ebook img

NASA Technical Reports Server (NTRS) 20150002685: Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region PDF

0.32 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20150002685: Variability of a Stellar Corona on a Time Scale of Days: Evidence for Abundance Fractionation in an Emerging Coronal Active Region

A&A550,A22(2013) Astronomy DOI:10.1051/0004-6361/201220491 & (cid:2)c ESO2013 Astrophysics Variability of a stellar corona on a time scale of days Evidence for abundance fractionation in an emerging coronal active region R.Nordon1,2,E.Behar3,andS.A.Drake4 1 Max-Planck-InstitutfürExtraterrestrischePhysik(MPE),Postfach131285741Garching,Germany 2 SchoolofPhysicsandAstronomy,TheRaymondandBeverlySacklerFacultyofExactSciences,Tel-AvivUniversity, 69978Tel-Aviv,Israel e-mail:[email protected] 3 PhysicsDepartment,TechnionIsraelInstituteofTechnology,32000Haifa,Israel e-mail:[email protected] 4 NASA/GSFC,Greenbelt,20771Maryland,USA e-mail:[email protected] Received3October2012/Accepted1December2012 ABSTRACT Elementalabundanceeffectsinactivecoronaehaveeludedourunderstandingforalmostthreedecades,sincethediscoveryofthefirst ionizationpotential(FIP)effectonthesun.Thegoalofthispaperistomonitorthesamecoronalstructuresoveratimeintervalof sixdaysandresolveactiveregionsonastellarcoronathroughrotationalmodulation.Wereportonfouriso-phaseX-rayspectroscopic observationsoftheRSCVnbinaryEIEriwithXMM-Newton,carriedoutapproximatelyeverytwodays,tomatchtherotationperiod ofEIEri.WepresentananalysisofthethermalandchemicalstructureoftheEIEricoronaasitevolvesoverthesixdays.Although thecoronaisrathersteadyinitstemperaturedistribution,theemissionmeasureandFIPbiasbothvaryandseemtobecorrelated.An activeregion,predatingthebeginningofthecampaign,repeatedlyentersintoourviewatthesamephaseasitrotatesfrombeyond thestellarlimb.Asaresult,theabundancestendslightly,butconsistently,toincreaseforhighFIPelements(aninverseFIPeffect) withphase.WeestimatetheabundanceincreaseofhighFIPelementsintheactiveregiontobeofabout75%overthecoronalmean. Thisobservedfractionationofelementsinanactiveregionontimescalesofdaysprovidescircumstantialcluesregardingtheelement enrichmentmechanismofnon-flaringstellarcoronae. Keywords.stars:atmospheres–stars:coronae–stars:abundances–X-rays:stars–stars:individual:EIEridani 1. Introduction micro-flaring, which is observed on the sun, but perhaps with differentstatistics(e.g.,Caramazzaetal.2007). Thebeststudiedcool-starcoronaisthatofourownsun,which Solar coronal chemical abundances are different from the also providesthe only spatially resolvedstellar coronal source solarphotosphericcomposition.Thesolarcoronaitselfis non- of extreme ultraviolet (EUV) and X-rays. From X-ray images uniforminthatrespect.Whileincoronalholes,theabundances of the sun we know that the solar corona in its active state is are close to photospheric,abundances in active regions and in non-uniform and that a significant fraction of the emission in the solar wind are significantly different. The abundance pat- thesebandscomesfrommagneticloopstructuresconcentrated ternsdependonthefirstionizationpotential(FIP;Meyer1985; inactiveregionsaroundphotosphericsun-spots.Evidently,these Feldman 1992; Sheeley 1995). Elements with FIP < 10 eV structuresevolveinbrightnessontimescalesofhours.Themor- (low FIP) are enriched in the corona relative to elements with phology as well as the metal abundances vary on longer time FIP > 12 eV (high FIP). Averagingover the entire solar disk, scales of days. Coronal structures on the Sun may survive for theenrichmentfactorisabout4(Feldman&Widing2002,and a few weeks, although tracking them continuously from the referencestherein).SuchaFIP bias,in varyingintensities, has groundisdifficultduetothe∼24.5daysolarrotationperiod. beenreportedformanycoronalstructures,fromclosedmagnetic Active coronaeof other cool stars can be up to five orders loopstostreamers(seereviewsby Kohletal.2006;Doschek& of magnitude more luminous and an order of magnitude hot- Feldman2010).Currentlythereisnogenerallyacceptedmodel terthanthesolarcorona.Althoughunresolved,theyshowmany thatexplainstheFIPbias. characteristicssimilartothoseofthesolarcorona,andarethere- TheFIPeffectbecameevenmorepuzzlingwhenhighreso- forebelievedtobestructuredandtoevolveinasimilarway.For lutionX-rayspectrafromXMM-NewtonandChandrarevealed the most part, late-type stars have envelopes in which convec- thatactivestellarcoronaedonotfollowthesolarFIPpattern.In tionanddifferentialrotationinteractto drivea dynamo,which somecases,thehigh-FIPelementsareevenenrichedcompared producesmagneticflux tubes.Thefluxtubes float intothe up- tothelow-FIPones,aneffectlabeledtheinverse-FIP(IFIP)ef- per atmosphere and eventually the corona. It is generally un- fect(Brinkmanetal.2001).LaterstudiesrevealedthatFIPand clear,however,whetherstellarcoronaeactuallyhavelargercov- IFIPbiasesarecorrelatedwithcoronalactivity(andage):Highly eringoftheirstellarphotosphere,orevenqualitativelydifferent activestarsshowanIFIPeffect,whilelessactivecoronaehavea morphologies,such as