ebook img

NASA Technical Reports Server (NTRS) 20150001339: An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge PDF

0.88 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20150001339: An Approach for the Long-Term 30-m Land Surface Snow-Free Albedo Retrieval from Historic Landsat Surface Reflectance and MODIS-based A Priori Anisotropy Knowledge

RemoteSensingofEnvironment152(2014)467–479 ContentslistsavailableatScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge YanminShuaia,⁎,JeffreyG.Masekb,FengGaoc,CrystalB.Schaafd,TaoHee aEarthResourcesTechnology,Inc.,atBiosphericScienceLaboratory(Code618),NASA/GSFC,Greenbelt,MD20771,USA bBiosphericScienceLaboratory(Code618),NASAGoddardSpaceFlightCenter,Greenbelt,MD20771,USA cHydrologyandRemoteSensingLaboratoryUSDA,AgriculturalResearchService(ARS),Beltsville,MD20705,USA dSchoolfortheEnvironment,UniversityofMassachusettsBoston,Boston,MA02125,USA eDepartmentofGeographicalSciences,UniversityofMaryland,CollegePark,MD20742,USA a r t i c l e i n f o a b s t r a c t Articlehistory: LandsurfacealbedohasbeenrecognizedbytheGlobalTerrestrialObservingSystem(GTOS)asanessentialclimate Received21May2014 variablecrucialforaccuratemodelingandmonitoringoftheEarth'sradiativebudget.Whileglobalclimatestudies Receivedinrevisedform16July2014 canleveragealbedodatasetsfromMODIS,VIIRS,andothercoarse-resolutionsensors,manyapplicationsinhetero- Accepted17July2014 geneousenvironmentscanbenefitfromhigher-resolutionalbedoproductsderivedfromLandsat.Wepreviously Availableonlinexxxx developeda“MODIS-concurrent”approachforthe30-meteralbedoestimationwhichreliedoncombiningpost- 2000LandsatdatawithMODISBidirectionalReflectanceDistributionFunction(BRDF)information.Herewe Keywords: Albedoalgorithm presenta“pre-MODISera”approachtoextend30-msurfacealbedogenerationintimebacktothe1980s,through Landsat anapriorianisotropyLook-UpTable(LUT)builtupfromthehighqualityMCD43ABRDFestimatesoverrepresen- MODISBRDF tativehomogenousregions.EachentryintheLUTreflectsauniquecombinationoflandcover,seasonality,terrain Forestdisturbance information,disturbanceageandtype,andLandsatopticalspectralbands.AninitialconceptualLUTwascreated forthePacificNorthwest(PNW)oftheUnitedStatesandprovidesBRDFshapesestimatedfromMODISobserva- tionsforundisturbedanddisturbedsurfacetypes(includingrecoverytrajectoriesofburnedareasandnon-firedis- turbances).ByacceptingtheassumptionofagenerallyinvariantBRDFshapeforsimilarlandsurfacestructuresasa prioriinformation,spectralwhite-skyandblack-skyalbedosarederivedthroughalbedo-to-nadirreflectanceratios asabridgebetweentheLandsatandMODISscale.Afurthernarrow-to-broadbandconversionbasedonradiative transfersimulationsisadoptedtoproducebroadbandalbedosatvisible,nearinfrared,andshortwaveregimes.We evaluatetheaccuracyofresultantLandsatalbedousingavailablefieldmeasurementsatforestedAmeriFluxsta- tionsinthePNWregion,andexaminetheconsistencyofthesurfacealbedogeneratedbythisapproachrespective- lywiththatfromthe“concurrent”approachandthecoincidentMODISoperationalsurfacealbedoproducts.Using thetowermeasurementsasreference,thederivedLandsat30-msnow-freeshortwavebroadbandalbedoyieldsan absoluteaccuracyof0.02witharootmeansquareerrorlessthan0.016andabiasofnomorethan0.007.A furthercross-comparisonoverindividualscenesshowsthattheretrievedwhiteskyshortwavealbedofromthe “pre-MODISera”LUTapproachishighlyconsistent(R2=0.988,thescene-averagedlowRMSE=0.009and bias=−0.005)withthatgeneratedbytheearlier“concurrent”approach.TheLandsatalbedoalsoexhibits moredetailedlandscapetextureandawiderdynamicrangeofalbedovaluesthanthecoincident500-mMODIS operationalproducts(MCD43A3),especiallyintheheterogeneousregions.Collectively,the“pre-MODIS”LUT and“concurrent”approachesprovideapracticalwaytoretrievelong-termLandsatalbedofromthehistoric Landsatarchivesasfarbackasthe1980s,aswellasthecurrentLandsat-8mission,andthussupportinvestigations intotheevolutionofthealbedoofterrestrialbiomesatfineresolution. ©2014ElsevierInc.Allrightsreserved. 1.Introduction TerrestrialObservingSystem(GTOS)asoneoftheessentialclimatevar- iables governing Earth's surface energy budget (Pinty et al., 2008; Surfacealbedo,definedastheratioofradiantfluxreflectedfromthe Schaaf, Cihlar, Belward, Dutton, & Verstraete, 2009; Schaaf et al., Earth'ssurfacetotheincidentflux,hasbeendocumentedbytheGlobal 2008).Theradiativeforcinginterceptedbythelandsurfaceisperhaps themostimportantinitialenergysourceforbiophysicalprocesses, ⁎ Correspondingauthor. through a further conversion into latent, sensible, and stored heat E-mailaddress:[email protected](Y.Shuai). terms and input to the soil–vegetation biophysical system (Betts, http://dx.doi.org/10.1016/j.rse.2014.07.009 0034-4257/©2014ElsevierInc.Allrightsreserved. 