Mon.Not.R.Astron.Soc.000,1–15(2012) Printed31January2013 (MNLATEXstylefilev2.2) Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes 1(cid:2) 2 1 1,3 4 5 T. Dauser , J. Garcia , J. Wilms , M. Bo¨ck , L. W. Brenneman , M. Falanga , 3 6 2 1 K. Fukumura , and C. S. Reynolds 0 1Dr.KarlRemeis-ObservatoryandErlangenCentreforAstroparticlePhysics,Sternwartstr.7,96049Bamberg,Germany 2 2DepartmentofAstronomyandMarylandAstronomyCenterforTheoryandComputation,UniversityofMaryland,CollegePark,MD20742,USA n 3Max-Planck-Institutfu¨rRadioastronomie,AufdemHu¨gel69,53121Bonn,Germany a 4Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA J 5InternationalSpaceScienceInstitute,Hallerstrasse6,3012,Bern,Switzerland 6AstrophysicsScienceDivision,NASAGoddardSpaceFlightCenter,Code663,Greenbelt,MD20771,USA 0 3 ] 31January2013 E H . ABSTRACT h X-rayirradiationoftheaccretiondiscleadstostrongreflectionfeatures,whicharethenbroad- p enedanddistortedbyrelativisticeffects.We presentadetailed,generalrelativisticapproach - o tomodelthisirradiationfordifferentgeometriesoftheprimaryX-raysource.Thesegeome- r triesincludethestandardpointsourceontherotationalaxisaswellasmorejet-likesources, t s whichareradiallyelongatedandaccelerating.IncorporatingthiscodeintheRELLINEmodel a forrelativisticlineemission,thelineshapeforanyconfigurationcanbepredicted.Westudy [ how different irradiation geometries affect the determination of the spin of the black hole. 2 Broademissionlinesareproducedonlyforcompactirradiatingsourcessituatedclosetothe v blackhole.Thisistheonlycasewheretheblackholespincanbeunambiguouslydetermined. 2 Inallothercasesthelineshapeisnarrower,whichcouldeitherbeexplainedbyalowspinor 2 anelongatedsource.We concludethatforthosecasesandindependentofthequalityofthe 9 data,nouniquesolutionforthespinexistsandthereforeonlyalowerlimitofthespinvalue 4 canbegiven. . 1 Keywords: Accretion,AccretionDiscs,blackholephysics,Galaxies:Nuclei,galaxies:ac- 0 tive,Lines:Profiles 3 1 : v i X 1 INTRODUCTION tor,andourviewingdirectiononthesystem,parametrisedthrough r anappropriateinclinationangle, i.Additionallyaprimarysource a DuetothevicinityoftheX-rayemittingregioninActiveGalactic of radiation has to exist in order to produce the observed reflec- Nuclei(AGN)andX-raybinariestothecentralcompactobject,it tionand also theunderlying continuum. Initialassumptions were is expected that the observed X-ray spectrum will show signs of that theprimarysource consists of ahot corona around the inner relativisticeffects(Fabianetal.1989).Sucheffectswerefirstseen regionsofthedisc,asComptonizationofsoftdiscphotonsinsuch in the skew symmetric shape of the fluorescent Fe Kα line from a corona naturally produces a power law spectrum which fitsthe these objects (Tanakaetal. 1995; Reynolds&Nowak 2003, and observations (Haardt 1993; Doveetal.1997).Under theassump- referencestherein).Theserelativisticlinesarepresentinasignifi- tionthattheintensityofthehardradiationscatteredbackontothe cantfractionofAGNspectra(Guainazzi,Bianchi&Dovcˇiak2006; discbythecoronaisproportionaltothelocaldiscemissivity,the Nandraetal. 2007; Longinottietal. 2008; Patricketal. 2011) irradiationoftheaccretiondiscwouldbeI(r)∝r−3fortheouter and Galactic black hole binaries (Miller 2007; Duroetal. 2011; parts,andgraduallyflattentowardstheinneredgeofthediscfora Fabianetal.2012a).Recent workhasbeen applyingamoreself- standardShakura&Sunyaev(1973)disc. consistent approach by including models for the relativistic dis- tortion of the full reflection spectrum during the data analysis With the advent of high signal to noise data from satellites (see,e.g.,Zoghbietal.2010;Duroetal.2011;Fabianetal.2012b; such as XMM-Newton, however, measurements showed a dis- Dauseretal.2012). agreement with the Fe Kα line profiles predicted by this coro- Therelativisticdistortionofthereflectionspectrum isdeter- nal geometry. For many sources, the data favoured disc emis- minedbythespinoftheblackhole,a,thegeometryofthereflec- sivities that are much steeper in the inner parts of the accretion disc (see, e.g., Wilmsetal. 2001; Milleretal. 2002; Fabianetal. 2002; Fabianetal. 2004, 2012a; Brenneman&Reynolds 2006; (cid:2) E-mail:[email protected] Pontietal. 2010; Brennemanetal. 2011; Galloetal. 2011; (cid:2)c 2012RAS 2 T. Dauseret al. Dauseretal.2012).Variabilitystudiesofthebroadironlinespose 2 THEORY additional problems for standard corona models. In such studies 2.1 Introduction the time variability of the continuum flux, i.e., the primary hard X-rayradiation,iscomparedtothefluxinthelines,whicharepro- We calculate the shape of the relativistic line in the lamp-post ducedbythereflectedradiation.Thisallowstoprobetheconnec- geometry by following the radiation emitted from the primary tionbetweentheprimaryandthereflectedradiation.Inacoronal source on the axis of symmetry of the accreting system to the geometry, oneexpects apositivecorrelationbetweenthestrength accretion disc and from there to the observer. Due to the deep oftherelativisticallydistortedreflectionspectrumandtheprimary gravitational potential close to the black hole, the photon trajec- continuum (Martocchia&Matt 1996).Thisisincontrast towhat tories are bent and their energies red-shifted. Moreover the rela- isobserved:MeasurementsofMCG−6-30-15(Fabian&Vaughan tivistic movement of the accretion disc alters the energy flux in- 2003; Miniuttietal. 2003) revealed large variations of the direct cident on the disc and the shape of the observed line through radiation,whilethereflectedcomponentremainedconstant. the relativistic Doppler effect. Using techniques introduced by Cunningham (1975), the flux seen from a certain element of the accretion disc under a specific inclination can be predicted (e.g., Speith,Riffert&Ruder 1995) and summed up to the complete As shown by Martocchia,Matt&Karas (2002), spectrumofthesource.Thisproblemhasbeenextensivelystudied Fabian&Vaughan (2003), Miniuttietal. (2003), and inthepastandthereareseveralmodelsavailabletopredicttherel- Vaughan&Fabian (2004) for the case of MCG−6-30-15, in ativisticsmearing given a certain emissivity of the accretion disc a geometry in which the illuminating continuum is assumed (e.g., Fabianetal. 1989; Laor 1991; Dovcˇiak,Karas&Yaqoob to be emitted from a source on the rotational axis at height h 2004;Brenneman&Reynolds 2006; Dauseretal. 