inter-binarymagnetic structures. Stellar solarFIPbias(Audardetal.2003;Telleschietal.2005),imply- coronae show high variability, often attributed to continuous ingatransitiononstellar-evolutiontimescalesofGyr. ArticlepublishedbyEDPSciences A22,page1of9 A&A550,A22(2013) Table1.Observinglog. Obs.ID Starttime Endtime Exposure[ks] 060317201 2009-08-01T00:02:50 2009-08-01T09:13:05 32.84 060317301 2009-08-02T23:06:16 2009-08-03T09:24:46 36.92 060317401 2009-08-04T22:20:49 2009-08-05T07:42:41 33.54 060317501 2009-08-06T20:59:39 2009-08-07T07:31:30 37.48 Onthefaceofit,thecorrelationwithactivitysupportedpre- M4-5 secondary,with a possible 19-year orbit of a third body vioussuggestionsthatabundancesmaybelinkedtoflares(e.g., (Washuettletal.2009a). Güdeletal.1999,2004;Ostenetal.2003;Nordonetal.2006). LongtermphotometricmonitoringofEIEriseemedtoindi- However, direct systematic measurements of abundance varia- catea∼11yrbrightnesscyclethatwasconjecturedtobeanana- tionsduringflaresshowthatregardlessofcoronalFIP/IFIPbias, logofthesolaractivitycycle(Oláh&Strassmeier2002),butun- duringlarge flares the abundancestend to photosphericvalues likethesun,longtermDopplerimagingofEIEribyWashuettl (Nordon&Behar2007,2008).ThemechanismforFIP/IFIPis, et al. (2009b) shows little variability of its cool starspots therefore, related either to the long-term evolution of coronal over11yr.As forthehotcorona,Ostenetal.(2002)observed structures,or tothe continuousmicro-flaringthat producesthe EI Eri with ASCA (and EUVE) and fitted its spectrum with a quiescenceemission,butnottolargeflares. 2T model of kT = 0.72 keV and 2.2 keV, but the abundances Inrecentyears,amodelhasbeenproposedinwhichabun- couldnotbetightlyconstrainedwithASCA.TheXMM-Newton dancefractionationisdrivenbymagnetohydrodynamics(MHD) CCDspectraofashortflareonEIErion2009-08-06duringthe waves(Laming2004,2009,2012).This“pondermotive”forceis presentcampaignwasanalyzedbyPandey&Singh(2012),who controlledbytheenergydensityofMHDwavesatthebasesof suggestedtheflareoriginatedfromaloopthesizeof∼R∗ (pri- thecoronalloops.Woodetal.(2012)studiedasampleofX-ray mary),whichisaboutatenthofthebinaryseparationdistance. faint(L < 1029 ergs−1)dwarfsandfoundnocorrelationwith X X-ray luminosity or surface flux, but a good correlation with spectral type instead. According to this relation M dwarfs are 2. Observations,data,andanalysis IFIP biased while early G dwarfs are FIP biased. Wood et al. InTable1welistthelogofthefourXMM-Newtonobservations (2012)claim that this shift from FIP to IFIP can be explained of EI Eri. Note the start times for each observation,which are bytheinversionofthepondermotiveforceatcertainconditions. separatedbyapproximatelytheEIEriorbitalperiodof168.5ks. ThelatterstudyislimitedtoX-rayfaintdwarfsandmaynotbe applicabletothetypicalhighlyactivebinariesfromotherstud- iesthataremorethantwoorderofmagnitudemoreluminousin 2.1.Datareduction X-rays,emittedmostlybyagiantorsub-giantstar(RSCVntype XMM-Newton data were reduced using the Science Analysis systems). Software(SAS–ver.10.0.0)inthestandardprocessingchains Despite the assumed similarity between solar and stellar asdescribedintheABCGuidetoXMM-NewtonDataAnalysis1, coronae, we have lacked a study of the evolution of a stellar andusingthemost updatedcalibrationfiles (date22.06.2010). corona on time scales of days, which is the relevant time for PileupwascheckedusingtheepatplotroutineoftheSASsoft- coronalloopevolutiononthesun.Thegoaloftheobservations warepackage.Nosignificantpileupwasdetectedineitherofthe presentedinthispaperistoseekandmeasurethevariabilityof EPICinstrumentsandthuseventsfromsingletoquadruplewere temperatures and abundances in an active corona over several retained.Backgroundwaslowduringalltheobservationsandno days.Inordertoavoidconfusionbetweenrotationalvariability, significantamountoftimewaslost. whichisinevitableduetotherapidrotationtypicalofactivestel- lartargetsandthecoronabeingcomposedofdiscreteactivere- gionsasonthesun,andgenuinecoronal-activityvariability,the 2.2.Spectralanalysis present observing campaign is designed to return to the target We measure the temperature and abundance properties of the eachtimeatexactlythesameorbitalphase. EIEricoronabyfittingthermalplasmamodelstotheobserved spectra. XMM-Newton comprises several different instruments. 