Mrk766,Milleretal. parameterwhichenablesittomodelchangesintheFeKαemitted n A 2007;MCG-6-30-15,Milleretal.2008)the‘excess’couldsimply flizuaxtioanndstFaeteK.W-sehesltlreesdsg,ehporwoefivleera,stshoactieaqteudivwaliethntthreesruelfltseacrtoerfsoiuonnd- pril 5 bopeaacpitryodaruocutnodfc∼o1m–p2lekxeVab.sorptionandjustbethemanifestationof forthedetectedFeKabsorbersifpexmonisusedinstead,butwith , 201 theresultantMonteCarlosimulationstakingsignificantlylongerto 3 Regardless of the true physical origin we take a purely phe- completewhicheffectivelyprohibitsitsuniformusethroughoutthe nomenologicalapproachwhenfittingthesoft-excessinthiswork, sample. andpredominantlyusethebbodymodelwhichrepresentstheemis- Weinitiallyfittedallsourceswithpexravtodeterminethepa- sionfromaconstanttemperatureblackbody.Whilenotnecessarily rameters of the Fe Kα and Fe Kβ lines. pexrav was then re- physicallymotivated,modellingthesoft-excessinthismannerof- placed with reflionx, and a systematic search for additional fersasimpleparametrizationofany‘excess’softX-rayemission atomic features in the Fe K band was conducted. A total of 11 whichissufficienttogetagoodhandleontheunderlyingcontin- sources have best-fitting reflector Fe abundances which are non- uum parameters. For completeness we investigate the effects that solar, with 4 requiring a slight over-abundance (MCG+8-11-11, otherwaysofmodellingthesoft-excesscanhaveonanyFeK-band NCG4593,NCG7213,NCG7469)and7withanunder-abundance absorptionlinesinAppendixC.Roughlyhalfofthesourcesinthe (4C +74.26, Fairall 9, IC 4329A, IGR J16185−5928, Mrk 335, sample (24/51; ∼47percent) show evidence for a soft-excess, of which 22/24 are fitted with a bbody component. In 3C 120 and Mrk 509 the soft-excess is very broad and extends beyond that 10The xillver reflection model is not currently available in the public whichcanbefittedwithasimpleblackbody.Inthesesourceswe domainandisthereforenotconsideredforuseinthiswork. insteadfittheexcesswithasecondpowerlawwithasofterphoton 11The MYTorus model and documentation are publicly available at: index. www.mytorus.com TheSuzakuviewofhighlyionizedoutflowsinAGN 7 Mrk359,Mrk841).Theseabundancesaremostlikelyabyprod- diskline12 dependingontheasymmetryoftheobservedprofile, uctofreflionxassumingaface-onreflectiongeometry,andisa andasecondintermediatecontourplotwasgeneratedtodetermine caveatwhichisdiscussedingreaterdetailinAppendixC.PDS456 whether any further components were needed by the model. As andAPM08279+5255arenotfittedwithareflectioncomponent before, all other model parameters were allowed to vary freely becausetheylacksufficientcountsintheHXD/PIN. during this process. If there was no evidence for a broad profile wedidnotgenerateanadditionalcontourplotandinsteadmoved directlyontothenextstep; (iv) wherenarrowemissionprofilesweredetectedwitharesolved 4.3 SearchingforFeKabsorption confidencecontourof>99percenttheywerefittedwithunresolved (σ =10eVfixed)Gaussianprofilesprovidedtheywererequired Onceastatisticallyacceptablefittothebroad-bandcontinuumhad bythedataatP >99percent(correspondingto(cid:7)χ2 >9.21for been found, i.e. including all necessary absorption regions, soft F twoparametersofinterest); X-ray emission lines and continuum components, we performed (v) onceallemissionprofileshadbeenaccountedforweagain a thorough search for additional spectral features between 5 and checkedforthepresenceofanyblue-shiftedFeKabsorptionlines 10 keV. The method