468 Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 2000;Lyone,Jin,&Randerson,2008;Ollingeretal.,2008;Peckham,Ahl, Whileglobalclimatestudiescanutilizethecoarse-resolutionsurface Serbin,&Gower,2008;Randersonetal.,2006;Sellers,Los,etal.,1996; albedodatasetsdescribedabove,thereremainsaneedforconsistent, Sellers,Randall,etal.,1996;Zhangetal.,2009).Studieshaveshown fine-resolutionalbedoproductsforspecificapplications.Severalpubli- thatlandcoverchange(andecosystemdisturbance)mayhaveasignifi- cationshavehighlightedtheimportanceoflandcoverchange,including cantinfluenceonregionalalbedo,andhencelong-termclimateforcing deforestation,afforestation,agriculturalexpansion,urbanization,and (Balaetal.,2007;Betts,2000;Claussen,Brovkin,&Ganopolski,2001; otherhuman-inducedlandsurfacealteration,totheterrestrialcarbon Randersonetal.,2006).Terrestrialalbedovariesenormouslyinspace cycle and climate changes (Goward et al., 2008; Masek & Collatz, andtimeasaresultofbothnaturalevents(e.g.weatherdisaster,insect, 2006;Panetal.,2011;Randersonetal.,2006).However,spatialresolu- disease,wildfire,season-shifts,andvegetationphenologicalphase)and tionscoarserthan250-mmaybeinsufficienttocapturepatch-scale humanactivities(e.g.forest-thinning&clearing,crops-sowing&harvest- vegetationchangesassociatedwithhumanlanduseandforestdistur- ing,urbanization,andotherlandusemanagementmethods)(Jin&Roy, bance(TownshendandJustice1988;Maseketal.,2013).Fineresolution 2005;Ju,Roy,Shuai,&Schaaf,2010;O¡¯Halloran,etal.,2011;Shuaiand imagery(~30morbetter)canmoreaccuratelyquantifytheareasand Schaaf,2010;Shuai,Schaaf,etal.,2013;Shuai,Xie,Wang,&Wu,2013; rates of these anthropogenic land changes. In addition, for climate Xuetal.,2013).Asstrategiesemergeformanagingecosystemcarbonin changeinvestigations,longtimeseriesofalbedoproductsarerequired. ordertomitigateglobalwarming,severalstudieshavepointedoutthe Althoughoperationalalbedodatasetscoveringthelast30yearshave potentialriskofignoringthephysicalconsequencesoflandcoverchange, been assembled from different sensors covering different periods, includingchangestolandsurfacealbedo(Betts,2000;Lyoneetal.,2008; themergingofmultiplerecordsraisesissuesofdataconsistencyand Peckhametal.,2008;Randersonetal.,2006). quality.Becauseofthedifferencesamongsensors(wavelengthofspectral Albedodatasetshavebeenderivedfromexistingcoarse-resolutionsatellite bands,orbitgeometry,spatialresolution,andgeographicregion),thede- sensorstoparameterizegloballandsurfaceandclimatemodels.Compared rivedalbedoproductsmaydifferdependingonthespecificproduct,the withprevioussingle-anglemodels,modernalbedoalgorithmsrelyonmultiple datasource,andtheproductionstrategies(Schaafetal.,2009).Therefore, directionalreflectancemeasurementstofirstestimateaBi-directionalReflec- datasetsderivedfromasinglecontinuousacquisitionprogramoffersa tanceDistributionFunction(BRDF)modelofthetarget,thenintegrateoverin- greaterpotentialforconsistencyindataquality.Despitedifferencesin cidentandviewhemispherestocalculatealbedo.Studieshaveconcludedthat sensordesignovertime,theLandsatprogramhasacquireda42-yearre- relativeerrorscanreachupto45%withouttheconsiderationofdirection/ cordofEarthObservationsthatcapturedgloballandconditionsanddy- angleeffectsinthealbedoestimation(Kimes&Sellers,1985;Kimes,Sellers, namicsthroughsixsuccessfulmissionssince1972.Withthelaunchof &Newcomb,1987).Becausemostsatellitesensorscannotcollectmultipleob- Landsat-8inFebruary2013(Loveland&Dwyer,2012),thisrecordhas servationsofatargetinasinglepass,thesequentialaccumulationofdataover thepotentialofreaching50years.TheopeningoftheLandsatar- multipledays(forsun-synchronousorbit)ormultiplehours(geostationary chiveforfreedistributioninlate2008hasinvigoratedthepushfor orbit),maybeadoptedasarelevantsolutiontoachievemulti-anglemeasure- creatinglong-termbiophysicalandlandcoverproductsfromnew mentssamplingthefullsun–target–sensorgeometry.Globalsurfacealbedo andarchivedLandsatdata(Woodcocketal.,2008;Wulder,Masek, hasbeenmappedfromtheAdvancedVeryHighResolutionRadiometer Cohen,Loveland,&Woodcock,2012).Itincludesthisefforttodevel- (AVHRR)(Csiszar&Gutman,1999;Key,Wang,Stroeve,&Fowler,2001), op the long-term, consistent surface albedo products from the EarthRadiationBudgetExperiment(ERBE)radiometerdata(Li&Garand, Landsatprogram. 1994),andtheAlongTrackScanningRadiometer(ATSR).Withtheadvent Inapreviousstudy,wedevelopeda“concurrent”approachforgen- ofroutinealbedoproductsretrievedfromPolarizationandDirectionalityof erating30-mresolutionalbedoproductsforthepost-2000(MODIS)era the Earth's Reflectances (POLDER-I and II) (Bicheron & Leroy, 2000; bycombiningLandsatsurfacereflectancewithMODISsurfaceanisotro- Hautecoeur&Leroy,1998;Leroyetal.,1997;Maignan,Breon,&Lacaze, pyinformation(Shuai,Masek,Gao,&Schaaf,2011).Inthisstudy,we 2004),Multi-angleImagingSpectroRadiomenter(MISR)(Martonchik,Pinty, proposeandvalidateanewapproachtogenerateLandsatalbedoprod- & Verstraete, 2002; Martonchik et al., 1998), Clouds and the Earth's uctsforthepre-MODISera,byusingalbedo-to-nadirreflectanceratios RadiantEnergySystem(CERES)(Rutanetal.,2009),MeteosatVisi- (Shuaietal.,2011)andanapriorianisotropyLook-UpTable(LUT) ble and Infrared Imager (MVIRI)/Meteosat and Meteosat Second thathasbeenbuiltupfromthehighqualityMCD43ABRDFretrievals Generation (MSG) (Carrer, Roujean, & Meurey, 2010; Geiger, over representative homogeneous regions. This approach yields Carrer,Franchisteguy,Roujean,&Meurey,2008;Pintyetal.,2000), bothspectralandbroadbandalbedos,andaqualityassessment(QA) SPOT4/VEGETATION (Franchistéguy, Geiger, Roujean, & Samain, mapbasedonthequalityofMODISanisotropyandLandsatsurfacere- 2005),andtherecentlylaunchedVisibleInfraredImagerRadiometer flectance.Inthispaper,wefirstaddressthetheoreticalbasisofthe Suite(VIIRS)(Justiceetal.,2013;Liang,Yu,&Defelice,2005),albedo “pre-MODIS-era”LUTapproach,creationoftheBRDF-LUT,andthen mapswithspatialresolutionsof500-mtotensofkilometerandtempo- demonstrateitsapplicationovermorethan100Landsatscenesinthe ralfrequenciesofdailytomonthlyarenowavailabletoserveforclimate PacificNorthwest oftheUnitedStateswheresimultaneous ground modelrefiningandinter-annualexploration(Schaafetal.,2008). measurementsareavailableforvalidation. 