1.1.EIEri Thelongerwavelengths(6−38Å)arecoveredbythetwohigh resolution reflection grating spectrometers (RGS) that resolve To carry out a few iso-phase observations, we chose the tar- get of EI Eridani (EI Eri, HD 26337), an X-ray bright (L = theemissionlines.Thehighenergyendupto15keViscovered 1031.1 erg/s)RS CVnbinary,whoseorbitalperiodis 1.95dxays bythetwoEPIC-MOSandsingleEPIC-pnCCDs,thatprovide lowerspectralresolution. (168.5ks),whichisverysimilartotheexactly2.0dayorbitalpe- Tostudythethermalandchemicalcompositionofthesource riodofXMM-NewtonaroundEarth.ThisenabledXMM-Newton plasma,itisimperativetofirstproperlyaccountforitsemission to observe the exact same orbital phase of EI Eri during four consecutiveorbits,andforsufficientlylongexposureseachtime measuredistribution(EMD)thatisdefinedas (∼35ks).EIEriisanearby(50.8pc,vanLeeuwen2007),rapidly EMD(T)=n n dV/dT. (1) rotating(vsini=51kms−1),non-eclipsing,rotationallylocked, e H close RS CVn binary with an inclination angle to the rotation wheren andn aretheelectronandprotonnumberdensities, axis of ∼56◦ ±4.5◦ (Washuettl et al. 2009a). These properties respectiveely, anHd dV/dT is the temperature distribution of the makeEIEria populartargetforDopplerimagingandstarspot plasma volume. The EMD is usually characterized by several monitoring that indicate the primary star to be highly active. EIEriconsistsofasolar-massG5IVprimaryandamuchfainter 1 Seehttp://heasarc.gsfc.nasa.gov/docs/xmm/abc A22,page2of9 R.Nordonetal.:Variabilityofastellarcoronaonatimescaleofdays discretetemperaturebins.Here,weuseseventemperaturebins with identical abundances. To allow for a uniform analysis of thefourobservations,thetemperaturesofthemiddlefivecom- ponents kT = 0.7, 1.0, 1.5, 2.0, and 2.5 keV are held fixed, while the lowest and highest temperatures are allowed to vary and are determined by fitting the model to the observed spec- tra.WefittheobservedspectrausingtheXSPEC(Arnaud1996) softwarepackageandaVAPEC(Smithetal.2001)plasmaspec- tralmodel.Forhighstatistics,wefitthetwoRGS,EPIC-pn,and EPIC-MOS1spectraofeachobservation(orbit)simultaneously. EPIC-MOS2 was used in timingmode and its spectra are sys- tematicallyoffsetbya small amountfromEPIC-pnandEPIC- MOS1thatagreewitheachotherverywell.Forthisreason,we excludeitfromthespectralfitting.Weignoretheverylowen- ergy(E<0.35keV)portionsoftheCCDspectra.Visualinspec- tion of each RGS spectrum indicates the models do an overall goodjoboffittingthelines.Seetheappendixforthespectraand Fig.1. EPIC-pn light curves during the four consecutive EI Eri rota- fitted model. The absorptioncolumn density towards EI Eri is tionorbits,indicatedbysequentialIDnumbers.Thetimeaxishasbeen negligible(NH = 1.2 × 1020 cm−2,Pandey&Singh2012)and folded to represent the rotation phase within the 1.95 days period of wasnotincludedinthemodel. EIEri. Thesevenplasmacomponentsprovideonlyageneralideaof thetemperaturedistributionintheplasma.Itisknown(seemost recently, Testaetal.2012)thattheEMDreconstructionshould Thisbrighteningwithphaseismostdramaticduringthethird be treated with caution. More specifically, the EMD is highly observation(401),∼4daysintothemonitoring,butshouldstill degenerate between adjacent components. Therefore, we keep notbeconfusedwithacoronalflarethatwouldtendtosharply trackofthecovariancematrices(betweenparameters),whichare risewithinafewksandquicklydecayover∼10ks.Indeed,dur- fullytakenintoaccountwhenpropagatingtheerrorsofall de- ing the last exposure(Obs. 501),a large flare is superimposed rivedquantities.Duetothisdegeneracy,themoreimportantand onthegraduallyincreasinglightcurve,risingsharply(∼1.5ks) reliable quantity is(cid:2)(cid:3)the cumula(cid:4)tive, or progressively integrated abouthalfwaythroughtheexposureanddecayingexponentially onatimescaleof∼4.8ks.Foranalysispurposes,wetherefore emissionmeasure EMDdT ,whichwedenotebyIEM.The furthersplit observation501into its quiescenceandflare peri- calculated errors for the IEM are more meaningful than those ods,asindicatedinFig.1,andrefertothemasObs.501Qand of the EMD, as they are essentially independentof the choice 501F,respectively. oftemperaturebins,as opposedto errorson theEMD that are affectedbythearbitrarychoiceoftemperaturesandbytheprox- The mean count rate between visits (∼130 ks) also varies, increasing within the first 4 days, between Obs. 201 and 401 imityoftheothertemperaturecomponents.MonteCarlo(MC) by ∼20%, and then decreasing by ∼30% by the beginning of simulationsareusedforerrorestimates.TheMCsimulationran- Obs.501.Interestingly,justbeforetheflareand∼5daysintothe domlyrollsanewsetofEMDvaluesaccordingtothecorrelation monitoring,thesteadyquiescentlevelisobservedtobebackto matrixandindividual-componenterrorsobtainedfromthebest- itsinitiallevelwhenthemonitoringstarted(Obs.201,301). fitsolution.Thecentral68%ofthedistributionforeachpointin theIEMis takenastheequivalentofthe1-σconfidenceinter- val.Foramoredetaileddescriptionoftheerrorpropagationsee 3.2.Temperature AppendixB. InFig.2weplottheEMD(T)foreachobservationbasedonour 7-temperaturesbest-fittedmodels,whereeachEMDbinisdueto asingletemperaturecomponent.Thewidthofeachplottedbin 3. Results isarbitraryanddesignedtogiveanimpressionofacontinuous 3.1.Lightcurves distribution,althoughinrealitytheseareiso-T components.As with the light curves, the EMD of observations 201, 301, and BysynchronizingtheXMM-Newtonexposureswiththerotation 501Qare fairly similar, primarilyshowingemission of plasma phaseofEIEri,weareabletoobservethesamestellarsurface uptokT (cid:6) 2keV,whiletheEMDofobservation401features during each visit, and to thus remove most of the rotation ef- some excess high-T emission up to kT (cid:6) 4 keV. During the fects.TheEPIC-pnlightcurvesofthefourexposuresareplotted flare (Obs. 501F), significant emission measure is observed at