consists of inspecting the |(cid:7)χ2| deviations atE>6.7keV.Ifnoabsorptionlineswerepresentweendedthe fromthebest-fittingcontinuummodelusinginvertedcontourplots of the energy–intensity plane in the Fe K band. The method of search at this step, reported the best-fitting continuum and Fe K D emissionlineparametersintherelevanttablesofAppendixD,and ow calculatingthecontourplotswasadaptedfromthemethodoutlined n inT10A,andwascarriedoutasfollows: movedontothenextobservationinthesample; loa (vi) otherwise, where absorption troughs were clearly detected de (i) anunresolved(σ =10eV)Gaussianwassteppedacrossthe wliniteh(s)aucsoinngfidinenvecretecdonGtaouusrsioafns>w9i9thpeσr-cwenidtthwieniptiaarlalymefitxriezdedattehie- d from entire5–10keVenergybandofthebaselinecontinuummodelin 25eVintervals,withnormalizationallowedtoadoptbothpositive ther 10, 30 or 100 eV depending on which provided the greatest http andnegativevaluestoprobeforspectrallinesinbothemissionand improvementto(cid:7)χ2.Notethatwhileinitiallyfixed,thelinewidths ://m absorption.Alloftheotherspectralcomponents wereallowed to wereallowedtovarywhereappropriateleadingtofoursourceswith nra befree; resolvedabsorptionprofiles.Thekeyparametersofalldetectedab- s.o (ii) after each step the (cid:7)χ2 deviation was recorded generating sorptionlinesarereportedinTable2. xfo a χ2 distribution of the entire Fe K band relative to the baseline Thisprocesswascarriedoutoneachindividuallyfittedspectrum rdjo u continuummodel; in the sample, including those which were included in simulta- rn cor(diiiin)gctoon(cid:7)fidχe2ncdeevcioantitoonusrsoffo−rt2h.e3g,−rid4.o6f1χ,2−v9a.l2u1e,s−w1e3re.8p2l,o−tte1d8.a4c2- napeopulisedfittos.AInrkF1ig2s03(OaBnSdID4 7w0e20s1h4o0w10e)x,awmhpilcehssohfowthsisevpirdoecnecses als.org from the baseline model, which correspond to confidence in- for a broad asymmetric emission profile and no absorption lines, at N/ tervals of 68percent, 90percent, 99percent, 99.9percent and andMrk766(OBSID701035020),whichisdominatedbyFeXXV A 9to9.a99(cid:7)pχer2c=ent+, r0e.s5pewcotirvseelyfi.tAiscaolnsofidpelnoctteedcownhtoicuhr cisorirnetsepnodneddintgo sHheoαwatnhderFeesidXuXaVlIsLwyhαicahbrseomrpatiinoni.nTthheeFtoepKpbaannedlswohfebnoathllfiatgoumreics SA Go denoteanapproximatelevelforthecontinuum. lines have been removed from the best-fitting continuum model dda Theenergy–intensitycontourplotsproducedwiththismethodpro- athnedptrheesernecfleecotfiotnheconmeuptroanleFnet iKsαfi/tFteedKwβitflhupoerexsrcaenvcetolihniegsh.liTghhet rd Spa vsoidrpetiaopnocwoemrfpuolnmenetasnpsroefsesnetarinchtihnegFfoerKadbdaintidonwahlielemaislssoionviosuraalbly- cwohnetnoutrhepFloetsKsαhoawndtFheeKsiβgnliifinceasnhcaevseobfeethnefitrteemdawiniitnhgrerefslidiuoanlxs ce Flig assessing their energy, intensity and rough statistical requirement h and a narrow Gaussian line. The continuous outer contour cor- t C relTathiveeretoarteheaunnudmebrleyrinogfactoonmtiincufuematumreosdeble.tween6.0and8.0keV responds to the (cid:7)χ2 = +0.5 residual as mentioned previously. tr on Fromoutertoinnertheclosedsignificancecontourscorresponding A wfehatiuchrecsainnccloumdepliiocnaitzeetdheemdeitsesciotinonlinoefsabfrsoomrptFioenXXliVneansydsFteemXsX.VSIuecxh- 9to0(cid:7)peχrc2einmt)p,r−ov9e.2m1e(nPts=of9−92p.e3rc(PenFt)=,−6183p.8e2rc(ePnt)=, −994..96p1e(rPcFen=t) pril 5 epdegcteecdoamtp∼le6x.6a3t−∼67..71kaenVd,∼a6n.d97ankyebVr,oraedspFeecltiinveelpyr,otfihleedFueeKto-sGheelnl- tainnduu−m18m.4o2de(lPaFre=s9h9oF.w99npienrrceedn,t)grreeleant,ivbelutoe,thcyeFabnesatn-dfittminaggecnotna-, , 