Alumina-Forming MAX Phases in Turbine Material Systems James L. Smialek, Bryan J. Harder, Anita Garg, James A. Nesbitt, NASA Glenn Research Center, Cleveland, OH 39th ICACC Daytona Beach, January 25-30, 2015 MAX Phases, M AX n n-1 (Barsoum, 2001, about 60 phases; >300 papers) Oxidation Resistant: M = Ti, Cr Ti AlC 3 2 A = Al, (Si) Ti AlC 2 X = C, (N) Cr AlC 2 Strain Tolerant Kinking Cr Al(Si)C W. Yu, S. Li, W.G. Sloof, 2007 2 Ti AlC “MAXthal 211” (Kanthal) 2 M. Sundberg, et al., 2004 15 (cid:80)m Al O 8000 cycles to 1350oC! 2 3 Purpose: Relate Al-MAX phases to coatings applications/turbine environment 1) High temperature (cid:68)-Al O kinetics 2 3 2) High pressure burner rig 3) YSZ Thermal Barrier Coatings 4) Superalloy/MAX Phase Hybrid 5) Hot corrosion Coating Motivation and Rationale Ti AlC , Ti AlC, Cr AlC 3 2 2 2 • (cid:68)-Al O formers 2 3 • CTE close to YSZ, (cid:68)-Al O 2 3 • Strain tolerance, nano-laminate shear • Thermal shock resistance: ~1400(cid:113)C quench • K (cid:124) 7 MPa/m1/2 IC Hybrid Concepts (EBC/TBC) Enabled by MAX Phases Intermediate CTE, Strain Tolerance, YSZ Compatibility 1300(cid:113)C Bond Coats (?) YSZ 10 Top Coat Al O 9 Scale 2 3 Ti AlC 8 Critical interface 2 Bond Coat Ti AlC 9 3 2 Rene N5 15 Substrates SiC 4 CTE, 10-6/(cid:113)C Purpose: Relate Al-MAX phases to coatings applications/turbine environment 1) High temperature (cid:68)(cid:68)-Al O kinetics 2 3 ‒ grain boundary diffusivity ‒ transient TiO growth 2 ‒ cubic kinetics Schematic of Alumina Scale Transport Gas, high pO 2 0.2 atm (2x104 Pa) Al grain Al O 2 3 boundary scale G i O (cid:71), width Equilibrium, low pO 2, interface ~ 10-28 atm (10-23 Pa) M-Cr-Al alloys 2δ D (cid:124) fD (cid:32) D (short circuit diffusion) (cid:33)(cid:33) D eff gb gb lattice G i Modified Wagner: Derived k vs (cid:71)D Relation: p gb,O (oxidation product (cid:51) (cid:124) constant) P ,gas O 2 dx (cid:179) k (cid:32) 2x (cid:124) D d ln P (Wagner eqn.) p,instant eff ,O O dt 2 P ,interface O 2 (cid:51) = k (cid:152) G (cid:124) 12(cid:71)D i p,instant instant gb,O,interface (cid:63) If scale grain size available, a nearly invariant diffusivity can be estimated. Scale Grain Boundary Diffusivity MAX Compounds and FeCrAl(Zr) Alloy 10-20 , t c u d 10-22 o r c p e s n / o3 m Smialek FeCrAl(Zr) i s 10-24 u , Tallman Ti2AlC O f f b, Song Ti2AlC i g d D # Wang Ti AlC n (cid:71) 3 2 e 10-26 Wang Ti AlC 3 2 375 kJ/mole g y x Lee Cr2AlC o Hajas Cr AlC 2 10-28 6.0 7.0 8.0 4 -1 1/T, 10 K Scale Grain Boundary Diffusivity MAX Compounds and FeCrAl(X) Alloys 10-20 , t c Q =375 +/- 25 kJ/mole u gb,O d 10-22 o r c p e s n / o3 m i s 10-24 u , O f f b, i g d D Literature n (cid:71) e 10-26 3 MAX phases g 8 FeCrAl(X) alloys ~1 diffusivity y x 13 Studies o 10-28 6.0 7.0 8.0 4 -1 1/T, 10 K