inFig.1versustherotaionalphase.Onlyabout20%oftheorbit, kT ≥4keV. i.e.,35ksor∼0.4days,iscoveredduringeachvisit,andconsec- TheIEMsforeachobservationarethenplottedinFig.3.The utivevisitsareseparatedbytheremainderoftheEIEriperiod IEMinobservations201,301and501Qareconsistentwithno (∼2days). variationinthetotalemissionmeasure(seethehightemperature Betweenphases0–0.1,all4exposuresshowasteadycount endofFig.3),andshowverysmallvariationsbelow1keV.On rate with some variability on time scales of minutes, but at theotherhand,theEIEricoronaduringobservation401hasless a low amplitude that is not much above the Poisson noise. emissionmeasurebelow1keV,butahighertotal,implyingasig- This variability is typical of active coronae, and has been as- nificantexcessofplasmaathighertemperatures,mostlybetween cribedtomicro-flaring.Thesecondhalfofeachobservation,i.e., 2.5–3.5keV.Duringtheshortflare(Obs.501F),onecanseean phases0.1−0.2,featuresagradualriseinfluxthatisinterpreted excessofemissionmeasurebetween1–2keVandanothersmall astherecurrentappearanceofanactiveregiononthatpartofthe componentabove3keVthatbringsthetotalemissionmeasureto star. alevel∼40%higherthanthequiescentstatesofObs.201,301, A22,page3of9 A&A550,A22(2013) 201 301 401 501Q 501F Fig.4.VariabilityoftheEMD-weightedmeantemperature.Horizontal errorbarsindicatetheexposuretimeofeachobservation. kT[keV] Fig.2. Emission measure distribution as obtained by the best-fitted 7Tmodelsofeachobservation. Fig.5.CoronalabundancesrelativetoFeandexpressedrelativetothe solarX/Feabundanceratio(Asplundetal.2009).Pointsfromdifferent observationsareprogressivelyshiftedtotherightalongthehorizontal axisintheorderinwhichtheyweretaken(∼2daysapart)toenhance visibilityandtoemphasizethetimevariability. Fig.3.CumulativelyintegratedemissionmeasuredistributionIEMcal- culatedfromtheEMDsofFig.2.Errorstakethedegeneracybetween thedifferenttemperaturecomponentsofthemodelsintoaccount. dramaticallybeforeandduringtheflare.Temperaturevariability duringquiescenceis moresubtle,withameankT of1.60keV andastandarddeviationof0.13keV. andthepre-flare501Q,whichisalsosomewhatlowerthandur- ing Obs. 401. In short, the emission measure of the quiescent 3.3.Abundances coronaofEIEricanvarybetweenrotationorbits,andontime scale of days, but mostly in the 1−2 keV temperature regime. InFig.5weplottherelativeabundancesofthemajorelements Excessemissionmeasureofhotterplasmaupto4−5keVisob- with respect to Fe, in solar-abundance units (Asplund et al. servedbothinactiveregions(Obs.401),andmoredramatically 2009),andasafunctionoftheirfirstionizationpotential(FIP). duringtheflare(Obs.501F). In the plot, the data points are progressively shifted along the Aconcisewaytoquantifytheplasmaconditionsisthrough x-axisaccordingto the orderin time in whichtheywere mea- itsmeantemperature(cid:8)kT(cid:9),weightedbytheEMDofeachcom- sured,thuscreatingatime-likesequenceforeachelement.The ponent.TheerrorsareagaincomputedusinganMCsimulation, abundancesare expressedrelative to the Fe abundanceinstead while taking the correlations between the fitted EMDs of the ofthemorecommonabsolutevaluesrelativetoH.Theabsolute variousmodelcomponentsintoaccount.Theresulting(cid:8)kT(cid:9)val- FeabundancewithrespecttoHis0.32,0.32,0.38and0.31so- ues are plottedin Fig. 4 for each observationand against time lar in observations 201, 301, 401 and 501Q respectively, with elapsed from the beginning of the first observation. A similar a typical error of ±0.03. In the APEC model and the global pattern as before emerges. When the source is brighter (e.g., spectral fit approach in the XSPEC software that we use, the Obs.401)itisalsohotteronaverage.Obs.201and301donot absolute abundance is constrained by the flux in the Fe lines strictly follow this pattern, but the temperature decrease from and the overall fit to the continuum. While lines are emitted Obs.301toObs.201isinsignificant.Intermsof(cid:8)kT(cid:9),weob- fromalimitedrangeoftemperautes,continuumfluxatallRGS serve temperature variations on time scales of days, and most wavelengths is contributed from all temperature components. A22,page4of9 R.Nordonetal.:Variabilityofastellarcoronaonatimescaleofdays Absoluteabundanceisthereforesensitivetotheunderlyingtem- peraturedistribution,whichisnotsowellconstrainedatthehigh temperatures.Conversely,estimatesofabundancesrelativetoFe relyonwell-measuredlineratiosthattendtoemergefromalim- ited and overlappingrange of temperatures.The large number of observedFe ions and lines, whose peak emissivities span a wide temperature range from kT ∼ 0.3−1.5 keV makes these measurementssignificantlylesssensitivetothetemperaturedis- tributionin the plasma. The selection of the referenceelement for describing abundances does not affect the general pattern ofabundancevariations.We normalizetheabundanceratiosto those of the solar photospheric composition of Asplund et al. (2009)inordertoplotthemonthesamescaleandtodiscussthe FIPeffect. As seen in Fig. 5, EI Eri shows the typical inverse FIP ef- fectobservedinthemostactivecoronae(Brinkmanetal.2001; Audardetal.2003).Inparticular,theNeabundanceisenriched Fig.6.FIPbias(FBfromEq.