2.Albedodefinition ThespectralDirectional–HemisphericalReflectance(DHR)ofaplanesurfaceisdefinedastheratioofradiantenergyscatteredupwardfromthe surfaceinalldirectionstothedown-wellingincidentirradianceonthesurfacewithinthetargetspectrumregime(λ ,λ ).Itequalstheintegralofthe 1 2 BRDFovertheviewhemisphereforanincidentbeamatagivenwavelength,asshowninformula(1).Undertheextremeconditionthatnodiffuse radiationbutonlythedirectbeamarrivesfromthesolarincidenceangle(θ,φ)definedbyzenithangleθ,andazimuthangleφ(L(θ,φ)),thealbedois referredtoas“Black-SkyAlbedo”(BSA)Rðθ;φ;λÞintheMODISproductseries(Lucht,Schaaf,&Strahler,2000;Strahleretal.,1999).Undertheas- i i sumptionthatallirradianceisisotopic(purelydiffuseskylight),afurtherintegraloverilluminationhemisphereprovidestheBi-HemisphericalRe- flectance(BHR)RðλÞ,or“White-SkyAlbedo”(WSA)formulae(2)and(3)(Luchtetal.,2000;Strahleretal.,1999).ThespectralBHRunderactual atmosphericconditions(knownasthe“blue-skyalbedo”,or“actualalbedo”)canbeapproximatedthroughalinearcombinationofBSAandWSA, weightedbythefractionofactualdirecttodiffuseskylight(Lewis&Barnsley,1994;Luchtetal.,2000;Románetal.,2010).Becausetheupwelling radiancedependsonnotonlytheBRDFpropertiesoftheobservedsurface,butalsoatmosphericconditions,RðλÞmaychangewiththevariation oftheinstantaneouscloudcoverandaerosolloading,aswellasoverthecourseofthedayasthesolargeometrychangesevenforconstantatmo- sphericandsurfaceconditions(Luchtetal.,2000).Inaddition,multiplescatteringbetweensurfaceandatmosphereaffectstheangulardistribution Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 469 ofskyradiance.Therefore,bi-hemisphericreflectance(i.e.albedo)isnotatruesurfaceproperty,butratherafunctionofsolarbeamdirection, atmosphericstate,andsurfaceanisotropicfeatures. Z2ππZ=2 Rðθ;φ; λÞ¼ f ðθ;φ;θ ;φ ;λÞcosθ sinθ dθ dφ i i r i i v v v v v v 0 0 ð1Þ Z2ππZ=2 1 ¼ Rðθ;φ;θ ;φ ; λÞcosθ sinθ dθ dφ π i i v v v v v v 0 0 whereRðθ;φ; λÞ=Spectralblack-skyalbedo(Directional–HemisphericalReflectance,DHR)asafunctionofthesolarincidenceangle(θ,φ) i i i i (Strahleretal.,1999),andf(θ,ϕ;θ,ϕ;λ)=BidirectionalReflectanceDistributionFunction(BRDF)describingthebehaviorofsurfacescattering r i i v v asafunctionofaparallelincidentbeamfromonedirection(θ,ϕ)intheilluminatinghemisphereintothereflecteddirection(θ,ϕ)intheviewing i i v v hemisphere,ataparticularwavelengthλ.FurtherelaborationispresentedinNicodemus,Richmond,Ginsberg,andLimperis(1977)andSchaepman- Strub,Schaepman,Painter,Dangel,andMartonchik(2006).Theterms“BRDF”and“anisotropy”inthispaperrefertothisunderlyingproperty. Z Z (cid:2)Z Z (cid:3) 2π π=2 2π π=2 f ðθ;φ;θ ;φ ;λÞcosθ sinθ dθ dφ Lðθ;φ;λÞcosθ sinθdθdφ r i i v v v v v v i i i i i i i RðλÞ¼ 0 0 0 0 Z Z 2π π=2 Lðθ;φ;λÞcosθ sinθdθdφ i i i i i i i Z Z 0 0 ð2Þ 2π π=2 Rðθ;φ;λÞLðθ;φ;λÞcosθ sinθdθdφ i i i i i i i i i ¼ 0 Z0 Z 2π π=2 Lðθ;φ;λÞcosθ sinθdθdφ i i i i i i i 0 0 Z2ππZ=2 1 R ðλÞ¼ Rðθ;φ;λÞcosθ sinθdθdφ ð3Þ WSA π i i i i i i 0 0 Strictlyspeaking,fornaturaltargets,BRDForanyothernominaldirectional-relatedmetricisnotameasurablequantity,asitrequiresperfectly collimatedbeamsofilluminationandobservation,whileactualsunlightispartlydiffuseandthemeasurementsinvolveconicalgeometries.Thus,in- dividualsatellitemeasurementprovidesonlyanapproximationofthedirectionalreflectance. Formostoftheapplicationsinvolvingenergybalance,thereflectancequantityofinterestisnotthespectralreflectancebutratherreflectancein- tegratedoverabroadspectralinterval(λ ,λ ),seeformula(4),tocapturetheoverallradiativeforcing.Thespectralintegralsforthehemispherical 1 2 reflectancearefunctionsofthedown-wellingsolarspectrumasdefinedintheaboveformulae.Thevisibleregime(0.3–0.7μm)knownas photosynthetically-activeradiation(PAR)isofspecialinteresttocarboncyclemodelersfortheestimationofcarbonfixationviaphotosynthesis (Dorman&Sellers,1989).Incontrast,thetotalshortwaveregime(0.3–3.0μm),aswellasvisibleandnear-infraredbands,aretypicallyrequired bysurfaceenergybalancestudies.Notethatthegenericterm“albedo”,withoutanyspecificationofthesun-viewgeometryandintegralwavelength, oftenimpliesthebi-hemisphericbroadbandalbedoofthewholesolarirradiancedomain. Z (cid:2)Z Z (cid:2)Z Z (cid:3) (cid:3) λ2 2π π=2 2π π=2f ðθ;φ;θ ;φ ;λÞcosθ sinθ dθ dφ Lðθ;φ;λÞcosθ sinθdθdφ dλ r i i v v v v v v i i i i i i i Rðλ →λ Þ¼ λ1 0 0 0 0Z (cid:2)Z Z (cid:3) ð4Þ 1 2 λ2 2π π=2Lðθ;φ;λÞcosθ sinθdθdφ dλ i i i i i i i λ1 0 0 3.Algorithm Landsat Thematic Mapper and Enhanced Thematic Mapper Plus (TM/ETM+) L1T, and remove pixels contaminated by cloud and Theinitialimpetustodevelopa“pre-MODISera”approachflowed snow from further analysis. The aim of “BRDF-LUTs creation” is to fromthedesiretounderstandalbedoconsequencesofspecifictypes build up the a priori anisotropy information for each defined land offorestdisturbanceandrecoveryatafineresolution.Toextend30-m surfacecategoryfromtheoperationalMODIS500-mhighqualityan- surfacealbedogenerationintimebacktothe1980s,wefirstbuild isotropyproducts(i.e.MCD43A)overrepresentativehomogeneous an a priori anisotropy Look-Up Table (LUT) from the high quality landsurfacestructureregions.Theaimof“Landsatalbedogeneration” MCD43A BRDF estimates over representative homogenous regions, istoobtainthenarrow-bandspectralalbedobycombiningLandsatdi- thencalculate thealbedo-to-nadirreflectance ratios foreachentry rectionalsurfacereflectancewiththespecificapriorianisotropyinfor- andapplytheseratiostothe30-mLandsatnadirreflectance.Finally, mationstoredintheBRDF-LUTs,andthenconvertnarrowtobroad weusenarrow-tobroad-bandconversionfactorstoderivebroadband