2013 eralRelativity(GR)orscatteringeffects.Itisimportanttoaccount respectively. fortheseemissionresiduapriortosearchingforabsorptionlines, Thereareclearresidualprofilespresentinbothsources,particu- particularly in sources which show evidence for a broad residual larlyArk120wherethepositiveasymmetricprofileandadditional asthebroadnessoftheprofilecaneffectivelymaskthepresenceof FeXXVIemissionareapparentinthemiddleandbottompanelsof low-velocityabsorptionsystemsintherawdata.Foragivencontin- Fig.3,respectively.ThetwoabsorptionprofilesinMrk766–which uummodelwesearchedforhighlyionizedabsorptionlinesinthe have previously been identified as Fe XXV Heα and Fe XXVI Lyα, FeKbandusingthefollowingsteps: respectively,byMilleretal.(2007)–arestatisticallydistinguish- able at >99.99percent confidence and are self-consistently fitted (i) wefirstgeneratedanenergy–intensitycontourplotusingthe withasinglehighlyionizedregionofphotoionizedabsorption(see methodoutlinedabove; Section4.6).Energy–intensitycontourplotsforallfittedspectrain (ii) wetheninspectedthecontourplottodeterminewhetherthere wereanyintenseionizedemissionandabsorptionlinespresentin thedatawithconfidencecontoursof>99percent; 12Forsimplicity,thedisklinewasfittedwithanassumedrest-frameenergy (iii) wheretherewasevidenceforabroademissionresidualatan ofE=6.4keVandatypicalemissivityprofileofq=−2.5(e.g.Patrick F-testsignificanceofatleastPF>99percenttheywerefittedwith etal.2011a).Theinneremissionradius(Rin),outerradius(Rout)anddisc eitherabroadenedGaussian(withσ-widthafreeparameter)ora inclination(i)wereleftfreetovary. 8 J.Goffordetal. Table2. GaussianparametersfordetectedFeKbandabsorptionlines.Notes:(1)sourcename;(2)SuzakuobservationID;(3)absorptionline identification;(4)measuredlineenergyinthesourcerest-frame,inunitsofkeV;(5)measuredlineenergywidth,inunitsofeV.Unresolvedlines werefittedwithwidthsfixedat10,30or100eVdependinguponwhichyieldedthebeststatisticalimprovementtothefit;(6)lineintensity,in unitsof×10−6photonscm−2s−1;(7)lineEW,inunitsofeV;(8)changeinfitstatistic(anddegreesoffreedom)whenthelineisremovedfrom thebest-fittingmodel;(9)linesignificanceaccordingtotheF-test,inpercent;(10)MonteCarlosignificanceofindividuallines,inpercent; (11)MonteCarlosignificanceofobservingapairoflineswithenergyseparationcorrespondingtoaFeXXV–XXVIpair(seethetextfordetails), inpercent.AbsorptioncomplexesdetectedatPMC≥99percentconfidencearelistedinbold. Source OBSID LineID Energy σ-width Intensity EW (cid:7)χ2/(cid:7)ν PF PM1C PM2C (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 3C111 703034010 Lyα 7.24+−00..0044 10f −5.6+−22..11 −26+−99 16.4/2 >99.99 99.8 705040020 Lyα 7.76+−00..0074 10f −15.2+−55..11 −20+−1100 11.1/2 99.60 97.8 3C390.3 701060010 Lyα 8.08+−00..0065 10f −5.6+−22..66 −21+−1100 12.1/2 >99.99 98.7 4+74.26 702057010 Lyα 8.38+−00..0057 10f −7.2+−33..44 −29+−1144 12.4/2 99.80 96.6 APM08279+5255 stacked Heα–Lyα(1) 7.76+−00..1111 100f −6.9+−22..53 −24+−88 23.8/2 >99.99 99.7 Heα–Lyα(2) 10.97+−00..1166 100f −4.4+−11..98 −30+−1155 18.4/2 >99.99 97.3 D CBS126 705042010 Lyα 7.04+−00..0045 30f −3.3+−11..00 −77+−2222 27.5/2 >99.99 >99.9 ow EMMMSRrCOkG22127-056931--3-G1070-18355 s777t000ac434k000e335d115[000a111ll000] FeHLLLLyyy–eααααHeα 78767.....0827558625+−+−+−+−+−0000000000..........00000011005521222266 110911143000+−+−fff65861542 −−−−−1142752.....79815+−+−+−+−+−4444111111..........8111222200 −−−−−4371102384+−+−+−+−+−1111333333440000 3822151565.....06791/////32232 >>>>9999999999.....9999959999 >>>9999999999.....99961 >99.9 httpnloaded from Mrk766 701035010 Heα 7.11+−00..0077 10f −2.8+−11..66 −27+−1155 7.0/2 96.27 71.0 99.8 ://m Lyα 7.42+−00..0066 10f −3.9+−11..66 −40+−1177 15.3/2 99.92 98.4 nra 701035020 Heα 6.80+−00..0022 10f −7.7+−11..88 −60+−1144 50.0/2 >99.99 >99.9 >99.9 s.ox NGC1365 702047010 HLyeαα 76..1727+−+−0000....00004411 6150+−f88 −−295..90+−+−1111....6699 −−14546+−+−117788 111283..89//23 >>9999..9999 >9999..89 >99.9 fordjou Lyα 6.97+−00..0033 65(cid:4) −8.7+−11..77 −69+−1133 77.0/3 >99.99 >99.9 rna Heβ 7.94+−00..0011 65(cid:4) −26.1+−11..55 −164+−1100 964.5/3 >99.99 >99.9 ls.o 704031010 HLyeβα 86..3781+−+−0000....00003322 3605(cid:4)f −−1106..61+−+−1122....8844 −−8677+−+−11115500 19344..39//32 >>9999..9999 >>9999..99 >99.9 at Nrg/ Lyα 7.00+−00..0022 30(cid:4) −13.4+−22..00 −85+−1144 90.7/2 >99.99 >99.9 AS Heβ 7.87+−00..0088 30(cid:4) −4.7+−22..55 −34+−2200 7.2/2 96.77 – A G NGC3227 703022010 HLyeβα 86..3679+−+−0000....11001144 1300(cid:4)f −−59..39+−+−2233....7777 −−4251+−+−227744 187..55//22 9998..9293 >99.–9 >99.9 oddard Lyα 6.95+−00..0033 10f −15.5+−33..77 −38+−99 42.4/2 >99.99 >99.9 Sp NNNGGGCCC334570185631 777177000000343010000000262330232134000000315111000000 HHHHHHLLLyyyeeeeeeααααααααα 777666666.........000777767054616497+−+−+−+−+−+−+−+−+−000000000000000000..................000000000000000000345577332222442244 111111111000000000fffffffff −−−−−−−−−111104865962.........000568102+−+−+−+−+−+−+−+−+−223333333322111111..................882011556688667700 −−−−−−−−−222142212214915060+−+−+−+−+−+−+−+−+−1111999899556656351100 1146635996215606.........202672739/////////222222232 >>>>>999999999999999989.........999999763499999449 >>>>>999999998999999619.........999998284 >>>>99999999....9999 ace Flight Ctr on April 5, 2013 Lyα 7.08+−00..0033 10f −3.3+−11..11 −38+−1133 22.7/2 >99.99 >99.9 703023010 Heα 6.82+−00..0033 10f −4.8+−11..33 −22+−66 26.4/2 >99.99 >99.9 >99.9 Lyα 7.11+−00..0022 10f −6.4+−11..33 −33+−77 57.5/2 >99.99 >99.9 NGC4151 701034010 Lyα 7.17+−00..0044 92+−5411 −15.9+−44..73 −28+−88 43.7/3 >99.99 >99.9 NGC4395 702001010 Heα 6.63+−00..0075 10f −2.2+−11..11 −35+−1199 10.4/2 >99.99 74.5 >99.9 Lyα 6.91+−00..0066 10f −2.9+1.11.1 −55+−2200 18.3/2 >99.99 86.8 NGC5506 stacked[all] Lyα 9.23+−00..0066 10f −11.1+−44..77 −16+−55 16.2/2 >99.99 99.8 PDS456 701056010 Heα–Lyα(1) 9.07+−00..0066 100f −2.5+−00..88 −108+−3355 29.5/2 >99.99 >99.9 Heα–Lyα(2) 9.57+−00..0099 100f −2.0+−00..88 −99+−4411 15.7/2 >99.99 99.8 705041010 Heα–Lyα(1) 8.58+−00..0099 100f −2.8+−11..00 −118+−4466 19.5/2 >99.99 96.2 Heα–Lyα(2) 9.03+−00..0099 100f −3.5+−11..11 −169+−5511 78.6/2 >99.99 >99.9 SJ2127.4+5654 702122010 Lyα 9.04+−00..0055 10f −10.0+−44..77 −60+−2288 11.9/2 99.78 98.9 findicatesthataparameterwasfrozenduringspectralfitting. (cid:4)indicatesthataparameterwastiedduringspectralfitting. TheSuzakuviewofhighlyionizedoutflowsinAGN 9 D o w n lo a d e d fro m h ttp ://m n ra s .o x fo Figure4. Toppanel:asinthecaseofFig.3,butthistimeforMrk766 rd jo (OBSID701035020).Bottompanel:asinthecorrespondingpanelofFig.3. u There are no ionized emission lines required in Mrk 766; however, two rna highlysignificant(eachrequiredatPF>99.99percent)absorptionprofiles ls.o aarnedcFleeaXrlXyVdIeLtyeαct,erde.sTpheceteivneelryg,yoouftflthoewsienlginaetsviosucto∼ns6i0st0e0ntkwmitsh−F1e.XXVHeα