(2))foreachobservationandasafunc- by a factor∼3 comparedto Fe, and a lesser enrichmentis ob- tionoftime.Horizontalerrorbarsindicatetheexposuretimeofeach served for C, N, and O (all high FIP) over Fe (low FIP), The observation. abundanceratioofthelow-FIPelementsMgandSitoFeisap- proximatelysolar,althoughwithrespecttoH,theyareallsub- solar(∼0.3). On the other hand, the present flare on EI Eri does not follow Littlevariationoftheabundanceswiththelevelofactivityis thistrend,buttheweakabundancevariationobservedisconsis- observed.TheO(highFIP)abundancedoesseemtobelowdur- tentwiththeabundancevariationsobservedinflaresoncoronae ingthehigh-statesofObs.401and501F(flare),andhighduring with similar quiescent FB values of about −0.2 (see Fig. 5 in the low-activitystate of Obs. 501Q.This is reminiscentof the Nordon&Behar2008). chromosphericevaporationeffectofsolar-compositionmaterial during flares in an otherwise (quiescent) inverse-FIP coronae, 4. Rotationeffects whichwasobservedbyNordon&Behar(2007,2008)inasam- ple of flares. ThehighlyenrichedNe abundanceis slightly re- The four exposures that all cover the same rotation phase al- ducedinthehighstateofObs.401.However,despitethegood lowustostudythedependenceoftemperaturesandabundances signal,nosignificantvariationintheNeabundancecanbede- onphase,byfurtherbreakingupeachobservationintosmaller tectedduringanyotherperiod,notevenduringtheflare,which segmentsand co-addingthe similar phase segmentsfromeach would be expected if chromospheric evaporation takes place. observation. If active coronal regions are compact, and sparse The Mg/Fe abundance ratio comes down by ∼20% during the inlongitude,thentherotationwouldcreatevariationsintheob- flare, but this can notbe a FIP relatedeffect, as bothelements servedX-rayemissionproperties,asactiveregionsrotateinand arelow-FIP. out ofview,overthe limb ofthe star. If the activeregionslast Tobetterquantifytheabundancevariations,asinglenumber longerthanthemonitoringtimeof6days(assolaractiveregions thatquantifiestheFIPbiascanbedefined(followingNordon& do),thenstackingdatafromthesamephase,butfromdifferent Behar2008) orbits,canincreasethesignalofthisrotationalmodulation. FB=(cid:5)(cid:5)log(AZ/AZ(cid:10))F(cid:6)IP<10eV(cid:6)−(cid:5)log(AZ/AZ(cid:10))FIP>10eV(cid:6) (2) tatesDbuyrin7g2edaecghrefuesll,oi.bes.,er2v0a%tioonfotfh∼e3o6rbkist.(TThabelein1c)l,inEaItiEonriarno-- where log(A /A ) istheerror-weightedmeanabundance(in gle of the rotationaxis to the line of sight of 56◦ implies only Z Z(cid:10) log)ofthelow/highFIPelements,relativetoasetofreference about10%ofitssurfacegraduallyappearsduringtheobserva- abundances,inthiscasethesolarabundances.Weusethetradi- tionandadifferent10%graduallymovesoutofsight.Wedivide tionalsolardistinctionbetweenlowFIP(<10eV)andhighFIP eachobservationintofourquartersof ∼9ks each,duringeach (>10 eV). A positive FB value indicates a solar-like FIP bias, ofwhichtheEIErisystemrotatesby18degrees.Thedataare whileanegativeFBvalueindicatesanIFIPbias. thenreducedinquartersandthespectraofeachinstrumentare TheFIPbiasesinthefiveobservations(201,301,401,501Q, combined per phase bin. The two late phase bins of Obs. 501 501F)areshowninFig.6.TheFBvariationsoverthecourseof are excluded from the analysis, due to the flare (see Fig. 1). thepresentcampaignarenotdramatic,butstillsometrendscan Subsequently,we performthe same EM andabundanceanaly- be identified. The FB in Fig. 6 generally varies with activity, sisasbefore,butforeachphase-stackedspectra. namelytheFBincreases,i.e.,tendsto(solar)photosphericval- Figure 7 shows the IEM for each phase bin, Q1–Q4. The ues,astheactivityincreases,risingfromObs.201toObs.301, first three phase bins show the same temperature structure. In andfurtherinObs.401,andthendecreasinginObs.501Qwhen thelastphasebin(Q4),thereisanexcessofemissionattemper- the count rate returns to its lower level. For comparison, see atures below ∼1.5 keV, which slightly increases the total IEM the light curves in Fig. 1. This trend breaks down during the of Q4, althoughit is just consistent with the previous quarters flarewhentheactivitystronglyincreases,buttheFBdecreases. towithintheerrors.Thisexcessemissionmeasureisaresultof At face value, this means that as the (quiescent) coronal ac- the rise in flux observedin the light curves(Fig. 1) duringthe tivity increases,perhapsmoresmall active regionsappear,and last quarter of all of the observations, but most conspicuously more high-FIP elements are preferentially brought up into the in Obs. 401. A similar rise in flux can be seen also in the last corona.Thisprocessis reminiscentoftheevaporationofchro- quarter of Obs. 501, which is somewhat masked by the flare, mospheric material observed in the largest flares on the most and therefore excluded from the analysis. Figure 7 can be ex- active(strongestIFIP)coronae(Nordon&Behar 2007,2008). plained by an active region that is not visible at all duringthe A22,page5of9 A&A550,A22(2013) Fig.9.CoronalabundancesrelativetoFeandexpressedrelativetothe