bandalbedosforthevisible(0.3–0.7μm),NIR(0.7–3.0μm),andshort- Landsatalbedos.Fig.1outlinestheoverallworkflowofthisapproach wave(0.3–3.0μm)regimes. intothreemainfunctionalcomponents:surfacereflectancecalculation andassessment(Fig.1A),BRDF-LUTcreation(Fig.1B),andLandsatsur- 3.1.Surfacereflectanceassessment facealbedogeneration(Fig.1C).Theaimof“surfacereflectancecalcula- tionandassessment”istoretrieveterrainandatmospherecorrected LandsatsurfacedirectionalreflectanceateachspectralbandofThe- surface reflectance(thatisdefined in Masek etal.,2006)fromthe maticMapperandEnhancedThematicMapperPlus(TM/ETM+)has 470 Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 Fig.1.Flowchartofthe“pre-MODISera”LUTapproachcomposedofthreefunctionalcomponents(A.surfacereflectanceassessment;B.BRDF-LUTcreation;andC.Landsatalbedo generation). been produced from orthorectified Landsat level 1 T raw images directlyfrommultipleLandsatdirectionalreflectanceobservations.In- downloadedfromUSGSEROS,usingtheLandsatEcosystemDisturbance stead,weneedtoobtaintargetBRDFestimatesfromothersources, AdaptiveProcessingSystem(LEDAPS)(Maseketal.,2006).Thelevel1 suchasMODIS,orMISR. rawradiometrydataingestedbyLEDAPSwerecalibratedtoat-sensor Forthisstudy,theCollectionV005MODIS8-dayanisotropydataset radiance,convertedtotop-of-atmospherereflectance,andthenatmo- (MCD43A)wasusedtocreatetheBRDF-LUTbecauseofitswiderange sphericallycorrectedtosurfacereflectanceusingthesecondsimulation ofsunandviewangles,thebroadspectralcoverageofMODISforsimul- ofsatellitesignalinthesolarspectrum(6S)model(Maseketal.,2006; taneousatmospherecorrection,frequentacquisitionforthepotential Vermote,Saleous,&Justice,2002;Vermoteetal.,1997).LEDAPSdem- dailyadjustmentofBRDFretrieval,the500-mmoderateresolution, onstratedgoodperformancethroughcomparisonswithground-based andespeciallythecontinuityofglobalproductssince2000.Theopera- AERONETopticalthicknessmeasurements(Maseketal.,2006),concur- tionalMODISalbedoandreflectanceanisotropyproductsmakeuseof rentMODISTerrareflectance(Fengetal.,2012;Maseketal.,2006),and thekernel-driven,linearalgorithmthatreliesontheweightedsumof otherapproachesforLandsatsurfacereflectancegeneration(Ju,Roy, anisotropicandtwoadditionalkernels(respectivelycalledRoss-thick Vermote,Masek,&Kovalskyy,2012).Tomitigatethecloudeffecton andLi-sparse-reciprocalmodels,RTLSR)ofviewingandilluminationge- thesurfaceradiometricaccuracy,pixelscontaminatedbycloud,cloud ometrytoestimatetheBRDFmodel(Li&Strahler,1992;Luchtetal., shadow,andadjacentcloudswerescreenedfromthisstudyusingthe 2000;Ross,1981;Roujean,Leroy,Podaire,&Deschamps,1992).There- LEDAPS-derivedcloudmask.Anadditionalscreeningforsnowwasper- trievedkernelweights(alsocalledBRDFmodelparameters)arethose formedbasedontheoperationalMODISsnowmappingalgorithm(Hall, thatbestfitanadequateangularsampleofthehighqualitycloud- Riggs,Salomonson,DiGirolamo,&Bayr,2002),throughtheNormalized cleared,atmosphericallycorrectedsurfacereflectancesavailablefor DifferenceSnowIndex(NDSI)calculatedfromreflectanceatLandsat eachpixelovera16-dayperiod(Luchtetal.,2000;Schaafetal., green(0.53–0.61μm)andshortwaveinfra-red(1.55–1.75μm)bands. 2002,Schaaf,Liu,Gao,&Strahler,2011;Shuai,Schaaf,Strahler,Liu, Furtherthresholdsforgreenbandreflectance(N0.10)andNDVIwere &Jiao,2008;Shuai&Schaaf,2010).Thismodelcombinationhas applied to reduce the erroneous classification of very dark targets beenshowntobewell-suitedtodescribethesurfaceanisotropyof (suchasblackspruceforests),aswellasthethermalmasktoeliminate thevarietyoflandsurfacesdistributedworldwide(Privette,Eck,& thespurioussnowcoverpossiblyinducedbyresidualcloudcover,aero- Deering,1997).TheabsoluteaccuracyofMCD34Aalbedoatlocal sol effect and snow/sand confusion on coastlines (Hall, Riggs, & solarnoon(LSN)derivedfromtheestimatedBRDFmodelhasbeen Salomonson,1995;Halletal.,2002). establishedbycomparisonwithgroundmeasurementsfromavail- ableinternationalBaselineSurfaceRadiationNetwork(BSRN)and 3.2.BRDFLook-UpTables Fluxnetsites(Cescattietal.,2012;Románetal.,2009;Wangetal., 2014).Thisalgorithmassumesthatthelandsurfacedoesnotexperi- Themostdirectwaytoobtainanisotropyinformationofanyland encesignificantstructuralchangesduringthe16-dayobservation surfacetargetatthepixelscaleistocollectarepresentativesampleof period,whichisreasonableexceptincircumstancesofabruptdistur- reflectanceobservationsatmultipledirections,overashortintervalof banceorconversion. time.However,becauseofthenarrowfieldofviewofLandsat(±7.5de- ThecreationofaBRDFLUTisbasedontheidentificationoflandsur- grees)andthelimitednumberofacquisitionsofferedbythe16-dayre- faceintrinsicanisotropicfeatureswhichmakeoneobjectdistinguishable peatcycle,itisnotfeasibletoobtaintargetanisotropyinformation fromothers.Numerousstudieshavedemonstrateduniqueanisotropic Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 471 Table1 StructureoftheBRDFLUT. Type Landcoverclass# Disturbanceage Disturbanceseverity Month DEM QA Bands(1–5,7) RTLS-Rparameters Rangeofvalue NLCDclassificationscheme 0–30 Low,medium,orhigh 1–12 Flatormountainous 0–5 Landsat1–5,7 Isotropic,volumetric,and geometrickernelweights Un-disturbed ✓ NA NA ✓ ✓ ✓ ✓ ✓ Fire-disturbed ✓ ✓ ✓ ✓ NAa ✓ ✓ ✓ Nonfire-disturbed ✓ ✓ NAa ✓ NAa ✓ ✓ ✓ a Limitedbythelackofcurrentancillarydatacommunity. featuresamongdistinctlandscapeattributes(Bacour&Bréon,2005; timing(fromtheNationalInteragencyFireCenter),theNAFDdataset Bicheron&Leroy,2000;Lovell&Graetz,2002;Maignanetal.,2004; mayhaveoneortwoyearbiasonthetimingofdisturbanceifacloud- Shuai & Schaaf, 2010; Strugnell & Lucht, 2001), biome components freeimageorcompositewasnotproducedforagivenyear.Sinceboth (Chen & Leblanc, 1997), vegetation life-cycle and seasonal stages datasetscovertheperiodsince1984,anyfireandnon-firedisturbance (Kimes,1983;Shuaietal.,2011),andclassesofdisturbanceinducedby eventsencounteredbeforetheLandsatTM/ETM+era(1980s)arenot naturalorhumanactivity,aswell assignificanteffectsfromterrain bedefinedinthemaps.Inaddition,theShuttleRadarTopographyMis- (Schaaf,Li,&Strahler,1994).Thus,theattributesdefinedinTable1are sion(SRTM)DEMdata(Farretal.,2007)wasutilizedtodifferentiatethe adoptedtobuildtheoverallconceptualstructureofBRDF-LUT.Each qualityofBRDFshapesaffectedbymountainousterrain.Duetothe entryintheLUTreflectsauniquecombinationoflandsurfacetype,ter- studyinSchaafetal.(1994)interraineffectsontheanisotropyfeature, rain,timeofyear,limiteddisturbanceageandtype,andLandsatspectral theMODISestimatedBRDFswerequalitativelygradedintotwostrata bands. (flat tomoderatewithslope≤15°;andsteepermountainouswith Severalancillarydatasetsprovidedthebasisforthisstratification. slopeN15°).AnexampleisshowninFig.2forindividualundisturbed First,the30-m2006NLCD(NationalLandCoverDatabase,Vogelmann, evergreenneedleleafforestpatchesrespectivelyinaflatregionanda Sohl,&Howard,1998)classificationmapswithhighoverallanduser's high-slopemountainousregion. accuracy(Wickhametal.,2013)wereusedtodeterminelocallandscape ThustheaprioriBRDFLUTsforthePacificNorthwest(PNW)region attributes,andtoidentifyrepresentativehomogenouslandsurfacere- ofUnitedStateswerecreatedfromMCD43Aproductsandancillary gions when aggregated to the MODIS 500-m resolution. Then, two datasets(seemoduleBinFig.1)intermsoftheaboveconceptualstruc- datasetsgivingthetimingandlocationofecosystemdisturbancewere tureoftheBRDFLUT.ThePNWwasselectedforthisinitialprototype usedtoquantifytheBRDFevolutionofdisturbedlandscapes.Theannual duetoitsrangeofecosystems,prevalenceofbothfire-andnon-fire 30-mMonitoringTrendsinBurnSeverity(MTBS)(Eidenshinketal., forestdisturbances,andrangeoftopography.Inordertominimizethe 2007) dataset has mapped the low/medium/high burn severity of effectofbiomemixtures,MODIS500-mpixelswerelabeledasrepre- fires(greaterthan1000acresinthewestand500acresintheeast) sentative“pure”pixelsiftheywerecomposedofatleast85%ofasingle thathaveoccurredsince1984acrossalllandsoftheUnitedStates.The landsurfacetypewhenaggregatedfromthe30-meterNLCDlandcover 30-m NAFD (North American Forest Dynamics, Masek et al., 2008; map.InadditiontobeingstratifiedbyNLCDlandcover,theLUTofBRDF Maseketal.,2013;Huangetal.,2010)datasetidentifiedotherforest wasalsostratifiedbydisturbancetype(“undisturbed”,“firedisturbed”, non-firedisturbanceevents(suchasharvest,stormdamage,ordisease) “non-firedisturbance”),disturbanceseverity(fromtheMTBSfiredis- overthesametimeperiod.WhiletheNAFDdatasettargetsrapiddistur- turbanceproduct),topographicslope(greaterorlessthan15°),time banceeventsthatremovesubstantialcanopycover,moresubtleorgrad- sincedisturbance(0–26yearscorrespondingtotheNAFDandMTBS ualdeclinesinlivebiomass(e.g.selectivetreeremoval,gradualinsect coverageof1984–2010),andmonthoftheyear(Table1).Foreachcom- outbreaks)maynotbecaptured.BothMTBSandNAFDdatasetsaregen- binationoftheseattributes,theBRDFshapesforLandsat(andMODIS) eratedfromLandsatspectralsignaturesbeforeandafterthedisturbance reflective bands were extracted from the operational V005 8-day events.WhiletheMTBSdatasetusesindependentconfirmationoffire MCD43A1(BRDFparameters)andMCD43A2(QAflags)11-yearprod- uct (Schaaf et al., 2002; Shuai et al., 2008). The time dimension (monthfortheundisturbedLUT,andageofdisturbance),wasusedto depicttheseasonality,growthphase,andgrowthevolutionsincedistur- bance,intheBRDFshapesoverforagivenlandsurfacescenario.Ifno highqualityBRDFwasavailableforagivenmonth(foraseasonalchar- acterization)oryear(forcharacterizingpost-disturbanceevolution),a backupBRDFshapewasestablishedthroughlinearinterpolationof theBRDFmodelparametersfromavailabletimeperiods.Todocument thequalityofBRDFshapesintheLUT,eachwasassignedaqualityflag denoted as “high quality” for the original MCD43A estimation and “lowquality”forthoseinterpolatedones. Asanexample,Fig.3showstheBRDFshapesintheprincipleplane withsolarincidentat30°zenithangle,averagedoverdisturbedever- greenforestregionsinthePNW.Thesnow-freetimeseriesofBRDF shapesfromSeptemberillustratetheevolutionofevergreenforestsig- natureovertwodecadesinthegreen,NIR,andSWIRbands.Itisseen thatBRDFsofbothfireandnon-firedisturbancetypeshavesystematic temporalvariationsinshapesandmagnitudes.Theevolutionofthis generalizedBRDF-shapemaybeassociatedwithregrowthandrecovery Fig.2.ExampleofthedifferenceinMODISBRDFshapeestimatedfornon-disturbedever- ofcanopygreennessandstructureforthedisturbedforestland,indicat- greenforest(inprincipleplaneat30°solarzenithangle)obtainedfromamountainousre- edbythegradualsharpeningorflatteningofthehot-spot.Thereare gion(slopeN15°,dot-line)andarelativelyflatregion(slope≤15°,solidline)atNIR (upper),SWIR(middle),andRed(lower)bandsfromthePacificNorthwestregionof strongtemporalsignaturesofgreenvegetationinbothexamplesof theUnitedStates. thedisturbancetypes,firstlydisplayedasaclearenhancedhot-spotin 472 Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 Fig.3.TwodecadesofBRDFevolutionfollowingnon-firedisturbance(harvest,thinningdominated,toppanels)andhigh-severityfiredisturbance(bottompanels)inthePacificNorthwest