at Nrg/ A S significances.Indeed,ashasbeenpointedoutbynumerousauthors A G in the literature (e.g. Protassov et al. 2002; Porquet et al. 2004; o Figure 3. Top panel: ratio plot showing the residuals remaining in the d Fe K band of Ark 120 (OBSID 702014010) once all atomic lines have Markowitz,Reeves&Braito2006;T10A)theF-testalonemight dard beenremovedandreflectionfittedwithpexrav.Middlepanel:confidence notbeanadequatestatisticaltesttodeterminethedetectionsignifi- S p contoursshowingdeviationsfromthebest-fittingmodelwhentheFeKα canceofatomiclinesincomplexspectralmodelsasitneithertakes ac e and Fe Kβ lines have been fitted with reflionx and a narrow Gaus- into account the number of energy resolution bins over a given F sian, respectively. The closed significance contours corresponding (from energy range, nor the expected energy of a given atomic line. In lig h outertoinner)to(cid:7)χ2 improvementsof−2.3(PF =68percent),−4.61 caseswherethereisnoapriorijustificationforexpectingaspectral t C (PF=90percent),−9.21(PF=99percent),−13.82(PF=99.9percent) line at a particular energy and the line search is done over what tr o and −18.42 (PF = 99.99percent) relative to the best-fitting continuum isessentiallyanarbitraryenergyrange,asisoftenthecasewhen n A modelareshowninred,green,blue,cyanandmagenta,respectively.The p muaalgiesnstaigcnoifintcoaunrtsainttthheem>i9d9d.l9e9ppaenrecleinndtilceavteelthanatdththeabtraonadaedmdiitsisoinoanlrceosimd-- dsoemalienwghwatiothvesrtprorendgilcyttbhleued-estheicfttieodnapbrosobrapbtiiloitnylainnedsw,thheenFco-tmesptacreadn ril 5, 2 toextensivesimulations.Forthesereasonsallsuspectedabsorption 0 ponentisrequiredinthemodel.Bottompanel:theremainingconfidence 1 lines which have an F-test significance of P > 99percent were 3 contoursoncethebroadprofilehasbeenfitted.Thebroadresiduaareno F longerdetectedbutanadditionalFeXXVIemissionlineispresentatE∼ followedupwithextensiveMonteCarlosimulationswhichallows 6.97keVwhichissignificantat>99percent.Inallpanelsthedashedverti- theirdetectionsignificancetobeassessedagainstrandomfluctua- callinesindicatetheexpectedrest-frameenergiesof(fromlefttoright)the tionsandphotonnoiseinthespectrum. FeKαfluorescenceline,FeXXVHeαandFeXXVILyα,respectively. 4.4 MonteCarlosimulations thissampleareincludedinFigsB1andB2inAppendixB,inthe onlinesupportinginformation.Wenotethatthe(cid:7)χ2ofindividual Such Monte Carlo simulations have been used extensively in the linesandtheircorrespondingsignificancesaccordingtotheF-test literature to overcome the limitations of the F-test (e.g. Porquet as listed in Table 2 are taken from a direct spectral fitting of the etal.2004;Markowitzetal.2006;Miniutti&Fabian2006;T10A; lineprofilesthemselves,andarenotdetermineddirectlyfromthe T10B)andenablethestatisticalsignificanceofaspectrallinetobe contourplots. robustly determined independently of spectral noise and detector It is also important to note that while we use the F-test as a effects.ThemethodofMonteCarlosimulationweusedfollowsthe roughinitialgaugerofthesignificanceofanyline-likeprofilesin sameprocesswhichwasfirstoutlinedbyPorquetetal.(2004),and the Fe K band we do not claim to robustly detect any absorption isalmostidenticaltothatusedbyT10A.Theprocesswascarried linesbasedsolelyontheirmeasured(cid:7)χ2andcorrespondingF-test outwiththefollowingsteps. 