Fig.7.Cumulativelyintegratedemissionmeasuredistribution(IEM)as solarX/Feabundanceratio(Asplundetal.2009).Pointsfromdifferent afunctionofthefourphasebinsQ1−Q4. phasebinsQ1−Q4areprogressivelyshiftedtotherightalongthehor- izontalaxistoenhancevisibilityandtoemphasizethevariabilitywith phase. Fig.8. Mean temperature for the four rotation phase bins. Very little evolutionisobservedcomparedtothedays-scaletemperaturevariations Fig.10.FIPbias(FB)asafunctionofrotationphaseaveragedoverall (Fig.4). availableobservationsinfouriso-phaseintervals.Horizontalerrorbars reflectthe∼9ksdurationineachbin. twoearlierquarters,thatcomesintoviewfrombeyondthelimb during Q3 or Q4 (i.e., after ∼40 degrees of rotation), and that between consecutive bins. However, Mg, O and Ne, the three graduallybrightensduringthefourdaysafterthebeginningof elements with the best signal do appear to vary monotonously theXMM-Newtonmonitoring,i.e.,itbecomesparticularlybright withphase.TheabundanceratioofMg/Fedecreaseswhilethat duringObs.401andObs.501. ofO/FeandNe/Feincreases.Theotherelementstendtoshow InFig.8weplotthemeantemperatureasafunctionofphase. asimilarmonotonicvariation,althoughwithmuchlargeruncer- ThevalueofkTeff is verystablebetweentheobservedrotation tainties.Whilethetrendisoflowsignalineachelement,there- phases, despite the added emission measure. In fact, it shows peatedpatterninseveralelementsmakesitmorebelievable,and much less scatter than the scatter from one observation to the lesslikelyduetonoise.Moreover,sincethetrendofthelow-FIP other over several days (Fig. 4). The lack of temeprature vari- Mgisoppositetothatofthehigh-FIPNeandO,wesuspectit ationissomewhatexpected,sinceeachphaserepresentatime- is due to a FIP related effect and not due to only Fe changing averageof4−6days,andvariationsonshortertimescalestendto withphase. averageout.Notethatheretoo,thetwolastquartersofObs.501 AsinSect.3.3,wewishtoenhancetheindividualabundance areexcludedfromtheanalysisduetotheflare.Theemergingac- signals as to reflect potential FIP related effects by computing tiveregion(presumablyamagneticloop)reachesthemeantem- the FIP bias from Eq. (2) for each phase-stacked spectra. The peratureof(kT ∼ 1.5keV),whichis verysimilar tothemean FIP bias as a function of phase is plotted in Fig. 10. The FB temperatureofthecoronalregionsontherestoftheEIEriob- shows a mild, yet monotonous decrease with phase. This can servedarea. beinterpretedastheemergingactiveregioncontributinganin- Themeanabundancesforeachrotationphasebinareplotted verse FIP bias. In other words, the active region(Q3, Q4) has inFig.9.Again,thedatapointsareprogressivelyshiftedalong slightly more high-FIP elements than the background corona thehorizontalaxisfromlefttoright,inordertogiveanideaof (Q1,Q2).Notethatthistime-averagedrotationeffectisdifferent theevolutionwithphase.Thevariationinabundancewithphase fromthetime-evolutionobservedoverdays(Fig.6),inwhichthe for each element is very small, and statistically insignificant FBincreaseswithincreasedactivity.Here,theincreasedactivity A22,page6of9 R.Nordonetal.:Variabilityofastellarcoronaonatimescaleofdays comingfromaspecificregiononthestaristhelikelycauseof Indeed, on the sun, it has been reported that solar coronal thedecreaseinFB. loops evolve on time scales of days (e.g., Widing & Feldman The weakness of the observedsignal is not unexpected,as 2001). Newly emerging structures tend to have photospheric thefractionoftheEIErisurfacerotatinginandoutofourview composition,butdevelopthe solarFIPbias withinafewdays. isnotverylarge,∼5%betweenquarters.Saywemeasureduring Moreover,onthesun,thetypicalenhancementoflowFIPabun- rotationphaseQ4,inwhichtheactiveregionisvisible,amean dancesrelativetophotosphericvaluesbyafactorof4isreached abundance A(4) which deviates from the mean abundance dur- within2−3daysandcontinuestoevolvefurther,reachingafac- Z ingphaseQ1 A(1) (inwhichtheactiveregionisnotvisible)by torof8ormore.Theanalogousinterpretationandoneinagree- Z mentwiththepresentobservationsisthatnewcoronalloopson α≈0.1,i.e.A(4) =(1+α)A(1).Thetotalcountrateisincreasing Z Z EI Eri emerge with photospheric composition and develop an withphase,indicatingthatthiseffectislikelyduetoadifferent IFIPbiasovertimescalesofdays.ThespatialmeanIFIPbiasis abundancein the active regionwhich is rotatinginto view,for determinedbymeanageoftheloops.Thus,periodsofgradual whichAregion = (1+β)A(1).Sincethecontributionstothespec- brighteningofthecoronaarecharacterizedbytheemergenceof Z Z trumofboththe backgroundandtheactive-regionabundances youngloops that reduce the global IFIP bias, while periodsof areweightedbytheirrespectiveemissionmeasures,andweat- gradual dimming are characterized by aging of existing loops tributealltheexcessemissionmeasureduringQ4overQ1tothe thatincreasetheglobalIFIPbias.Notethatthenegativecorrela- activeregion,thenonecaneasilyshowthat: tionbetweenemissionmeasureandIFIPbiasasdescribedabove α relatestothedaysscaleevolutionofagivenstellarcoronaandis β= 1−(EM(1)/EM(4)) (3) notatoddswiththegeneralpositivecorrelationfoundbetween activitylevelandtendencytoIFIPbiasinstellarpopulations. where