oftheUnitedStates,forgreen(left),near-infrared(middle),andshortwave-infrared(right)bands.TheoriginalMCD43ABRDFshapeswereretrievedfromSeptemberintheprinciple planewithsolarincidentat30°zenithangle.TheBRDFshapesshowastronghot-spotinthebackward(showingaspositiveviewzenithangle—VZA)direction,andsystematicchanges inmagnitudeandshapefollowingdisturbanceevents. theNIRbandwiththeincreasingofgreenness,andasuppressionof 3.3.Surfacealbedodetermination the hot-spot at the SWIR with the augmentation of canopy water contentaccompanyingtheforestregrowth.Incontrasttothemono- OncetheBRDFshapeisdetermined,surfacealbedoat30-meter tonic decrease in brightness following non-fire disturbance, the resolutioncanbecalculatedfromthealbedo-to-nadirreflectanceratio high-burn-severityfiredisturbedforestpresentsacomplicatedtrajec- (A/N)andLandsatsurfacereflectanceasdetailedforthe“concurrent” toryofanisotropydevelopmentinthegreenband,withamultiple- approachinShuaietal.(2011).Thismethodassumesthatagivensur- year(~7–12yearssincedisturbance)reductionduringtheincreaseof facetypehasthesameBRDFshapeatMODISorLandsatresolution, thehot-spot.Itmaybeexplainedbythedifferentrecoverytrajectories andcanbescaledtoalbedousingthe30-meterdirectionalreflectance ofthepost-fireresidualstructures.Thesepost-fireresidualtransition fromLandsatasshownin(5),withR andR denotingthecorre- lnd mod rateswillvaryamongfires,withahighrateinthefirsttwoyearsfrom spondingspectralreflectancefromLandsatandMODIS,respectively. treetosnag(i.e.treemortality),andalatepeakafterseveralyears Then,theLandsatblack-skyalbedowithasolarzenithangleatthe laterforthetree-to-downedwoodandsnag-to-downedwoodchange Landsatoverpasstimeandwhite-skyalbedowerecomputedrespec- dependingonthespeciesandtreesizeoftheburnedforestregion. tivelyforthesixnon-thermalLandsatbands.Thebroadbandalbedos Oncethegreensignaturefromthere-grownforestandunderstoryveg- forvisible(0.3–0.7μm)α ,nearinfrared(0.7–3.0μm)α ,andshort- vis nir etation(suchasgrassorshrub)becomesdominant,acontinuousgrad- wave(0.3–3.0μm)α bandswereproducedbyafurtherconversion short ualincreasingcanbecapturedgenerally10yearsafterseverefires,as fromnarrowspectralbandalbedovalues(α)usingnewconversionco- i showninFig.3.Somesmallfluctuationsfoundinthegradualevolution efficientsforLandsat5TM(6–8)andLandsat7ETM+(9–11).Theseco- ofeachBRDFshapecouldbeduetouncertaintiesinthemappedtiming efficientswerederivedfromradiativetransfersimulationsusing245 ofdisturbance,poorerqualityBRDFestimation,variationsinatmo- surfacespectrarepresentingdifferentsurfacetypes(He,Liang,Wang, sphericconditions,andresidualcloudandsnoweffects. Shuai,&Yu,2013;Liang,2000).Finally,aqualityassessment(QA) layer constructed into a 16-bit word was stored for each pixel (seeTable2)totrackthequalityofinputdata,andestimateerrorprop- agationthroughthefusionofmultipledatasources. ( Table2 R ðθ ¼θφ ¼φ;θ ;φ ;λÞ≈R ðθ ¼θ;φ ¼φ;θ ;φ ;λÞ mod mod mod i v v lnd lnd i lnd i v v Segmentsofthepixel-based16-bitQAwordforeachLandsatalbedomaptoindicatethe f ðθ;ϕ;θ ;ϕ ;λÞ¼f ðθ;ϕ;θ ;ϕ ;λÞ performanceofalbedoretrieval. 8r−mod i i v v r−lnd i i v v Bit Meaning >>>><R ðλÞ¼R ðθ;φ;θ ;φ Þ(cid:2) RmodðλÞ ð5Þ lnd lnd i i v v R ðθ;φ;θ ;φ Þ b15 Fillvalue(1=fill-value) ⇒ mod i i v v bb1134 SCnloouwdflflaagg((11==scnloouwdccoonnttaammiinnaattiioonn)) >>>>:Rlndðθi;φi;λÞ¼Rlndðθi;φi;θv;φvÞ(cid:2)RRmðoθdð;θφi;φ;θi;;λφÞ Þ b12 Disturbanceflag(0=undisturbed;1=disturbed) mod i i v v b11-10 Disturbancetype(00=fire;01=non-fire;10and11=reserved) b9–8 Firedisturbanceseverity(00=reserved;01=low;10=medium; 11=high) b7 BRDFQA(0=original;1=backup/interpolation) b6–0 Disturbanceagefordisturbedpixelorlandcoverclassfor α ¼0:3206α þ0:1572α þ0:3666α þ0:1162α un-disturbedpixel short þ0:04571α −0:00633 4 5 ð6Þ 7 Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 473 Fig.4.Examplesofthe“pre-MODISera”approachgeneratedfromscene(path/row:45/29)onday2007-08-29.(A)Thespectralblack-skyalbedocompositeofLandsat-5bands5,4,and3, (B)thebroadbandblack-skyalbedocompositeofvisible,nearinfrared,andshortwavebands,(C)theblack-skyalbedofortheshortwaveband,and(D)thequalityassessmentmaps. α ¼0:6000α þ0:2204α þ0:1828α −0:0033 ð7Þ agriculturalfieldsinthelower-centralregionandforeststandsinthe vis 1 2 3 middle-easternregioninFig.4A.Inthethree-broadbandcomposite image(Fig.4B),however,thealbedointhevisibleregimehashigher α ¼0:6646α þ0:2859α þ0:0566α −0:0037 ð8Þ valuesthantheothertwobandsandshowsupasbrown-redinthecor- nir 4 5 7 respondingareas.Fortheretrievalofeachpixel,onecorrespondingQA map(Fig.4D)providesthepossiblecloudandsnowcontamination,and α ¼0:3141α þ0:1607α þ0:3694α þ0:1160α detailsofundisturbedordisturbedinformation. short 1 3 4 5 þ0:0456α −0:0057 ð9Þ 7 4.AccuracyassessmentoftheLandsatalbedoproducts α ¼0:5610α þ0:2404α þ0:2012α −0:0026 ð10Þ Threeapproacheshavebeenusedtoevaluatetheaccuracyofalbedo vis 1 2 3 productsgeneratedbythe“pre-MODISera”LUTapproachpresentedin thispaper.Oneisthedirectvalidationofshortwavealbedowithactual αnir¼0:6668α4þ0:2861α5þ0:0572α7−0:0042 ð11Þ groundmeasurements.Theothertwomethodsarecross-comparisons ofsurfacealbedomapsgeneratedby(1)the“concurrent”approachof Shuaiet al.