2010).Inthese above the black hole, strong light bending yields properties of modelstheintensityemittedfromtheaccretiondisc(theso-called the reflected radiation that are consistent with the observations. “emissivity”) is parametrised as a power law r−(cid:3) with index (cid:3), Figure1illustratesthis“lamppost”geometry(Matt,Perola&Piro wherer isthedistancetotheblackhole.Thestandardbehaviour 1991; Martocchia&Matt 1996). In general, data and predicted is(cid:3) = 3,whichisproportionaltotheenergyreleaseinastandard line shapes show very good agreement (see Wilkins&Fabian Shakura&Sunyaev(1973)disc. 2011;Duroetal.2011;Dauseretal.2012).Thelamppost model Thisemissivitycanalsobecalculateddirectlyfromanirradi- also explains the observed connection between the luminosity atingsource, theso-called “primarysource”. Inthefollowingwe andthereflectionstrength:Foraprimarysourceveryclosetothe willusea sourcesituated on therotational axisof theblack hole blackhole,mostofthephotonsarefocusedontheaccretiondisc, forthispurpose.Byapplyingthesameray-tracingtechniquesused producing a strong reflection component. Therefore less photons totracephotonsfromthedisctotheobserver,wecanalsocalculate are left over to contribute to the continuum component, which is theproperirradiationoftheaccretiondiscbytheprimarysource. directly emitted towards the observer (Miniutti&Fabian 2004). Theradial dependency of thisirradiation isequal to thereflected Foran increasing height of thehardX-raysource thiseffect gets radiation,i.e.,theemissivity,whichwaspreviouslymodelledbya weaker and thus more photons can escape, which strengthens power law. Inthispaper weconcentrate ontheirradiation of the the continuum radiation and, depending on the flux state of the accretiondisc.Inordertobeabletocompareourresultstoobser- X-raysource,weakensthereflectedflux(Miniutti&Fabian2004; vationaldata,wealsoneedtocalculatetheraytracingfromtheac- Miniutti2006). cretiondisctotheobserver,whichisdonewiththeRELLINE-code (Dauseretal.2010). Basedontheearlierworkonthelamppostgeometrypresented 2.2 PhotonTrajectoriesintheLampPostGeometry above, Fukumura&Kazanas (2007) provided a more detailed treatmentoftheemissivityforarbitraryspinandanisotropicemis- Inthefollowingwewillconcentrateonasimplifiedgeometry by sionoftheprimarysource.Off-axissourceswerefirstinvestigated assumingapoint-like,photonemittingprimarysourceataheight by Ruszkowski (2000). Using similar methods Wilkins&Fabian habovetherotationalaxisoftheblackhole.Thissourceirradiates (2012) presented araytracing method working on Graphics Pro- athin,butopticallythickaccretiondisc(Fig.1).Relativisticpho- cessingUnits(GPUs),whichcancalculateirradiationprofilesfor tontrajectoriesinthelamppostgeometrywerefirstinvestigatedby almost arbitrary geometries of the primary sources, now also in- Matt,Perola&Piro(1991)andusedbyMartocchia&Matt(1996) cludingsourcesextendedalongandperpendiculartotherotational inordertoexplaintheverylargeequivalent widthoftheironKα axis.Inthispaperwepresentacompletemethodtoderiveirradi- line in some AGN. A more detailed discussion of effects in this ationprofilesinthelamppostgeometry(Sect.2),includingradi- geometrywaspresentedbyMartocchia,Karas&Matt(2000),in- allyextendedandacceleratingsources(Sect.3).Usingthisformal- cludingadiscussionoftheinfluenceoftheblackhole’sspinonthe ism, we introduce an implementation of the lamp post geometry overallspectra. as afittingmodel for relativisticreflection, which can beapplied As a good physical explanation of this hard X-ray source tomorerealisticexpectationsoftheoreticaljetmodels(Sect.4.1). on the rotation axis is the base of a jet (Markoff&Nowak In Sect. 4.2 we analyse the shape of the reflection features pre- 2004), we call this geometry also the “jet base geometry”. dicted by the different types of irradiating sources. In particular This interpretation is highly supported by the earlier work of weconcentrateontheimplicationsforspinmeasurements,thedif- Ghisellini,Haardt&Matt(2004),whereitisshownthatallAGN ferent assumptions for the geometry of the primary source have are capable of forming jets. This is achieved by inventing the (Sect.4.3).Theseresultsarequantifiedbysimulatingsuchobser- concept of “aborted” jets for radio-quite quasars and Seyferts, vationsforcurrentinstruments(Sect.4.4).Finally,wesummarise which are produced when the velocity of the outflowing mate- themainresultsofthepaperinSect.5. rialissmallerthantheescapespeed.Thereforesuchajetextends (cid:2)c 2012RAS,MNRAS000,1–15 Irradiationofan AccretionDiscbyaJet 3 havetorotateatthespeedoflight.1 Notethatallequationsinthis paperaregiveninunitsofG≡M ≡c≡1.Thedifferentsignsin equation(1)areforincreasing(uppersign)anddecreasing(lower (cid:0) sign)valuesofrandθ.Heretheconservedquantitiesarethetotal energy,E,theangularmomentumparalleltotherotationalaxisof theblack hole, λ, and theCarter (1968) constant, q. Thelatteris givenby (cid:4) (cid:4) h2−2h+a2 q=sinδ . (5) (cid:2)(cid:3) h2+a2 Assuming the source to be located on the symmetry axis of the system(θ = 0)simplifiesthecalculationsignificantly,aspθ does onlytakearealvalueifλ=0,andthereforeequation(1)simplifies to √ (cid:5) pμ=E(−1, ± Vr/Δ, ±E|q|, 0) . (6) Thenthetrajectorycanfinallybecalculatednumericallyfromthe Figure1.Aschematicdrawingofthecomponentsinthelamppostgeom- integralequation (cid:5) (cid:5) etry.Theprimarysourceofphotons(blue)issituatedabovetherotational r dr(cid:2) θ dθ(cid:2) axisoftheblackholeandisemittingphotons(red),whichhittheaccretion √ = √ . (7) disc. h ± Vr(cid:2) 0 ± Vθ(cid:2) (following Chandrasekhar 1983; Speith,Riffert&Ruder 1995). only asmalldistance fromtheblack hole, producing only aneg- Notethat thesign changes at turning points of thephoton trajec- ligible amount of radio flux while at the same time it strongly tory.Inthiscasetheleftpartofequation(7)hastobesplitintotwo irradiates the inner accretion disc in X-rays, which produces the integrals, each going from and to the turning point, respectively. observed, highly relativistic reflection (Ghisellini,Haardt&Matt Notethatnoturningpointsintheθdirectionhavetobetakeninto 2004). This interpretation is encouraged by works showing that account,asphotonswhichinitiallyflytowardsthedisc,willnotex- direct and reprocessed emission from such a jet base is equally hibitaturningpointbeforecrossingtheequatorialplaneandthus capable in describing the observed X-ray spectrum as a corona beforehittingtheaccretiondisc. above the accretion disc and also yields a self-consistent expla- nation of the full radio through X-ray spectrum of many com- 2.3 IlluminationoftheAccretionDisc