EM(4) and EM(1) are the total emission measures in Rotational modulation in X-rays and EUV has been re- Q4 and Q1 respectively. According to Fig. 7, the EM ratio is portedforHR1099(Agrawal&Vaidya1988;Drakeetal.1994; EM(4)/EM1 ≈ 1.15.Therefore,theactualabundancevariation Audardetal.2001),fromlightcurves,butphasedependentspec- intheactiveregionbycomparisonwiththespatial-meanback- troscopy was not possible, due to the constant flaring of that groundcoronaisattheβ≈0.75level,ora75%strongerIFIPef- source,whichmakesitdifficulttodisentanglebetweenrotational fectthanthemeancorona.Admittedly,thisconclusionforEIEri modulationofactiveregionsandtheirintrinsicactivityvariabil- is based on a marginal signal and is, thus, associated with ap- ity. A different, yet notable, phase dependent measurement is preciableuncertainty,butitdoespointtosignificantabundance thatoflineprofilesbyBrickhouseetal.(2001),whichenabled variationsin a compactactive regionwith respect to the mean latitudedeterminationofactivecoronalregionsonthestellarbi- corona. nary44iBoo.Thepresentmeasurement,however,isthefirstto measurephasedependentabundances. 5. Discussionandconclusions The active regionthat appears towards the end of each ex- posure persists throughout the six days of the observing cam- ThelightcurvesandabundancepatternsinthecoronaofEIEri paign. It therefore likely contains loops that are at least a few show an active region appearing over the limb as the corona daysold.Inthescenariowhichweproposedabove,theseloops rotates with the star. Although on time scales of days, the in- willhavealreadyevolved(overdays,possiblystartingevenbe- creaseoftheactivitylevelseemstoleadtoanincreaseoftheFB forethebeginningofthecampaign)andtheirabundancesdevel- (i.e.,lessIFIPbias,abundancesmoreakintothephotosphere), opedastrongIFIPbias,strongerthanthecoronalmeanbiasthat the appearance of the active region with phase features an in- includesyoungerloops.Thus,asthisregioncomesintoview,the crease inhigh-FIPelementsand a loweredFB (i.e. a tendency spatiallyaveragedabundancestendtowardsastrongerIFIPbias toastrongerIFIPbias).Twodifferenteffectsareatplay:oneis (Fig.10). theevolutionoftheemission measureandcoronalabundances After showing that large flares tend to counter the coronal onatimescaleofdaysbetweenexposures,spatiallyintegrated FIP effect (Nordon & Behar 2007, 2008) – the present work andaveragedovertheentirevisiblesurfaceofthestar.Theother promotes the notion that the abundances in individual coro- isanalready-existing,compactandbrightactive-regionthatper- nalactiveregions,differfromthemeancoronalabundancesas sistsoverthesixdaysdurationofthemonitoringcampaignand well. It is not clear whether large flares show coronal abun- rotates into view towards the end of each exposure. Thus, the dances that are closer to photospheric composition than the activeregionsismanifestedasvariationswithphaseinsteadof quiescent corona because of added material from the photo- time. sphere/chromosphere (chromospheric evaporation) or because One cannot tell whether the days-scale variations in count theseflareshappenpreferentiallyinyoungactiveregionswhere rates, emission measure, and abundances are due to the evo- theabundancesareclosertophotosphericthantheglobalmean. lution of existing coronal loops, or due to the appearance of Theabundancesmeasuredduringtheflareobservedinthiscam- new coronal loops and disappearance of old loops. However, paignshowanincreaseIFIPbias(morenegativeFB,Fig.6)in- the correlation in which an increase in emission measure and steadofthetypicaltendencytobringabundancestowardspho- countratescorrespondstoadecreaseintheIFIPbias(increase inFB,closertophotosphericcomposition)offersaninteresting tospheric composition.If the flare is related to the limb active regionthat is stronglyIFIP biased,it is possible that the mean interpretation.Ifthebrighteningisduetotheemergenceofnew abundances,weightedbetweentheflaringactiveregion,evapo- loops,andthoseappearinitiallywithnearlyphotosphericcom- ratedchromosphericmaterialandsurroundingquiescentcorona position, then the mean coronal abundances will tend towards endupbeingdominatedbytheabundancesoftheactiveregion. photosphericcompositionduringthese times. Conversely,dur- ing times in which no new loops emerge and existing loops While the proposedscenarioinwhichyoungloopsemerge age, evolve in composition and perhaps some fade, the mean withphotospheric-likecompositionandthendevelopovertime- abundanceswilltendtoresemblethecompositionoftheolder, scaleofdaystoanIFIPbiascanexplainourobservations,itdoes evolvedloops,i.e.differentthanphotospheric. notexplainwhytheabundancesevolveanIFIPeffectinsteadof A22,page7of9 A&A550,A22(2013) Fig.A.1.RGSspectrum(RGS1andRGS2combined)ofObs.ID060317201. Plottedmodelisasimultaneousfittoallinstruments(seeEPIC spectrainFig.A.2). Fig.A.2.EPIC-pnandEPIC-MOS1spectraofObs.ID060317201.Plottedmodelisasimultaneousfittoallinstruments(seeRGSspectrumin Fig.A.1). asolar-likeFIPeffect.Foratheorythatattemptstoresolvethis the uncertainties in the normalizations