10 J.Goffordetal. (i) From the null hypothesis model (i.e. the broad-band con- minimizedpriortosearchingforabsorptionlines,suchthatthere- tinuum model with all narrow absorption lines in the Fe K band ducedχ2is≈1.0inallcases.Moreover,andasshowninAppendix removed)wesimulatedbothXIS-FIandXIS-BIspectrausingthe ,wenotethatthevastmajorityofsuspectedabsorptionresiduals fakeitcommandinXSPECandsubtractedtheappropriatebackground aremanifestedthroughdiscretenarrowdipsinthespectrumrelative files.Thesimulatedspectrahadthesameexposureastheoriginal tothebest-fittingmodel,whereasanysystematicresidualswould dataandusedthesamespectralresponsefiles. usuallybebroaderthantheinstrumentresolution. (ii) WethenfittedthesimulatedXIS-FI(XIS-BI)spectrabetween Thesecondcaveatisassociatedwithspectralcomplexityinthe 0.6and10.0keV(0.6–5.0keV)withthenullhypothesismodelto FeKbandwhichcancomplicatebothlineidentificationandspectral produceanewandrefinednullhypothesiswhichtakesintoaccount interpretation.Therecanbesignificantatomiccomplexitybetween theuncertaintyinthenullhypothesismodelitself.Allcontinuum ∼5and7keV,e.g.thenarrowFeKαandFeKβ fluorescencelines, parameters bar the photon index of the primary power law and broad underlying Fe K lines and ionized Fe XXV–XXVI emission itsnormalization,andthenormalizationofanybbodycomponent, lines, and the detection of absorption in this regime can depend were frozen to their best-fitting parameters taken from the real stronglyonhowthesefeaturesaremodelled.Therearethreesources data to prevent degeneracies between model components during (4C+74.26,MGC-6-30-15,SWIFTJ2127.4+5654;seeFig.B2)in re-fitting.AnybroadprofileatFeKhaditswidthfixedtothebest- thesampleinwhichbothabroadunderlyingprofileandatleastone fittingvalue but was allowed tovary in bothcentroid energy and absorptionlinehavebeendetected.Inboth4C+74.26andSWIFT D normalization. J2127.4+5654theabsorptionlinesaredetectedathighenergies(i.e. ow (iii) Fromtherefinednullhypothesismodelwegeneratedasec- E>8keVinthesourcerest-frame)andtheeffectofthebroadFe nlo a ondsetofsimulatedXIS-FIandXIS-BIspectraandsubtractedthe lineonthelinedetectionisnegligible.InMCG-6-30-15thelines d e d athpepnrofiptrtieadtewbiatchktghreounnudllfihleysp.oTthheessiessmecoodnedlsainmdultahteedresspuelctatrnatwχe2re hetavale.2a0ls0o5;bMeeinllecroentfiarlm.2ed00w9)itwhhoitchhersuXgg-reasytsotbhsaetrtvhaetoprrieessen(Yceouonfga from val(uive)wAansurencroersdoelvde.d(σ=10eV)Gaussianwasaddedtothemodnuelll bTrhouasdmFeodlienlelindgoeosfnaobtrinotardodeumciessainoynsliignneifidcoaenstnmotodapelpseyasrtteomaaftfieccst. http://m at5keVinthesourcerest-framewithintensityinitiallysettozero thedetectionsofFeKabsorptionlinesinthesecases. n butleftfreetovary between bothpositiveand negative values to ras .o probe for both emission and absorption lines. The Gaussian line x 4.5 Consistencychecks fo wasthensequentiallysteppedbetween5and9.5keV(rest-frame) rd in 25 eV increments. After each step the |(cid:7)χ2 | was recorded To further test the robustness of the absorption lines detected in jou relativetoχ2 . noise theco-addedXIS-FIspectraweperformedaseriesofconsistency rna (v) ThispnruollcesswascarriedoutforT=1000simulatedspectra checks with the individual XIS detectors. If a line is detected in ls.o per observation yielding a distribution of |(cid:7)χn2oise| under the null two(ormore,iftheXIS2isalsopresent)detectors,thelineisvery arg/ hypothesiswhichessentiallymapsthestatisticalsignificanceofany likelytobearealfeatureintrinsictothesourcespectraratherthanan t N A