pactsources(Markoff,Nowak&Wilms2005;Maitraetal.2009). In addition a direct connection between the X-rays and the ra- In order to calculate the incident intensity on the accretion disc, diocanexplainthecorrelationbetweenobservedradioandX-ray wefirsthavetoconsiderthegeometriceffectsintrinsictothelamp flaresof Microquasars such asGX339−4 (Corbeletal.2000)or postsetup.Withoutanyrelativisticeffectstheintensityimpinging CygX-1(Wilmsetal.2007).Wenotethatasimilarkindofconnec- ontheaccretiondiscforanisotropicprimaryemitterisgivenby tionisalsoindicatedinsomemeasurements ofAGNlike3C120 cosδ h (Marscheretal.2002)or3C111(Tombesietal.2012).Addition- Ii(r,h)∝ r2+hi2 = (r2+h2)32 . (8) ally,evidence of adirectinfluence of thejeton theblackholein Microquasarsisgrowingrecently.Namely,Narayan&McClintock Thismeansthatalreadyforflatspacetimetheirradiatedintensity (2012)observeadirectcorrelationbetweenthejetpower andthe stronglydependsontheradius. spinvaluefromanalysingasmallsampleofsources. Duetothestronggravitythephotontrajectorieswillbesignif- In the following we will briefly summarise the most im- icantlybent,i.e.,inoursetupthephotonswillbe“focused”ontothe portant equations required for deriving the photon trajectories innerregionsoftheaccretiondisc(Fig.1),modifyingtheradialin- from a source on the rotational axis of the black hole. As we tensityprofile.Notethatthisfocusingdependsonboth,theheight, are dealing with potentially rapidly rotating black holes, we h,andtheinitialdirectionofthephoton,parametrisedbytheangle choose the Kerr (1963) metric in Boyer&Lindquist (1967) co- betweenthesystem’saxisofsymmetryandtheinitialdirectionof ordinates to describe the photon trajectories. Following, e.g., thephoton,δ. Bardeen,Press&Teukolsky (1972), the general photon momen- Using the equations of the previous section we developed a tumisgivenby ray-tracing code using similar techniques as those presented in √ √ Dauseretal.(2010).Withthiscodeweareabletocalculatephoton pt =−E, pr =±E Vr/Δ, pθ =±E Vθ, pφ =Eλ, (1) trajectoriesfromthepointofemission(h,δ)attheprimarysource with totheaccretiondisc,yieldingthelocation(r,δi)wherethisspecific photonhitsthedisc.Astheprimarysourceislocatedontherota- Δ = r2−2r+a2 (2) tionalaxisoftheblackhole,thetrajectoryofthephotonisuniquely Vr = (r2+a2)2−(cid:2)Δ(q2+a2)(cid:3) (3) determinedbytheq-parameter(equation5).Theincidentpointis λ thencalculatedbysolvingtheintegralequation(7)forrinthecase Vθ = q2−cos2θ sin2θ −a2 (4) ofθ=π/2. foracertaindistancerandspinaoftheblackhole.Thespinisde- finedinsuchawaythatitsabsolutevaluerangesfrom0(cid:2)|a|(cid:2)1, 1 Thorne(1974)showedthattherealisticupperlimitofthespinismore whereat themaximal value, amax = 1,theevent horizonwould likelyamax=0.998. (cid:2)c 2012RAS,MNRAS000,1–15 4 T. Dauseret al. Knowing wheretheisotropically emittedphotons hittheac- Thisis in line with the results obtained by Fukumura&Kazanas cretiondisc,wecanderivethephotonfluxincidentonitssurface. (2007)2. Asthephotonsaredesignedtobeemittedatequallyspacedangles Inordertounderstandtheinfluenceofthedifferentrelativis- δ,thedistance Δr between thesepointsisrelatedtotheincident tic parameters on the incident intensity, Fig. 2 shows the single intensity.Photonsemittedin[δ,δ+Δδ]aredistributedonaring components of equation (18). A similar discussion of these com- ontheaccretiondiscwithanareaofA(r,Δr).Theproperareaof ponentsisalsogivenbyWilkins&Fabian(2012).Weassumethat sucharingatradiusrwiththicknessΔrisgivenby theprimarysourceisanisotropicemitter.Alleffectsarestrongest (cid:4) forsmallradiiandwillthereforebemostimportantforhighspin, r4+a2r2+2a2r A(r,Δr)=2πr· Δr (9) where the accretion disc extends to very low radii. First, length r2−2r+a2 contractionreduces theareaof theringasseenfromtheprimary in the observer’s frame of rest (Wilkins&Fabian 2012). In or- source. In the rest frame of the accretion disc, this “contraction” der to calculate the irradiation in the rest frame of the accre- implies an effectively larger area and therefore the incident flux tion disc, we have to take into account its rotation at relativis- decreases with increasing vφ proportional to the inverse Lorentz tic speed. The area of the ring will therefore be contracted. Us- factor1/γ(φ)(Fig.2a).Whencomparedtoflatspacetime,thearea ing the Keplerian velocity profile deduced from the Kerr metric ofdiscclosetotheblackholeisadditionallyenhancedintheKerr (Bardeen,Press&Teukolsky1972),thedisc’sLorentzfactoris metric(Fig.2b).Interestingly,thiseffectisalmostindependentof √ the spin of the black hole3. However, compared to the effect in- γ(φ) = (cid:6) √r2−2r+a√2(r√3/2+a) (10) ducedbytheenergyshift(equation14),thechangeinareaisonly r1/4 r r+2a−3 r r3+a2r+2a2 aminor effect.Dependingonthepower lawindex, Γ,theenergy shiftofthephotonshittingthediscisthestrongestfactorinfluenc- (Bardeen,Press&Teukolsky 1972, see also Wilkins&Fabian ingthereflectionspectrum.Forasourceontherotationalaxisofthe 2011, 2012). Taking into account that the photons are emitted at blackholethechangeinirradiatedfluxcanbeaslargeasafactorof equally spaced angles, we finally find that for isotropic emission 100(Fig.2c),dependingstronglyonthesteepnessoftheprimary thegeometriccontributiontotheincidentintensityhastobe spectrum. This amplification factor depends on the height of the sinδ emitting source (it becomes larger for increasing height) and de- Igeo = . (11) i A(r,Δr)γ(φ) creasesforlargerradii.Especiallyforlowhlightbendingfocuses photonstowardsthediscandadditionallyenhancestheirradiation Becauseoftherelativemotionoftheemitterandtheaccretiondisc, oftheinnerregions.ThedashedlinesinFig.2dshowhow1/Δr aswellasbecauseofgeneralrelativisticeffects,theirradiatedspec- decreases in flat space just due to geometrical reasons following trumwillbeshiftedinenergy(Fukumura&Kazanas2007).Using equation(8).Thefullyrelativistictreatment(solidlines)revealsa theinitialfour-momentumattheprimarysource focusing of the photons towards theblack hole. But compared to uμ =(ut,0,0,0) (12) the“effectivelyenhanced”irradiationoftheinnerpartsduetothe h h energyshift(Fig.2c),therelativisticfocusingisonlyaminoreffect. andthecorrespondingfour-momentumontheaccretiondisc Insummary,thepowerlawindex,Γ,hasthestrongestinfluenceon uμ =ut(1,0,0,Ω) (13) theirradiationprofileatsmallradii,whiletheheightoftheemitting d d sourcemostlyaffectstheouterpartsofthedisc. togetherwiththephoton’smomentum(equation6),theenergyshift Finally, Fig. 2e combines all effects and shows the incident is (cid:7) √ (cid:8)√ fluxintherestframeoftheaccretiondisc.Ingeneralthisplotcon- glp= EEei = ppμνuuμdνh = √r(cid:6)r rr2+−a3r+h22a√−r2√hh+2a+2a2 (14) fiaoturmtleosrwopuahrretiosg.vheFtroasrltlraounnngidnleycrrseitraarnsaiddniignagtheoetifhgtehhteinolnafemtrhpeppasorotsustrbgcueeotmmaloemrteroysa:tnSdnooumtroctherees The components of the four-velocities are calculated photonshittheouterpartsoftheaccretiondiscandanincreasingre- from the normalising condition uμuμ = −1 (see, e.g., gionofmoreconstantirradiationatroughlyh/2iscreated.Inorder Bardeen,Press&Teukolsky1972). tocheckoursimulationforconsistency,athoroughcheckagainst Asthenumberofphotonsisconservedwecanwrite thecalculationsofFukumura&Kazanas(2007)wasdoneandwe couldvalidatetheresultfromFig.2eathighprecision.Thesame Ne(ph)ΔteΔEe=const.