ebook img

NASA Technical Reports Server (NTRS) 20150002078: Alumina-Forming MAX Phases in Turbine Material Systems PDF

11.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20150002078: Alumina-Forming MAX Phases in Turbine Material Systems

Alumina-Forming MAX Phases in Turbine Material Systems James L. Smialek, Bryan J. Harder, Anita Garg, James A. Nesbitt, NASA Glenn Research Center, Cleveland, OH 39th ICACC Daytona Beach, January 25-30, 2015 MAX Phases, M AX n n-1 (Barsoum, 2001, about 60 phases; >300 papers) Oxidation Resistant: M = Ti, Cr Ti AlC 3 2 A = Al, (Si) Ti AlC 2 X = C, (N) Cr AlC 2 Strain Tolerant Kinking Cr Al(Si)C W. Yu, S. Li, W.G. Sloof, 2007 2 Ti AlC “MAXthal 211” (Kanthal) 2 M. Sundberg, et al., 2004 15 (cid:80)m Al O 8000 cycles to 1350oC! 2 3 Purpose: Relate Al-MAX phases to coatings applications/turbine environment 1) High temperature (cid:68)-Al O kinetics 2 3 2) High pressure burner rig 3) YSZ Thermal Barrier Coatings 4) Superalloy/MAX Phase Hybrid 5) Hot corrosion Coating Motivation and Rationale Ti AlC , Ti AlC, Cr AlC 3 2 2 2 • (cid:68)-Al O formers 2 3 • CTE close to YSZ, (cid:68)-Al O 2 3 • Strain tolerance, nano-laminate shear • Thermal shock resistance: ~1400(cid:113)C quench • K (cid:124) 7 MPa/m1/2 IC Hybrid Concepts (EBC/TBC) Enabled by MAX Phases Intermediate CTE, Strain Tolerance, YSZ Compatibility 1300(cid:113)C Bond Coats (?) YSZ 10 Top Coat Al O 9 Scale 2 3 Ti AlC 8 Critical interface 2 Bond Coat Ti AlC 9 3 2 Rene N5 15 Substrates SiC 4 CTE, 10-6/(cid:113)C Purpose: Relate Al-MAX phases to coatings applications/turbine environment 1) High temperature (cid:68)(cid:68)-Al O kinetics 2 3 ‒ grain boundary diffusivity ‒ transient TiO growth 2 ‒ cubic kinetics Schematic of Alumina Scale Transport Gas, high pO 2 0.2 atm (2x104 Pa) Al grain Al O 2 3 boundary scale G i O (cid:71), width Equilibrium, low pO 2, interface ~ 10-28 atm (10-23 Pa) M-Cr-Al alloys 2δ D (cid:124) fD (cid:32) D (short circuit diffusion) (cid:33)(cid:33) D eff gb gb lattice G i Modified Wagner: Derived k vs (cid:71)D Relation: p gb,O (oxidation product (cid:51) (cid:124) constant) P ,gas O 2 dx (cid:179) k (cid:32) 2x (cid:124) D d ln P (Wagner eqn.) p,instant eff ,O O dt 2 P ,interface O 2 (cid:51) = k (cid:152) G (cid:124) 12(cid:71)D i p,instant instant gb,O,interface (cid:63) If scale grain size available, a nearly invariant diffusivity can be estimated. Scale Grain Boundary Diffusivity MAX Compounds and FeCrAl(Zr) Alloy 10-20 , t c u d 10-22 o r c p e s n / o3 m Smialek FeCrAl(Zr) i s 10-24 u , Tallman Ti2AlC O f f b, Song Ti2AlC i g d D # Wang Ti AlC n (cid:71) 3 2 e 10-26 Wang Ti AlC 3 2 375 kJ/mole g y x Lee Cr2AlC o Hajas Cr AlC 2 10-28 6.0 7.0 8.0 4 -1 1/T, 10 K Scale Grain Boundary Diffusivity MAX Compounds and FeCrAl(X) Alloys 10-20 , t c Q =375 +/- 25 kJ/mole u gb,O d 10-22 o r c p e s n / o3 m i s 10-24 u , O f f b, i g d D Literature n (cid:71) e 10-26 3 MAX phases g 8 FeCrAl(X) alloys ~1 diffusivity y x 13 Studies o 10-28 6.0 7.0 8.0 4 -1 1/T, 10 K

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.