(2011) that uses coincident MODIS products to retrieve 3.4.CentralOregonexampleforthederivedAlbedoandQAmaps Landsat-scalealbedo,and(2)thecoincidentoperationalMODISalbedo productsthemselves.Comparisonwithgroundmeasurementsisaninde- Fig.4showsmapsofthe30-mLandsatalbedoproductsgenerated pendentandoptimalapproachforproductvalidation,butsuffersfrom fromthe“pre-MODISera”LUTapproachforasceneincentralOregon thelimitedavailabilityofgroundalbedo-metermeasurements.Cross- (path/row: 45/29) on August 29, 2007. Spectral black-sky albedo comparisonwithotherproductscanbeperformedonalargevolumeof estimatesareprovidedasthecompositeofshortwaveinfrared,nearin- MODISimages,butdoesnotprovidearobustestimateofabsoluteaccura- frared,andredbands(wavelengthcentered1.65μm,0.83μm,and cy.Utilizationofthesemultiplevalidationmeansmayincreasetheability 0.66 μm) (Fig. 4A). Broadband black-sky albedos are available for toevaluatethealgorithmperformancethoroughlyandobjectively. thevisible(0.3–0.7μm),near-infrared(0.7–3.0μm),andshortwave (0.3–3.0μm)bands(Fig.4BandC).Atthedatecorrespondingtothese- 4.1.Validationwithgroundmeasurements lectedsamplecase,alargepartoftheCentralandEasternregionwas dominatedbysparseshrubsorbarrenland.Comparedwiththeforest Independentgroundortoweralbedomeasurementsaregenerally regioninthecentral-westpart,theseareasappearashighvaluesin consideredtobemoreaccuratethansatelliteretrievals,andareoften theSWIRandRedbands,lowervaluesintheNIRband,withscattered takenasareferenceforthevalidationofsatelliteproducts.However, 474 Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 Table3 ForestedgroundstationsinthePacificNorthwestregion.Acquiredfromthenetwork-wideAmeriFluxdatabase. Sitename Vegetationtype Locationa Towerheight(m) Canopyheight(m) Footprintof Dataperiod Landsat observation(m)b retrieval# US-Me2 ENFc 44°27′8.28″N,121°33′25.92″W 32.0 ~22 228.6 2005–2007;2009–2011 32 US-Me3 ENFc 44°18′55.68″N,121°36′28.29″W 18.0d ~3.11 342.9 2004–2009 4 US-Me6 ENFc 44°19′23.43″N,121°36′15.69″W 18.6e ~7.0 265.2 2010–2011 7 US-NR1 MFf 40°1′58.31″N,105°32′49.09″W 26 11.5 331.5 2006–2011g 24 US-GLE Subalpine,alpine 41°21′59.51″N,106°14′23.82″W 23/30h 12.1 249.2/409.2 2004–2011 24 US-Blk Conifer 44°09′01″N,103°38′24″W 24 13–15 251.5–205.7 2004–2009 24 a LocationofeachsiteisconfirmedbytheirPIsviaprivatecommunication. b Diameterofgroundmeasurementsfootprintinthehorizontalplaneatcanopyheight. c Evergreenneedleleafforest. d Towerheightis18m,instrumentCNR-1ismountedat14m. e Towerheightis18.6m,instrumentmountedat17.7m. f Subalpinemixedconiferousforest. g Currentlyonlypost2005grounddatatobeusedintermsofdataprocessor'ssuggestionviapersonalcontact. h Towerheightis30mduring1999–2006,andadjustedto23msince2006. thevalidationofsatellite-derivedproductsisdifficultbecausethefoot- 4.1.1.Surfacealbedogroundmeasurements printofsatelliteobservationsdifferssignificantlyfromthatofin-situin- Tower-basedsurfacealbedomeasurementswereacquiredfromsix struments.Onlymeasurementsspatiallyrepresentingthesurrounding availableforestedsitesofAmeriFluxnetworkinthePacificNorthwest landscapeatbothin-situandsatellitescalescanprovideacomparable region of the United States (Table 3; Ruehr, Martin, & Law, 2012; basisforvalidation(Románetal.,2009). Thomasetal.,2009;Vickers,Thomas,Pettijohn,Martin,&Law,2012; Fig.5.DistributionofAmerifluxvalidationsitesinthePacificNorthwestregionoftheUnitedStates.Foreachsite,agroundphoto(Upper-left),photooftowersurroundings(lower-left), andhigh-resolutionsatelliteimage(right)areshown.Note:imageoftowersurroundingsforthecurrentlydeactivatedUS-Blksiteisnotavailable. Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 475 Wilson&Meyers,2007).Forestedsiteswereofparticularinterestsince oneoftheoverallobjectiveswastounderstandhowforestdisturbance andrecoveryinfluencedthealbedotrajectories.Thefieldsitessample forestecosystemswithdifferentspeciescomposition,ageanddistur- banceregimes(seethedistributionandlandscapesinFig.5),including sub-alpineforestolderthan400yearswithdispersedyoungertreesat theUS-GLEsite,subalpinemixedconiferousforestnaturallyregrown fromextensiveloggingduring1900–1910atUS-NR1,coniferforest withscatteredherbsandshrubsrecoveringfromloggingactivityin theearly1900satUS-Me2,veryyoungponderosapinestanddisturbed byfireandharvestinthe1980satUS-Me3,andareforested20-yearold ponderosa pine site following fire and salvage cutting at US-Me6. Both upward and downward broadband shortwave solar radiation (0.3–2.8 μm) were measured via Kipp and Zonen (CNR1, CM-3, or CM-6b),orEppley-PSPtoweralbedo-meterswith170°effectivefield ofview.Dataseriescollectedfromtheindividualsiteswereprocessed intothe30-minutestandardvalues,andobtainedfromtheAmeriflux website:http://ameriflux.ornl.gov.Forthisstudy,dailytoweralbedo valueswereretrievedcorrespondingtotheLandsatimagingtimeof 10:30AM,aswellaslocalsolarnoon(LSN),thetimecorrespondingto Fig.7.Comparisonofactual(alsocalledblue-sky)shortwavealbedobetweenground theMODISMCD43Aproductsuite.Inaddition,thesurfacealbedodata measurements(Y-axis)andsatelliteretrievals(X-axis)at10:30AMfromLandsatre- series(level2)forsiteUS-NR1werereviewedforinconsistencyduring trievalsandatlocalsolarnoonfromoperationalMCD43A3(V005)productsoversix periodpre-andpost-2005asanewCNR1sensorwasinstalledinthe AmeriFluxforestedsitesinPacificNorthwestregionofUnitedStates,bothLandsatand fallof2005.Thepost-2005datawhichweremeasuredwiththenew MODISmeetthenominal0.02accuracyrequirementinrootmeansquareerror(Sellers well-calibrated sensors were recommended for use by the data etal.,1995).Thedashedlinesrepresentanabsoluteaccuracyof0.03comparedtothe grounddata. provider-(S.Burns,personalcommunication).Anefforttoestablish sensor-to-sensor cross-calibration is underway, and may provide correctedpre-2005datasoonforfurthervalidationactivitiesatUS_NR1. α