=Ni(ph)ΔtiΔEi , (15) istrueforthestationarypointsourcesolutionofWilkins&Fabian (2012). whereN(ph)(N(ph))istheemitted(incident)photonflux.Assum- e i ingapowerlawshapeoftheemittedradiation Nph =E−Γ , (16) e e 2.4 EmissivityProfilesintheLampPostGeometry thephotonfluxontheaccretiondiscisgivenby Since for a simple accretion disc the local disc emissivity is Nph(r,a)=E−Γ·g (r,a)Γ , (17) roughly ∝ r−3, in the description of observations it is common i i lp toparametrisethediscemissivityprofilethrough asΔE /ΔE =1/g andΔt /Δt =g .Duetotherelativistic e i lp e i lp energyshift,theincidentphotonfluxnowalsodependsonwhere F(r,h)∝r−(cid:3) (19) thephotonhitstheaccretiondisc(r)andwhichspintheblackhole has.Usingthisresult,wecanfinallycalculatetheincidentfluxon theaccretiondisc 2 NotethatFukumura&Kazanas(2007)usethespectralindexα,whereas F(r,h)=Igeo·gΓ = sinδglΓp . (18) weusethephotonindexΓ.BothquantitiesarerelatedbyΓ=α+1. i i lp A(r,Δr)γ(φ) 3 deviationsarelessthan0.2% (cid:2)c 2012RAS,MNRAS000,1–15 Irradiationofan AccretionDiscbyaJet 5 rstuvwxyz{yzz|}~y(cid:127)(cid:128)(cid:129)(cid:127)(cid:130)(cid:131)(cid:132)(cid:133)(cid:134) EFGHIJKLMNLMMOPQLRSTRUVWXY (cid:24)(cid:25)(cid:26)(cid:26) (cid:23) (cid:21)(cid:22) 1233 . /0 (cid:0)(cid:2)(cid:3) (cid:16) ’ (cid:23)(cid:24)(cid:30)(cid:26)(cid:31)(cid:28)(cid:29) q op (cid:23)(cid:24)(cid:25)(cid:26)(cid:27)(cid:28)(cid:29) mn (cid:17)(cid:18)(cid:19) (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:15) ( (cid:16)(cid:17)(cid:18)(cid:19)(cid:20)(cid:19)(cid:21)(cid:22) l (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:13)(cid:13) (cid:8)(cid:9)(cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15) (cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:9) (cid:0)(cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:4)(cid:6)(cid:7) ) (cid:17)(cid:18)(cid:20) D C B A (cid:27)(cid:28)(cid:29) @ ? * (cid:16) > (cid:143)(cid:141) := (cid:140)(cid:141)(cid:142)(cid:140) (cid:17)(cid:18) :;;:< + (cid:139)(cid:135) (cid:4)(cid:5)(cid:31)(cid:7)(cid:8)(cid:9)(cid:9) 9 (cid:138) 8 (cid:136)(cid:137) (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:13)(cid:13) (cid:135) (cid:17)(cid:18)! (cid:10)(cid:11)(cid:30)(cid:13)(cid:14)(cid:15)(cid:15) , (cid:17)(cid:18)" - (cid:0)#(cid:3) +,, $%* ’() . (cid:145) (cid:146) -. $%& & $% "## !!! (cid:144) 4 5467 / Figure3.Theemissivityindex(cid:3)asdefinedinequation(19)oftheradiation irradiatingtheaccretiondiscfromaprimarysourceatdifferentheightsh. <= (cid:27)0(cid:29) (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15)(cid:15) / where(cid:3)iscalledtheemissivityindex.Notethatinthisrepresenta- (cid:150) 789:; tiontheinformationofthenormalisationoftheemissivityprofile (cid:149) (cid:17)(cid:18)" 123456 islost.Butasusuallytheluminosityoftheirradiatingsourceisnot (cid:148) (cid:147) known,thisisnotveryimportantforreflectionstudies.Ourcalcu- (cid:24)(cid:25)(cid:24)> lations easily allow to determine the radius dependent emissivity indexandthusphraseourresultsinalanguagethatisdirectlycom- AB ?@ parablewithobservations. +,, (cid:0)C(cid:3) Figure3showstheemissivityprofilefordifferentheightsof DEF ^_‘abcd theprimarysource.Regardlessofthespecificheight,threedifferent WXYZ[\] radial zones are visible in all profiles. Firstly, for large radii the (cid:16) NNOOPVQSRRSSTTUU indexconvergesalwaystowardsitsvalueinflatspace((cid:3) = 3,see (cid:159)(cid:160)¡ GHIJJKJLM feaqsuteartio(cid:3)nco8n)v.eTrhgeescltooswearrtdhsetehmisitvtainluges.ourceistotheblackhole,the (cid:158) (cid:157)(cid:156) Thezonecloserthan2rgfromtheblackholeischaracterised (cid:155) (cid:24)(cid:25)(cid:24)> byastrongsteepening of theemissivityprofiletowards theinner edge of the accretion disc. Except for an extremely low height, thissteepeningisalmostindependent oftheheightoftheprimary ?@Ak source4.Hence,alargeemissivityatlowradii,whichisusuallyin- terpretedas“strongfocusingofalowheightemitter”,isnotdirectly i h jf g= ef +,, relatedtotheheight oftheprimarysource. Instead, thesteepness (cid:151) (cid:152)(cid:151)(cid:153)(cid:154) almost solely depends on the relativistic boosting of the primary photonsandespeciallyonthesteepnessΓoftheprimaryspectrum Figure2.Relativistic factorswhichinfluencetheincidentfluxontheac- (seeFig.2c). cretion disccompared totheemittedintensity attheprimarysource(see As has been mentioned in the introduction (Sect. 1), many equation 18).Ifnotstated inthefigureexplicitly weusea = 0.99and sources are observed to have very steep emissivity indices, i.e., assumethattheprimarysourceisanisotropicemitter.Theverticaldashed valuesof(cid:3)=5-10arenormal.Similartotheemissivityprofilein linesindicatethelocationoftheinnermoststablecircularorbit(ISCO)for Fig. 3, we can also derive the maximal possible emissivity index certain valuesofspin.(a)Theinversebeamingfactor(red),whichdeter- foracertainvalueofspinandsteepnessoftheinputspectrum.For minestheinfluenceoflengthcontraction(seeequation10)ontheincident astandardlamppostsourceataheightofatleast3r ,thisinfor- flux.(b)Theimpact ofthe properarea. (c)Geometric intensity distribu- g tion on the accretion disc for the relativistic (solid) and Newtonian case (dashed).(d)Energyshift,whichthephotonexperiences whentravelling fromtheprimarysourcetotheaccretiondisc,takentothepowerofΓ(blue). 