Mon.Not.R.Astron.Soc.427,688–702(2012) doi:10.1111/j.1365-2966.2012.21900.x α (cid:2) . Hubble Space Telescope H imaging of star-forming galaxies at z 1–1 5: evolution in the size and luminosity of giant HII regions (cid:2) R. C. Livermore,1 T. Jones,2 J. Richard,1,3 R. G. Bower,1 R. S. Ellis,2 A. M. Swinbank,1 J. R. Rigby,4 Ian Smail,1 S. Arribas,5 J. Rodriguez-Zaurin,6 L. Colina,5 H. Ebeling7 and R. A. Crain8 1InstituteforComputationalCosmology,DurhamUniversity,SouthRoad,DurhamDH13LE 2AstronomyDepartment,CaliforniaInstituteofTechnology,MC249-17,Pasadena,CA91125,USA 3CRALObservatoiredeLyon,9AvenueCharlesAndre´,69561Saint-Genis-Laval,France 4NASAGoddardSpaceFlightCenter,Code665,Greenbelt,MD20771,USA 5CentrodeAstrobiologia,DepartamentodeAstrof´ısica,CSIC-INTA,Ctra.deAjalvirkm.4,28850Torrejo´ndeArdoz,Madrid,Spain 6InstitutodeAstrof´ısicadeCanarias(IAC),C/ViaLa´cteas/n,E38205,LaLaguna,Tenerife,Spain 7InstituteforAstronomy,UniversityofHawaii,2680WoodlawnDrive,Honolulu,HI96822,USA 8LeidenObservatory,LeidenUniversity,POBox9513,2300RALeiden,theNetherlands Accepted2012August8.Received2012July13;inoriginalform2012May23 ABSTRACT We present Hubble Space Telescope/Wide Field Camera 3 narrow-band imaging of the Hα emissioninasampleofeightgravitationallylensedgalaxiesatz=1–1.5.Themagnification causedbytheforegroundclustersenablesustoobtainamediansourceplanespatialresolution of 360pc, as well as providing magnifications in flux ranging from ∼10× to ∼50×. This enablesustoidentifyresolvedstar-formingHIIregionsatthisepochandthereforestudytheir Hαluminositydistributionsforcomparisonswithequivalentsamplesatz∼2andinthelocal Universe.WefindevolutioninthebothluminosityandsurfacebrightnessofHIIregionswith redshift.ThedistributionofclumppropertiescanbequantifiedwithanHIIregionluminosity function,whichcanbefitbyapowerlawwithanexponentialbreakatsomecut-off,andwe find that the cut-off evolves with redshift. We therefore conclude that ‘clumpy’ galaxies are seen at high redshift because of the evolution of the cut-off mass; the galaxies themselves followsimilarscalingrelationstothoseatz=0,buttheirHIIregionsarelargerandbrighter andthusappearasclumpswhichdominatethemorphologyofthegalaxy.Asimpletheoretical argument based on gas collapsing on scales of the Jeans mass in a marginally unstable disc showsthattheclumpymorphologiesofhigh-zgalaxiesaredrivenbythecompetingeffectsof higher gas fractions causing perturbations on larger scales, partially compensated by higher epicyclicfrequencieswhichstabilizethedisc. Keywords: gravitationallensing:strong–galaxies:high-redshift–galaxies:starformation. inwhichthegasisaccretedsmoothlyalongfilaments.Thesecold 1 INTRODUCTION flowsarelessdisruptivethanamajormerger,andhenceofferaroute Observationsofstar-forminggalaxiesathigh-zhaveshownthata tomaintainmarginallystablediscs(ToomreparameterQ∼1)with- significantfractionofthepopulationhasturbulent,clumpy,rotating out disrupting the structure and dynamics. Cold-flow accretion is discswithclumpmassesof∼108−9M(cid:3),afactorof∼100×thetypi- expected to be a dominant mode of mass assembly above z (cid:4) 1, calgiantmolecularcloud(GMC)locally(e.g.Cowie,Hu&Songaila andthusaccountsfortheubiquityoflargeclumpsathighredshift 1995;Elmegreenetal.2004,2009;Elmegreen&Elmegreen2005; (e.g.Bournaud&Elmegreen2009;Dekel,Sari&Ceverino2009; Fo¨rsterSchreiberetal.2009).Theclumpsarethoughttoformfrom Bournaudetal.2011). gravitationalinstabilitiesingas-richdiscs(Elmegreenetal.2007, Inthispicture,theclumpsareconsideredtobetransientfeatures, 2009;Genzeletal.2008;Bournaudetal.2010). forminginmarginallyunstablediscsathigh-zandfedbysmoothac- Somerecentnumericalsimulationshavesuggestedthatthema- cretionofgasontothegalaxy.Clumpygalaxiesthereforerepresent jorityofmassive,high-zgalaxiesaccretetheirgasvia‘coldflows’, aphaseintheevolutionofpresent-dayspiraldiscs. Thereisaneedtotesttheinternalphysicalpropertiesofthein- terstellarmedium(ISM)observationallytodeterminewhetherthe (cid:2) E-mail:[email protected] clumpsarescaled-upanaloguesoflocalHIIregionsorrepresenta (cid:5)C 2012TheAuthors MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS Evolution in the properties of giant HII regions 689 different‘mode’ofstarformation,andwhethertheycanexplainthe Gemini/Near-Infrared Integral Field Spectrometer (NIFS; strongevolutionofstarformationrate(SFR)densitywithredshift. Swinbank et al. 2009) and Very Large Telescope However,sufficientspatialresolutionisrequiredtoresolvetheISM (VLT)/Spectrograph for Integral Field Observations in the Near onthescalesofstar-formingregions.Evenwiththeuseofadaptive Infrared (SINFONI; Fo¨rster Schreiber et