deviationsfromthenullhypothesismodelwhicharesolelydueto artefactofbackgroundsubtraction,systematicnoiseoranassociated S A randomphotonnoiseinthespectrum. detectoreffect.TheXIS-BIisnotsuitableforuseasaconsistency G (vi) Themeasuredsignificanceofthelineintherealspectrum check as it tends to have a much lower S/N above around 5 keV od d |(cid:7)χl2ine|wasthencomparedtothevaluesinthe|(cid:7)χn2oise|distribution owing to its lower effective area and higher background. Where ard toassesshowmanysimulatedspectrahadarandomfluctuationwith absorption has been detected at the P ≥ 95percent level we S MC p a detection significance over this threshold value. If N simulated fittedeachindividualbackground-subtractedXIS0,XIS2(where ac e spectrahave|(cid:7)χ2 |≥|(cid:7)χ2 |,thentheestimatedconfidencein- present)andXIS3spectrumwiththebest-fittingmodeltotheco- F tervalforthe(cid:2)obsneor(cid:3)isveedlineflrionemMonteCarlosimulationsisthen addedXIS-FIspectrum.WethenfittedaGaussianabsorptionline, ligh PLine=1− NLine .Moreover,iftherearetwoabsorptionprofiles with rest-frame energy and normalization left free to vary, at the t C coMnCsistentwithaTFeXXV–XXVIpair,wecaninferthenullprobability energywheretheabsorptionlineisdetectedintheXIS-FIspectrum, tr on ofbothlinessimultaneouslybeingafalsedetectionbymultiplying refittedthedataandnotedtheresultantlineparametersforeachXIS A p theprobabilitiesofeachindividualline. detector. We note that in SWIFT J2127.4+5654 this consistency ril 5 check could not be conducted as only the XIS 3 spectrum was , 2 0 MonteCarlosignificancesforallabsorptionlinesdetectedinthis available. 1 3 workarelistedincolumn10ofTable2.Absorptioncomplexeswith InallsourcestheresidualsdetectedintheindividualXISspectra atotalP ≥99percentareconservativelyidentifiedasrobustly haveGaussianparametersconsistentwiththosefoundfortheco- MC detected,whilethosewith95percent≤P <99percentareonly addedFIspectrum.InFig.5weshowacomparisonofabsorption MC listedasmarginaldetections.Theoveralldetectionrateandglobal line equivalent width (EW), along with the 90percent error bars, significanceofFeK-bandabsorptionlinesarefurtherdiscussedin as measured independently with the XIS 0 and XIS 3 detectors. Section5.1. ThedasheddiagonallinerepresentsthepositionwheretheEWis TherearetwopossiblecaveatsassociatedwiththeaboveMonte equal in each of the detectors; where the EW is consistent at the Carloprocesswhichbothwarrantfurtherdiscussion.Firstandfore- 90percent level the error bars will overlap this line. In this plot most,theMonteCarlosimulationsimplicitlyassumethatthenull- the Fe XXV Heα, Fe XXVI Lyα and blended Fe XXV–XXVI lines are hypothesismodelisthecorrectrepresentationofthecontinuumin plottedseparately,eveninthecaseswherethelinesarefoundtobe agivensource,andthereforetheMonteCarloprobabilitiesdonot part of a Fe XXV pair. We find that the mean EWs measured with accountforthepossibilityofcontinuummis-modelling.Giventhis theXIS0andXIS3detectorsareconsistentatthe90percentlevel possibilityitisimportanttonotethatwehaveattemptedtoachievea (i.e.theerrorbarscrossthediagonallineinFig.5)inallsources. statisticallyacceptablerepresentationofthebroad-bandspectrum, WherepossiblethisanalysiswasalsocarriedoutusingtheXIS2 sothatnoobviousbroadresidualsarepresent.Carehasbeentaken spectraversusbothXIS0andXIS3.Again,inallcasesthemean in the Fe K band in particular such that any broad residuals are parameters of the lines were always consistent at the 90percent