4 Clearly, the absolute flux foracertain luminosity is highest foralow (e)Combinedirradiatingfluxontheaccretiondiscforaprimarysourceat emitter(seeFig.2e),butweusuallydonotmeasuretheabsoluteintensity, differentheightsbutequalluminosity. butonlytheemissivityindex. (cid:2)c 2012RAS,MNRAS000,1–15 6 T. Dauseret al. by Duroetal. (2011) to find a unique and consistent solution to (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:10)(cid:12) (cid:17)(cid:18) (cid:0)(cid:2)(cid:3)(cid:4)(cid:11)(cid:11)(cid:3) describethereflectionspectrumofCygX-1. (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:8)(cid:8) (cid:0)(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:3) 2.5 Theincidentangle (cid:17)(cid:19) The incident angle δ of the irradiated radiation is important for i modelling the reflected spectrum, as it determines the typical in- (cid:17)(cid:20) teraction depth of the reflected photon and therefore strongly ( ’ influences the limb-darkening of the reflected radiation (e.g., & % (cid:21) Svobodaetal.2009).Constructinganormalvectoronthedisc,δ $ i # isgivenby (cid:9) (cid:10) μ(cid:11) (cid:22) cosδ = p⊥ = (pd)μ n(dθ) (cid:11)(cid:11)(cid:11) = q . (20) i |p| (pd)ν(ud)ν (cid:11) rutd(r,a) (cid:23) θ=π/2 Figures5aandbshowδ fordifferentheightsoftheprimarysource i andassuminganisotropicprimaryemitter.Formostdiscradiithe (cid:24) photonshitthediscatashallowangle,exceptforasmallfraction of disc. The location and width of the steeper in-falling photons (cid:16) (cid:15) (cid:14) (cid:13) dependsontheheightoftheprimarysource. (cid:25)(cid:26)(cid:27)(cid:28)(cid:27)(cid:29)(cid:30)(cid:29)(cid:31) !" The effect of the incidence angle of the illumination in the reflected spectrum from an accretion disc has been discussed in Figure4.Themaximumpossibleemissivityindexattheinnerregionsof thedisc(r<10rg)foracertainphotonindexΓ.Theheightofthesource Garc´ıa&Kallman(2010).Inthecalculationofreflectionmodels, waschosentobeh=10rg.However,notethatweshowedinFig.3thatfor theboundaryatthesurfaceofthediscisdefinedbyspecifyingthe h>3rgthesteepeningattheinneredgeofthediscisalmostindependent intensity of the radiation field that illuminates the atmosphere at oftheheight. aparticularangle.Usingtheirequation(19) and(37),thiscanbe expressedas (cid:9) (cid:10) 2n ξ mation isplotted in Fig. 4. In this case, no large emissivities are I = , (21) inc 4π cosδ expectediftheblackholeisnotamaximalrotator,i.e.,roughlyfor i a < 0.9. If theinput spectrum ishard (Γ < 2.5), theemissivity where n is the gas density (usually held fixed), and ξ is the ion- indexisflatterthanthestandardindexof(cid:3) = 3.Evenforhighly isation parameter that characterises a particular reflection model rotatingblack holestheactual emissivityat theinner edge of the (Tarter,Tucker&Salpeter 1969). Consequently, for a given ioni- accretion disc is only steep if the incident spectrum is very soft sation parameter, varying the incidence angle varies the intensity (Γ>2.5). oftheradiationincidentatthesurface.Thishasinterestingeffects IfwewanttoapplytheinformationofFig.4toacertainobser- ontheionisationbalancecalculations.Ifthephotonsreachthedisc vation,wehavetotakeintoaccountthattheemissivityisgenerally at a normal angle (δi = 0), the intensity has itsminimum value, parametrisedinformof abroken power law.Indetailthismeans but the radiation can penetrate into deeper regions of the atmo- thatbelowacertain“breakradius”(r )onesingleemissivityin- sphere producing more heating. On the contrary, for grazing in- br dexisusedtodescribethesteepemissivityandabovethatitisusu- cidence(δi = 90)Iinc increases,resultinginahotteratmosphere allyfixedtothecanonicalr−3behaviour.Generally,breakradiiare nearthesurface;buttheradiationfieldthermalizesatsmallerop- foundtobeintherangeof3r (e.g.,in1H0707−495, Dauseretal. ticaldepths,whichyieldslowertemperatureinthedeeperregions g 2012) up to 6r (e.g., in NGC3783, Brennemanetal. 2011).5 ofthedisc.Evidently,thesechangesintheionisationstructurewill g Hence,theemissivityindexwemeasureinobservations accounts alsoaffect thereflected spectrum(see Fig.5c). Thenarrow com- fortheaveragesteepnessintherangeofr tor andwillthere- ponent of theemissionlinesareexpected tobeemittedrelatively in br forebelowerthanthemaximalemissivity.Wenotethattheemis- near the surface, where photons can easily escape without being sivityindicesfoundinmanyobservationsareclosetoorabovethe absorbedorscattered.Ontheotherhand,thebroadcomponentof maximalallowedemissivityindexasdefinedinFig.4.Forexample theemissionlines,andinparticulartheonesfromhighZelements (cid:3)≈5forΓ=1.8inNGC3783(Brennemanetal.2011),(cid:3)≈6for such as iron, are produced at larger optical depths (τ ∼ 1), and Γ=2inMCG−6-30-13(Brenneman&Reynolds2006),(cid:3)>6.8 thereforearemorelikelytobeaffectedbychangesintheionisation forΓ = 1.37inCygnusX-1(Fabianetal.2012a),or(cid:3) ≈ 10for structureoftheslab. Γ = 3.3 in1H0707−495 (Dauseretal.2012). Astheemissivity However, Garc´ıa&Kallman (2010) showed that in a gen- index obtained fromthesemeasurements isaveraged over thein- eral sense, reflected spectra resulting from models with large in- nermost few r these emissivities can therefore not be properly cidence angles tend to resemble models with higher illumina- g explainedsolelybythelamppostgeometry.Despitetheseissues, tion. This means that the changes introduced by the incidence however,insomecasesitispossibletouseFig.4todecideifamea- angle can be mimicked by correcting the ionisation parame- suredvaluefortheemissivityindexcanreasonablybeexplainedin ter to account for the difference introduced in the illumination. thelamppostgeometry.Thismethodhasbeensuccessfullyapplied The current analysis shows that below 7rg the incidence angle can vary as much as 25 − 80 degrees, equivalent to a change in the ionisation parameter by more than a factor of 5. Fig- 5 Notethatthevalueofthebreakradiusishighlycorrelatedwiththeemis- ure 5c shows the reflected spectra for these two incidence an- sivityindexwhentryingtoconstrainbothbyobservation. gles predicted by the XILLVER code (Garc´ıa&Kallman 2010; (cid:2)c 2012RAS,MNRAS000,1–15 Irradiationofan AccretionDiscbyaJet 7 (cid:9)(cid:5)(cid:3) (cid:6)(cid:7)(cid:8) (cid:4)(cid:5)(cid:3) (cid:0)(cid:2)(cid:3) TUV 56(cid:8) (cid:28)(cid:29)(cid:30) NOO (cid:10)?(cid:12) @ABFGE (cid:19)(cid:17) (cid:10)(cid:11)(cid:12) 7(cid:7)(cid:8) @ABCDE (cid:15)(cid:20) (cid:15)(cid:21) 89: L(cid:14) qs (cid:22)(cid:23) qr \]_^ (cid:22)(cid:24) ‘a(cid:6)(cid:7)(cid:8) mopn [ l P (cid:15)(cid:17) ;9: (cid:25) (cid:26) <(cid:7)(cid:8) ’.(/)0*1+2,3-4 QRS (cid:27) => (cid:31) !"#$%& (cid:18) (cid:15)(cid:17) (cid:15)(cid:16) (cid:13)(cid:14) (cid:15)(cid:17) (cid:13)(cid:14) IJK M H (cid:18) L(cid:14) (cid:19)(cid:17) (cid:16)(cid:17) W XWYZ W XWYZ bcdefghidjk Figure5.