of the various compo- issueseeLaming(2004,2009,2012). nentsarehighlycorrelated,especiallywhenmanycomponents are used.Thecorrelationtendsto be negativeandincreasesas Acknowledgements. ThisworkwassupportedbyTheIsraelScienceFoundation thecomponentsarecloserintemperature,i.e.,adjacenttemper- (grant#1163/10)andbytheMinistryofScienceandTechnology. aturescancompensateforeachother.Thisresultsinlargeerrors on each individualtemperaturecomponent,whichcan be seen AppendixA: Spectra inFig.2.Ontheotherhand,theexchangeofemissionmeasure betweenclose-temperaturecomponentshas onlya small effect Samplespectraandbest-fittedmodelarepresentedin this sec- onthecumulative,orintegratedemissionmeasure(IEM).Still, tion. The X-ray spectra obtained from our first observation thespectrallineemissivitiesaretemperaturedependentandthus ID 060317201, as measured by all XMM-Newton instruments theIEMisnotperfectlyconserved.Inaddition,therearetheun- used in the analysis are shown in Fig. A.1. This observation correlateduncertaintiesassociatedwiththe limitedstatistics of hasthelowestcountrates(seeFig.1).Consequently,thespec- thedata.Toestimatethehighlynonlinearcontributionsofthese traofthethreeotherobservationshaveslightlybettersignal-to- effectsontheuncertaintiesintheIEM,wealludeaMonte-Carlo noiseratios,butareoverallsimilartothoseshowninFig.A.1. simulation. InSect. 4, eachobservationis dividedintofoursegments,and The fitting algorithm in XSPEC gives, along with the best thefouriso-phasesegmentsarethenstacked,resultinginspec- fitmodel,thecovariancematrixofsecondderivativescalculated trathatare,again,withnumbersofphotonsandsignal-to-noise at the best-fit solution. Here, we use this covariancematrix to ratiosthatarecomparabletothoseoftheindividualobservations. redraw a random,new set of model EMD values on the given temperaturegrid(seeFig.3)thatiscloseinitsstatisticalprop- AppendixB: IEMand(cid:2)kT(cid:3)errorestimates ertiestotheoriginalbest-fitmodel,inthesensethatitproduces spectral fits to the data that are almost as good as the best-fit TheEMDsolutionstocoronalemissiontendtobehighlydegen- model.To generatea randomset of numberscorrespondingto erateasemissionmeasurecanbetradedbetweendifferent,but a correlation matrix R, one can decompose R into R = U(cid:12)U. close temperatures with little effect on the resulting spectrum. If X is a vector of uncorrelatedrandomvalues, X = XU is a c Thus,whenrepresentingtheEMDwithisothermalcomponents, setofcorrelatedrandomvaluescorrespondingtoR.Theprocess A22,page8of9 R.Nordonetal.:Variabilityofastellarcoronaonatimescaleofdays of generating random EMDs is repeated numerous times, and Fludra,A.,&Schmelz,J.T.1999,A&A,348,294 foreachEMDsolutionthecorrespondingIEM(kT)iscalculated Güdel,M.,Linsky,J.L.,Brown,A.,&Nagase,F.1999,ApJ,511,405 ateachtemperaturepointonthegrid.Thus,wegeneratealarge Güdel,M.,Audard,M.,Reale,F.,Skinner,S.L.,&Linsky,J.L.2004,A&A, 416,713 sampleofIEM(kT)valuesateachtemperaturepoint,fromwhich Kohl,J.L.,Noci,G.,Cranmer,S.R.,&Raymond,J.C.2006,TheA&AR,13, weadoptthecentral68%astheequivalentofthe1-σuncertainty 31 intervalthatis,then,plottedinFigs.3and7.Foreachgenerated Laming,J.M.2004,ApJ,614,1063 randomEMDwealsocalculatetheemission-measureweighted Laming,J.M.2009,ApJ,695,954 mean temperature(cid:8)kT(cid:9). The central 68% of the (cid:8)kT(cid:9) distribu- Laming,J.M.2012,ApJ,744,115 Meyer,J.P.1985,ApJS,57,173 tionis adoptedas the1-σuncertaintyintervalon (cid:8)kT(cid:9), plotted Nordon,R.,&Behar,E.2007,A&A,464,309 inFigs.4and8. Nordon,R.,&Behar,E.2008,A&A,482,639 Nordon,R.,Behar,E.,&Güdel,M.2006,A&A,446,621 References Oláh,K.,&Strassmeier,K.G.2002,Astron.Nachr.,323,361 Osten,R.A.,Brown,A.,Wood,B.E.,Brady,P.,etal.2002,ApJS,138,99 Agrawal,P.C.,&Vaidya,J.1988,MNRAS,235,239 Osten,R.A.,Ayres,T.R.,Brown,A.,Linsky,J.L.,&Krishnamurthi,A.2003, Arnaud, K. A. 1996, Astronomical Data Analysis Software and Systems V, ApJ,582,1073 eds.G.Jacoby,&J.Barnes,ASPConf.Ser.,17,101 Pandey,J.C.,&Singh,K.P.2012,MNRAS,419,1219 Asplund,M.,Grevesse,N.,Sauval,A.,J.,&Scott,P.2009,ARA&A,47,481 Sheeley,N.R.,Jr.1995,ApJ,440,884 Audard,M.,Güdel,M.,&Mewe,R.2001,A&A,365,318 Smith,R.K.,Brickhouse,N.S.,Liedahl,D.A.,&Raymond,J.C.2001,ApJ, Audard,M.,Güdel,M.,Sres,A.,Raassen,A.J.J.,&Mewe,R.2003,A&A, 556,L91 398,1137 Telleschi,A.,Güdel,M.,Briggs,K.,etal.2005,ApJ,622,653 Brickhouse,N.S.,Dupree,A.K.,&Young,P.R.2001,ApJ,562,L75 Testa,P.,DePontieu,B.,Martinez-Sykora,J.,Hansteen,V.,&Mats,C.2012, Brinkman,A.C.,Behar,E.,Güdel,M.,etal.2001,A&A,365,324 ApJ,758,54 Caramazza,M.,Flaccomio,E.,Micela,G.,etal.2007,A&A,471,645 Washuettl,A.,Strassmeier,K.G.,Granzer,T.,Weber,M.,&Oláh,K.2009a, Doschek,G.A.,&Feldman,U.2010,J.Phys.B,43,232001 Astron.Nachr.,330,27 Drake,J.J.,Brown,A.,Patterer,R.J.,etal.1994,ApJ,421,L43 Washuettl,A.,Strassmeier,K.G.,&Weber,M.2009b,Astron.Nachr.,330,366 Feldman,U.1992,Phys.Scr.,46,202 Widing,K.G.,&Feldman,U.2001,ApJ,555,426 Feldman,U.,&Widing,K.G.2002,Phys.Plasmas,9,629 Wood,B.E.,Laming,J.M.,&Karovska,M.2012,ApJ,753,76 A22,page9of9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.