wasobtainedasthesumofavailable30-mretrievals tower­footprint (α (i))weightedbycos(θ),whereθ istheviewanglebetweenthe lnd i i 4.1.2.AggregationfromLandsatscaletotowermeasurementfootprint towertopandthecenterofpixeli(Fig.6)foralltheNpixelsthatfallen Thedisparatespatialscalebetweensatelliteandin-situmeasure- inthefootprintofgroundmeasurements(Eq.12). mentsisoneofthebarrierstovalidatingsatellite-derivedproducts. X Severalstudieshaveconcludedthatdirect“point-to-pixel”comparison, N ðcosðθÞ(cid:2)α ðiÞÞ withoutconsideringspatialscales,isnotsufficientforalbedoproduct αtowerUfootprint¼ i¼1XN ciosðθÞlnd ð12Þ validation,unlessthevalidationfocusesonalargeandhomogenousre- i¼1 i gions(Liangetal.,2002;Románetal.,2009).Thetowerbasedinstru- mentpyranometerisinfluencedbythe“cosine-law”oftheresponse (cid:4)dire(cid:5)ctionandhasa170°effectivefieldofview.Anareaof 2h(cid:2) tan 4.1.3.Comparisonwithgroundmeasurement 85(cid:3) diameterinthehorizontalplaneatforestcanopyheightisthende- Wederivedthesurfacealbedofromthe30-minutetowermeasured 2 finedbythedownward-lookingsensormountedonatower(hmeters downwellingandupwellingradiationat10:30AMforLandsatandat above canopy). The calculated diameter of the tower footprint for localsolarnoon forMODISovereachsite.Notethat retrievalsfrom eachsiteislistedinTable3.Tofacilitatethecomparisoninthisstudy, LandsataswellasMODIScalculateintrinsicsurfacealbedoundertwoex- acosine-law-basedup-scalingmethodwasappliedtoaggregatethe tremeincidentradiationsituations(“black-skyalbedo”correspondingto 30-mLandsatalbedotothetowerfootprintforindividualsites(Shuai purelydirectsolarilluminationand“white-skyalbedo”corresponding etal.,2011).Thesurfacealbedocorrespondingtothetowerfootprint topurelyisotropicillumination),whilethefieldmeasurementsrecord theactualilluminationcorrespondingtoamixtureofbothdirectanddif- fuseradiation.Toobtaincomparablemetricswithfieldmeasurements, wecalculatetheactualalbedo(alsocalled“blue-skyalbedo”)viathein- terpolationbetweenblack-skyandwhite-skyalbedosweightedbythe ratioofdirectordiffusetothetotaldownwellingradiation(Luchtetal., 2000;Románetal.,2011;Schaafetal.,2002).Sincethein-situdatasets lackinformationondirect/diffuseratios,wesimulatedthedirect/diffuse ratiosforrequiredsolarzenithanglesusing6Sbasedonthesimultaneous MODISTerraatmosphereopticaldepthsatthe550nmband.Errorsin- ducedbythedifferenceofdefinedwavelengthintervalfortheshortwave band(ground0.3–3.0μm,Landsat0.3–3.0μm,and0.3–5.0μmforMODIS) arenegligiblebecausethesolarirradiancebeyond2.5μmaccountsforless than1.8%ofthetotalbetween0.3and14.3μm(Hulstrom,Bird,&Riordan, 1985). Thescatterplot(Fig.7)comparestheLandsatblue-skyalbedoaggre- gatedtothetowerfield-of-viewwiththein-situmeasuredalbedoat 10:30AMintheshortwaveforthesixAmeriFluxnetworksites.Re- trievalswithsnowandcloudcontaminationwereremovedfromthe analysisusingthesnowandcloudflagsintheQAwordofthesatellite Fig.6.IllustrationoftheaggregationfromLandsat30-mpixels(dottedgraygrids)intothe footprintprojectedonthegroundbyalbedometer(FOV=α)mountedonthetowerh products.TheLandsatretrievalsareinverygoodagreementwiththe metersabovecanopy. tower-basedalbedo,witharootmeansquareerror(RMSE)lessthan 476 Y.Shuaietal./RemoteSensingofEnvironment152(2014)467–479 Fig.8.Cross-comparisonofshortwavewhite-skyalbedomaponday2007-08-29generatedfrom“pre-MODISera”LUTapproach(left)with“concurrent”approach(middle),andthere- latedscatterplotsoverallavailablepixels(right). 0.016andabiasnomorethan0.007.DiscrepancybetweentheLandsat 4.2.Cross-comparisonwiththe“concurrent”approach andgroundalbedosisconfinedtowithin±0.03albedo(dottedlinein Fig.7),whichsupportstheabsoluteaccuracyrequirement(0.02–0.05) Asaninitialvalidation,wecomparedalbedomapsgeneratedbythe establishedbytheclimatemodelingcommunity(Sellersetal.,1995). “pre-MODISera”LUTapproachtothosegeneratedbythepreviously ComparedwiththeoperationalMODIS(V005)shortwavealbedore- published“concurrent”approach,whichhasbeenvalidatedpreviously trievalsatlocalsolarnoonviathegroundmeasurementsasabridge, (Románetal.,2013;Shuaietal.,2011).Fig.8showstheshortwave theLandsatretrievalsareslightlyhigher,exceptfortheUS-NR1site. broadbandwhite-skyalbedomapsderivedfrombothapproachesfor Thismakessenseifweconsiderthedefinitionofblack-skyalbedoasde- theidenticaldate2007-08-29(fillvaluesexcludedintheanalysis). scribedpreviously.Becausevaluesofblack-skyalbedodependclosely The“pre-MODISera”LUTapproachderievedalbedo(left)isconsistent onthedirectionofsolarillumination(i.e.solarzenithangleortiming withthatfromthe“concurrent”approach(right)forthespatialvaria- ofobservation),andblack-skyalbedoiscommonlyobservedtode- tionofalbedovalues,fromlowinthePNWforestregiontothehighin creasefromsunrisetonoon,thenincreasefromnoontosunset,asval- the eastern barren land. In general, albedo value extracted by the idatedforMODISinLiuetal.,2009. “pre-MODISera”LUTapproachisslightlyhigherthanthe“concurrent” Fig.9.Illustrationoftheconsistencybetweenthe“pre-MODISera”LUTapproachandthe“concurrent”approachofShuaietal.(2011).Shortwavewhite-skyalbedomapsgeneratedre- spectivelyfrom“pre-MODISera”LUTapproach(panelA)and“concurrent”approach(panelB),overanundisturbedforestregioninMontana(fillvalueordisturbedregionsinblack).The absolutedifferencemapsofwhite-skyalbedobetween“concurrent”and“pre-MODISera”albedo(panelC,fillvalueordisturbedregionsinwhite)fortheoverlappingyears2001–2011. Dayofyearisindicatedforeachalbedomap(YYYY-DOY).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.