(a)2dimageshowingtheincidentangleδiofphotonsontheaccretiondisc.Thespinoftheblackholeisa=0.998.(b)incidentangleforthethree lines(solid,dashed,dotted)markedinsubfigure(a).(c)Samplereflectionspectrafordifferentincidentanglesδi=25◦(red)and 80◦(blue)calculatedwith theXILLVERcode(Garc´ıa&Kallman2010;Garc´ıa,Kallman&Mushotzky2011). Garc´ıa,Kallman&Mushotzky2011)usingthesameionisationpa- where e(μν) are the tetrad basis vectors for ν = t,r,θ,φ (see rameter.Theeffectoftheincidenceangleisevident. Bardeen,Press&Teukolsky1972). Inorder tocalculatethetrajectoryof aphoton emittedat an angle δ(cid:2) from themoving source, wetransform fromthe moving frametothestationary,locallynon-rotatingframeatthesamelo- 3 ANEXTENDEDRAY-TRACINGCODE cation.Thismeansthatthephoton isemittedatanangleδ inthe stationarysystemaccordingto Sofarweassumedthattheemittingprimarysourceisatrestwith respecttotheblackhole.Iftheprimaryemitteristhebaseofthe cosδ(cid:2)−β cosδ= , (24) jet, however, then it is far more likely that the primary source is 1−βcosδ(cid:2) moving. Typical speeds at the jet base can already be relativistic depending on the velocity of the source. Following, e.g., Krolik (McKinney 2006). Furthermore, if the irradiating source is a jet, (1999), itcan beeasilyshown that thisapproach impliesthat the then we need to relax our assumption of a point-like emitter and intensityobservedinthestationaryframewillbealteredbyafactor includetheradialextentofthejet.Asweshowinthissectionby of takingintoaccountbothoftheseextensions,thelineshapeissig- nificantlyaffected. D2 , (25) whereDisthespecialrelativisticDopplerfactor,whichisdefined inourcaseas 3.1 AMovingJetBase 1 Firstinvestigationsofamovingsourceirradiatingtheaccretiondisc D= , (26) γ(1+βcosδ) anditsimplicationfortheFeKαweredonebyReynolds&Fabian (cid:6) (1997).Beloborodov(1999)investigatedthecouplingbetweenthe with γ = 1/ 1−β2 being the Lorentz factor of the moving movingprimarysource andthereflectedradiation. Usinggeneral source.Usingthetransformedintensity,wecannowcanapplythe relativistic ray tracing techniques, Fukumura&Kazanas (2007) stationarycalculationsfromSect.2.3tothenewemissionangleδ andWilkins&Fabian(2012)calculatedtheilluminationprofileon toobtaintheirradiationoftheaccretiondiskbyamovingsource. theaccretiondisc. Additionally,wehavetocalculatetheproperenergyshiftbe- Wefirstassumethattheemittingprimarypointsourceismov- tweentheaccretiondiscandthemovingsource,withthe4-velocity ingataconstantvelocityβ =v/c.Themostprominenteffectofa givenbyequation(22).Similarlytoequation(14)thisenergyshift movingjetbasecomparedtoajetbaseatrestistheDopplerboost- isgivenby ingofradiationinthedirectionofthemovingblob,i.e.,awayfrom theaccretion disc. Thisboosting alsomeans that theenergy shift g = (pd)μuμd = (cid:9) √glp(β=0) (cid:10) . (27) ofthephotonbetweenprimarysourceandaccretiondiscchanges lp (ph)νuνh γ 1∓ (h2+a2)2−Δ(q2+a2)β withvelocity.The4-velocityisthengivenby h2+a2 (cid:9) (cid:10) uμh =uth 1,ddrt,0,0 (22) Nlimotiet,tghlapt=forDlagrlgpe(βhe=igh0t)s.gUlpsisnigmtphleifireessutoltsitwsespaelcreiaaldyreolabttiaviinsteidc forastationaryprimarysource(seeSect.2.3),wecanfinallywrite Thevelocityβ asseenbyanobserveratthesamelocationinthe downthetotalfluxtheaccretiondiscseesfromamovingsource: locallynon-rotatingframe(LNRF)isconnectedtodr/dtthrough D2F(r,h,β=0) β= ee(μ(νrt))uuνhμh = r2+Δa2 · ddrt , (23) Fi(r,h,β)= (cid:2)γ(cid:9)1∓ √(h2i+ah22)2+−aΔ2(q2+a2)β(cid:10)(cid:3)Γ . (28) (cid:2)c 2012RAS,MNRAS000,1–15 8 T. Dauseret al. VWXYZ[\]^_]^^‘ab]cdecfghij |}~(cid:127)(cid:128)(cid:129)(cid:130)(cid:131)(cid:132)(cid:133)(cid:131)(cid:132)(cid:132)(cid:134)(cid:135)(cid:136)(cid:131)(cid:137)(cid:138)(cid:139)(cid:137)(cid:140)(cid:141)(cid:142)(cid:143)(cid:144) 9:;; 8 67 KLMM 8 67 (cid:0)(cid:2)(cid:3) <=> $%%% (cid:22)(cid:23)(cid:24)(cid:25)(cid:26) F (cid:16)(cid:17)(cid:18)(cid:19)(cid:20)(cid:21) (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:15) &’’ (cid:4)(cid:5)(cid:6)(cid:7)(cid:7)(cid:8)(cid:9) () { yz G x w U * v RST qsqtu H +,- qrr p o D ./.0 34 I 12 35 12 J ! #(cid:30) (cid:31)(cid:30) (cid:29)(cid:30) "(cid:28)(cid:28) (cid:27)(cid:28)(cid:28) D C () B) A) E@@ ?@@ N ONPQ k lkmn Figure6.(a)Irradiatingfluxand(b)EmissivityprofilessimilartoFig.3,whichshowtheimpactofamovingjetbasewithvelocitiesv=0c(solid),v=0.5c (dotted),andv=0.9c(dashed). Figure6showsthedependencyoftheemissivityindexonthe The influence of changing the location of the jet base while velocity of the jet base. In general the irradiating flux decreases fixingthetopheightisdepictedinFig.7a,b.Interestinglytheemis- significantlywithincreasingspeed ofthejetbase, asthephotons sivity profile is not very sensitive to the location of the jet base. areboostedawayfromtheblackhole(Fig.6a). On the other hand, fixing the jet base at a low value (3r ) and g Comparingtheshapeoftheemissivityprofilesforamoving thenincreasingtheradialextentofthejet(Fig.7c)stronglyalters jetbase(Fig.6b),theintermediateregionoftheaccretiondisc(3– theemissivityprofile.Themorethetopisawayfromthebase,the 100r )experiences anincreaseof irradiationwithincreasingve- largerthedeviationsbecomecomparedtotheprofileofthejetbase g locity of thejet base. On the other hand the emissivity profileof (red, dashed line) and the more the irradiation resembles the one theveryinnerregionsoftheaccretiondiscdoesnotdependonthe fromtheupperpartofthejet.Comparingtheextendedprofilesto movementofthejet.Forhighspin(a>0.9)theaccretiondiscex- theonesforapoint-likeprimarysource(dashedlines)revealsthat tendsdowntotheseverysmallradiiandduetothesteepemissivity theextendedemissioncreatesanirradiationpatternthatcouldhave most of thereflected radiation comes fromthere. If the accretion similarlybeenproducedbyapointsourceatanintermediateheight disconlyextendsdownto6rg,asisthecasefora=0,theirradi- in between hbase and htop, too. This implies that if we measure ationoftheinnermostregionscandifferalmostuptoafactorof2 anemissivityprofilesimilartooneforalowsourceheight(Fig.7, inemissivityindexdependingonthevelocityofthejetbase. dashedredline),thejetcannotbeextendedorthereisnosignifi- cantamountofradiationfromtheupperpartsirradiatingthedisc. Onewaytoexplainthelackofphotonsisthatthejetdoesnothave auniformvelocity,butthejetbaseisatrestandfromthereonthe 3.2 IrradiationbyanElongatedJet particlesareveryefficientlyaccelerated(see McKinney2006)such It is straightforward to extend the previous discussion of a thattheradiationisbeamedawayfromtheaccretiondisc. moving jet base to the the case of an extended jet (see also Wilkins&Fabian2012).Wesimplydescribetheincidentradiation for an elongated jet by many emittingpoints at different heights, 3.3 JetwithConstantAcceleration weightedbythedistancebetweenthesepoints.Emissivityprofiles fortheextendedjetareshowninFig.7.Ingeneral,theshapeofthe Havinganalysedtheeffectofamovingprimarysourceandthepro- emissivityprofileinthecaseofanextendedsourcedoesnotdiffer fileofanextendedjet,weareabletocombinetheseeffectstoform significantlyfromthatofapoint-likesource.Similartothemoving amorerealisticapproach.Itislikelythattheactualbaseofthejet jet base(seeSect. 3.1),the irradiationof theinner regions of the isstationaryorhasatleastavelocitynormaltothediscplanethat accretion disc (r < 2r ) only differs in normalisation but not in ismuchlessthanthespeedoflight.Abovethejetbasetheparti- g shape(Fig.7).However,theregionsofthediscthatarealittlebit clesareefficientlyaccelerated(McKinney2006)tohigherenergies furtheroutwards(>3r )areaffectedatamuchgreaterfractionby andintheendtoveryfastvelocitiesseen,e.g.,inVeryLongBase- g extendingtheemissionregion.Butdespitetheselargedifferences, lineInterferometry(VLBI)measurements(see,e.g., Cohenetal. theoverallshapeoftheemissivityprofiledoesnotchange,i.e.,that 2007).Inthefollowingwewillassumethesimplestcasebyusing thegeneralpropertiesanalysedinSect.2.4arestillvalidinthecase aconstantaccelerationAoftheparticles.Inthiscasethevelocity ofelongatedjets. evolvesas(see,e.g.,TorresDelCastillo&Pe´rezSa´nchez2006) (cid:2)c 2012RAS,MNRAS000,1–15 Irradiationofan AccretionDiscbyaJet 9 ^_‘abcdefgeffhijeklmknopqr ^_‘abcdefgeffhijeklmknopqr ^_‘abcdefgeffhijeklmknopqr ’(66 5 34 ’(66 5 34 ’(66 5 34 !" (cid:0)(cid:2)(cid:3) 789 PQR (cid:16)(cid:26)(cid:27)(cid:28)(cid:29) (cid:20)(cid:30)(cid:23)(cid:24) (cid:16)(cid:26)(cid:27)(cid:28)(cid:29) (cid:20)(cid:30)(cid:23)(cid:24) (cid:16)(cid:26)(cid:27)(cid:28)(cid:29) (cid:20)(cid:30)(cid:23)(cid:24) (cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:9)(cid:14)(cid:15)(cid:12)(cid:13) :;<=> ?DEBC J UUUUUU J # (cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:9)(cid:10)(cid:11)(cid:12)(cid:13) :;<=> ?@ABC (cid:16)(cid:17)(cid:18)(cid:19) (cid:20)(cid:21)(cid:22)(cid:23)(cid:24) (cid:25)(cid:25)(cid:25)(cid:25)(cid:25)(cid:25) FFFFFF K wx (cid:16)(cid:17)(cid:18)(cid:19) (cid:20)ST(cid:23)(cid:24) K wx (cid:16)(cid:17)(cid:18)(cid:19) (cid:20)(cid:21)(cid:22)(cid:22)(cid:23)(cid:24) (cid:16)(cid:17)(cid:18)(cid:19) (cid:20)(cid:21)(cid:22)(cid:22)(cid:23)(cid:24) yz (cid:16)(cid:17)(cid:18)(cid:19) (cid:20)(cid:21)(cid:22)(cid:22)(cid:23)(cid:24) yz $%& z z L y{ L y{ Z[\] ’(’) M y|}~(cid:127) M y|}~(cid:127) (cid:128) (cid:128) (cid:129) (cid:129) ,- N (cid:130) N (cid:130) *+ (cid:131) (cid:131) ,. # # *+ 12 O O /0 # !" (cid:31) I GH (cid:31) I GH (cid:31) V WVXY s tsuv s tsuv Figure7.EmissivityprofilessimilartoFig.3,whichshowtheimpactofanelongatedjetcomparedtoapointsource.Forcomparisonthedashedlinesshow theemissivityofapoint-likeemittingsourcewithsamecoloursasinFig.3,i.e.,red,blue,green,andorangefor3rg,10rg,25rg,and100rg,respectively. Forvaryingthebaseoftheemittingregiontheirradiatingflux(a)andtheemissivityprofile(b)isshown.In(c)thetopheightofthejetisaltered. At β(t)= √ , (29) Thecalculationsinthelamppostgeometryareusedtodeter- c2+A2t2 minetheproperirradiationprofileandreplacetheartificialbroken wherethetimetisgivenby powerlawemissivityintheRELLINEmodel.Besidesthestandard (cid:4) point source inthelamp post geometry, wealsoincluded theex- x2 x tended geometries presented in Sect. 3, i.e., elongated and mov- t= +2 (30) c2 A ingprimarysources. Astheinformationof theraytracingistab- ulated,the RELLINE LPmodel isevaluated veryquicklyandthus forx = h−h .Thereforetheaccelerationtoreachaspecific base wellsuitedfordatamodelling. velocityβatheighthisgivenby γ−1 A= , (31) h−h 4.2 Influenceofthelamppostparametersontheshapeofthe base reflectionfeatures whereγistheLorentzfactor.Figure8adisplaysthevelocity(equa- tion29)insidethejetforconstantacceleration. WiththeRELLINE LPmodelitispossibletocalculatethepredicted Theirradiationoftheaccretiondiscinthissetupisshownin lineshapesofbroademissionlinesforthedifferentparametersde- Fig.8b.Theeffectoftheacceleratedmovementshowsupatlarger terminingthesetupinthelamppostgeometry.Figure9showsthat radiibysteepeningtheemissivitycomparedtothestationaryjetand thelineshapeisverysensitiveforcertainparametercombinations the for all heights the profile gets more similar to a point source andalmostindependentinothercases. at the jet base. Thisresult confirms the general picture that for a The line shape is highly sensitive to a change in height of large acceleration the accretion disc sees only the lowest part, as the primary source (Fig. 9a and b). Especially when assuming a mostoftheupperpartofthejetisstronglybeamedawayfromthe rapidly rotating black hole, the line shape dramatically changes disc.Thismeansthatifwemeasurealocalised,lowheightofthe from a really broad and redshifted line to a narrow and double- emittingsource,itcouldalsobethebaseofastronglyaccelerating peakedstructurewhenincreasingtheheightofthesource(Fig.9a). jet.Additionally,Fig.8crevealsthatthestrongertheacceleration, Thesamebehaviourcanbeobservedforanegativelyrotatingblack themoretheemissivityprofilesresemblesthecanonicalr−3 case hole(Fig.9b),butheredifferencesarenotaslargeasintheprevi- forallbuttheinnermostradii(r>2rg). ouscase.Broadlinesseenfromaconfiguration ofalow primary source and a highly rotating black hole are also sensitive to the photonindexΓoftheincidentspectrum(Fig.9c).Inthiscasethe lineshape gets broader for a softer incident spectrum. When fix- 4 DISCUSSION ingtheheightoftheirradiatingsource(Fig.9d–f),foralowsource heighttheshapeisstillsensitivetothespin(Fig.9d).Butalready 4.1 RELLINE LP—Anewrelativisticlinemodel foramediumheightof25r thelineshapesvirtuallycoincidefor g UsingtheapproachmentionedinSect.2.3,thelamppostgeometry allpossiblevaluesofblackholespin.Inthiscase,evenforarapidly wasincorporatedintheRELLINEmodel(Dauseretal.2010).This rotatingblackhole,thelineshapedoesnotdependonthesteepness model was designed to be used withcommon data analysis tools ofincidentspectrum(Fig.9f). suchasXSPEC(Arnaud1996)orISIS(Houck&Denicola2000)for UsingtheRELLINE LP-code,wearealsoabletocompareline modelling relativisticreflection. It caneither predict asingleline shapes for moving (Sect. 3.1), elongated (Sect. 3.2), and acceler- shapeoritcanbeusedasaconvolutionmodelsmearingacomplete ating(Sect.3.3)primarysources.Achangeinvelocityonlyalters ionised spectrum (such as the REFLIONX model Ross&Fabian thelineshape ifthesource isat low height andtheblack holeis 2007). The new RELLINE LP model can be downloaded from rapidly rotating (Fig. 9g). Changing either of these to negatively http://www.sternwarte.uni-erlangen.de/research/rerloltaitinneg/(.Fig.9h) or alarger source height (Fig.9i),different ve- (cid:2)c 2012RAS,MNRAS000,1–15 10 T. Dauseret al. mnopqrstuvtuuwxytz{|z}~(cid:127)(cid:128)(cid:129) (cid:143)(cid:144)(cid:145)(cid:146)(cid:147)(cid:148)(cid:149)(cid:150)(cid:151)(cid:152)(cid:150)(cid:151)(cid:151)(cid:153)(cid:154)(cid:155)(cid:150)(cid:156)(cid:157)(cid:158)(cid:156)(cid:159)(cid:160)¡¢£ (cid:22)(cid:23) (cid:18) (cid:30)(cid:31) @ABB (cid:18) (cid:30)(cid:31) (cid:0)(cid:2)(cid:3) (cid:19)(cid:20)(cid:21) (cid:0)!(cid:3) (cid:8) 9 +"+++""",,,,++++----....////++++&&&&++++0000++++))))++++**** (cid:8) 1111222233334444 5555666677778888 (cid:12)(cid:13)(cid:14) (cid:142) : """"####$$$$%%%% &&&&’’’’(((())))**** WXYZ[\]^_‘ (cid:9)(cid:10)(cid:15) lfghijkgk (cid:22)(cid:23)(cid:22)(cid:24) (cid:133)(cid:132)(cid:134)(cid:132)(cid:135)(cid:136)(cid:137)(cid:138)(cid:139)(cid:140)(cid:141) ;< """"####$$$$%%%% &&&&’’’’(((((((())))**** UV (cid:9)(cid:10)(cid:16) e (cid:25)(cid:26)(cid:27)(cid:28) (cid:132)(cid:133) = (cid:131) (cid:130) (cid:9)(cid:10)(cid:17) > (cid:27)(cid:29) (cid:25)(cid:26) ? (cid:18) (cid:9)(cid:10)(cid:11) (cid:8) (cid:6)(cid:7) (cid:4)(cid:5)(cid:5) (cid:8) (cid:6)(cid:7) (cid:4)(cid:5)(cid:5) (cid:8) (cid:6)(cid:7) (cid:4)(cid:5)(cid:5) CDEFGHIJKLDMDHNIODPQRST a bacd a bacd Figure8.(a)Velocityofthejetassumingaconstantaccelerationandthejetbaseatrest.Thespinoftheblackholeisa=0.998,andthepowerlawindex Γ=2.Theaccelerationisparametrisedbyspecifyingthevelocityv100thejethasat100rgabovethejetbase.Linesareplottedforv100 =0.9c(dashed), v100 =0.99c(dotted),andv100 =0.999c(dashed-dotted).(b)and(c)Emissivityprofilesforanextendedjetwiththeconstantaccelerationshownin(a). Parametersarethesameasina).Thesolidlinedisplaystheemissivityprofileforastationaryjet.Despitethedifferentheights,eachjetisassumedtohavean equalluminosity. locitiesoftheirradiatingsourceonlyhaveamarginaleffectonthe Insummary,Fig.9confirmsthattherelativisticreflectionfea- line shape. Similarly, measuring the radial extent of the primary tureissensitivetoverydifferentparametersinthelamppostgeom- sourceisalsonotpossibleforallparametercombinations.Firstly, etry.However,assoonastheprimarysourceisnotveryclosetothe therestrictionsofmeasuringaandΓforlargerheights,asseenin blackholeoriselongatedintheradialdirection,thedependencyon Fig.9eandf,alsoapplyhere.Thereforewefixthesetwovaluesat parameterssuchasthespinoftheblackholeortheincidentspec- a = 0.99andΓ = 2.0.Settingthebaseofthesourceat3r and trumisnotlarge. g alteringitsheight (Fig.9j) doesindeed result ingreat changes in thelineshape.Thesechangesareverysimilartoachangeinheight ofapoint-likeprimarysource(seeFig.9a).Hence,anelongatedjet 4.3 ImplicationsforMeasuringtheSpinofaBlackHole producesareflectionfeaturesimilartoapoint-likesourcewithan effectiveheight.Asimilarbehaviourcanbeobservedwhenchang- If we are interested in measuring the spin of the black hole by ing the base of the primary source and leave the upper boundary analysing the relativistic reflection, Fig. 9 and the discussion in constantat100rg.However,asthelargeupperpartnowdominates theprevioussectionhelpustodecideunderwhichconditionswe theirradiationoftheaccretiondisc,theprofileisnotverysensitive arecapable in doing so. Generally, these conditions can be sepa- to the location of the base of the source. Finally, an accelerating rated into two classes: Either the primary source is compact and jet(Fig.9l)onlyinfluencesthelineshapeifalreadyrelativelyhigh veryclosetotheblackhole,ortheirradiatingemissioncomesfrom velocitiesareobtainedataheightof100rg (v100 > 0.99c),asin largerheightsoranelongatedstructure.Ashasbeenshowninthe theupperpartofthejetmoreandmorephotonsarebeamedaway previoussection,thelattercase,alargeheightoftheprimarysource fromtheaccretiondiscduetothehighlyrelativisticmovementof and an elongated structure, produces avery similar irradiation of the emitting medium. The line profiles for a strong acceleration theaccretion disc and therefore weuse followingpicture for this thusresembleverycloselytheonesforalowertopoftheemitting discussion:Thebaseoftheprimarysourceisalwayslocatedat3r g source(Fig.9j),whichmeansthatinrealitywewillnotbeableto andsimplythetopheight oftheelongatedstructureisallowedto measureiftheemittingsourceisacceleratingwithoutknowingthe change.Forsimplicitywecallita“compact jet”ifthetopheight fullgeometryofsuchaprimarysource. ofthesourceiscloseto3r and“extendedjet”forlargervaluesof g In some sources with a low mass accretion rate, the disc thetopheight. mightbetruncatedfurtherawayfromtheblackholethantheISCO Asanexample,Fig.10showshowalineprofilefordifferent (see Esin,McClintock&Narayan 1997 and, e.g., the observa- spinwouldlooklikeforacompactandextendedjet.Inthecaseof tionsbyMarkowitz&Reeves 2009;Svoboda,Guainazzi&Karas acompact jetthesensitivityonthespinishigh(seeFig.9d)and 2010). Generally, relativistic emission lines from such truncated thereforewecanclearlyseethedifferenceofareallybroadlinefor discsareevennarrowerthanfornonornegativelyspinningblack highspin(Fig.10a)comparedtoamuchnarrowerlineforlowspin holes.However,suchlinescanalsobeexplainedbytheirradiation (Fig. 10b). If the irradiating source is elongated, the line profiles fromanlargelyelevated (Chiangetal.2012)or elongated source forhighandlowspinareverysimilarandespeciallyreallynarrow (Fig.9k). (Fig. 10c,d). At first this underlines what was already discussed Besidesthespin,theinclinationofthesystemhasalsoastrong aboveinthecontextofFig.9:Ifwehaveanelongatedsourcewe effectonthelineshape(see,e.g., Dauseretal.2010).Astheincli- wewillnotbeabletoconstrainthespinatall. nationismainlydeterminedbydefiningthemaximalextentofthe ButthediagraminFig.10revealsamuchlargerproblemwe lineattheblueside(Fig.9),thesteepdropisalwaysatthesame havetodealwith.NamelythreeofthefourlinesintheFigurewill locationforafixedinclinationandcanthereforebedeterminedal- bedetected asnarrow linesand when fittedwithany model sim- mostindependentlyofthegeometry. ulating broad lines, will result in very low spin values. But this (cid:2)c 2012RAS,MNRAS000,1–15