al. 2009). These allow optics, spatially resolved studies of high-redshift galaxies to date detailed mapping of the nebular emission lines, but at lower have been limited to a resolution of ∼1.5kpc (e.g. Genzel et al. sensitivity than is achievable with imaging. An alternative means 2006;Fo¨rsterSchreiberetal.2009);usingtheHubbleSpaceTele- ofidentifyingstar-formingregionswithhighsensitivityistotake scope(HST),onlythelargeststarburstcomplexescanberesolved, imaging through narrow-band filters. The Wide Field Camera 3 on scales of ∼1kpc (Elmegreen et al. 2007). On these scales, it (WFC3) on the HST presents an opportunity to study the star ispossibletoprobethedynamicsofgalaxiesonlargescales,and formationingalaxiesatz∼1and∼1.5,astherearenarrow-band Genzel et al. (2011) found evidence that Q < 1 in the regions of filters available which correspond to the wavelength of the Hα galaxieswhereclumpsarefound,lendingobservationalsupportto emissionlineattheseredshifts.Combiningthesensitivityandhigh the theory that the clumps form from internal gravitational insta- spatial resolution of HST/WFC3 with the magnification afforded bilities.Inordertostudytheclumpsindetail,weneedtoresolve by gravitational lensing by foreground clusters, we can map the high-redshiftdiscsonthescalesofindividualstar-formingregions; internal star formation distribution and so identify the frequency inthelocaluniverse,thisis∼100pc. andpropertiesofgiantHIIregions. The required spatial resolution can currently only be achieved Inthispaper,wethereforestudythestarformationmorphologies by exploiting gravitational lensing. By targeting galaxies that lie ofeightgalaxiesatz∼1–1.5.WepresentthesampleinSection2, behindforegroundclusterlenses,itispossibletobenefitfromlin- presentthepropertiesofthegalaxiesandtheirstar-formingclumps earmagnificationfactors(alongonedirection)ofupto50×(e.g. inSection3,discusstheimplicationsinSection4andpresentour Swinbanketal.2007,2009;Jonesetal.2010),andtoisolateHII conclusions in Section 5. Throughout, we adopt a (cid:5) cold dark regionsoforder∼100pcouttoz∼5(Swinbanketal.2009).Re- matter ((cid:5)CDM) cosmology with H0 = 70kms−1Mpc−1, (cid:6)(cid:5) = gionswerefoundwithstarformationsurfacedensities(cid:4)SFR∼100× 0.7 and (cid:6)m = 0.3. SFRs are calculated from Hα luminosity LHα higherthanthosefoundlocally(Swinbanketal.2009;Jonesetal. usingtheprescriptionofKennicutt(1998a)adjustedtoaChabrier 2010). These regions of dense star formation are comparable to (2003)initialmassfunction(IMF). the most intensely star-forming interacting systems in the local Universe(Bastianetal.2006),yetappeartobeubiquitousinnon- interactinggalaxiesathighredshift. 2 SAMPLE AND OBSERVATIONS Itisnotknownwhatdrivestheseregionsofintensestarforma- Our sample comprises eight lensed galaxies, each with spectro- tionathigh-z,althoughJonesetal.(2010)suggestacombinationof scopicallyconfirmedredshiftsintherange1<z<1.5suchthat highergasdensity,increasedstarformationefficiencyandshorter the Hα emission line falls within the high-transmission region of starformationtime-scales.Inaddition,theirdatagivetheappear- thenarrow-bandfiltersonWFC3.Theassociatedclusterlensesare anceofabimodaldistributionofHIIregionsurfacebrightnesses, massive systems from the X-ray selected Brightest Cluster Sam- althoughthereisnoknownphysicalprocessthatmightdrivethis. ple(BCS)andMassiveClusterSurvey(MACS)samples(Ebeling In order to understand this result further, we require a sample at etal.1998,2007,2010;Ebeling,Edge&Henry2001)withwell- intermediateredshift(z∼1–1.5)withwhichwecanprobetheevo- constrained mass models (see references in Table 1), so that the lutionofstarformationdensitywithredshiftathighersensitivityso effectsoflensingcanbeaccountedfor. thatregionscomparabletothoseatz=0aredetectable. ThepositionsandpropertiesofthesamplearegiveninTable1. Previous work on high-z clumps has made use of integral Weobservedeachtargetinthenarrow-bandfiltercoveringHαfor field units such as Keck/OH-Suppessing Infrared Integral Field a typical exposure time of 6ks (2 orbits), using a 3- or 4-point Spectrograph (OSIRIS; Jones et al. 2010; Wisnioski et al. 2012), linearditheringpatternof±5arcsecinbothdirectionstoimprove Table1. Propertiesoftheredshift-selectedsample.Lensingmagnifiestheimagebyafactorμxatapositionangle(PA),withatransversemagnificationμy. ThetotalmagnificationfactorμiscalculatedfromtheamplificationofHαflux,andtheresolutiongivenisthehighestachievablealongthemostmagnified direction,calculatedfromtheFWHMofastarunderthesamelensingtransformationasthatappliedtothegalaxy,asdescribedinthetext.Allobservations wereobtainedunderProgram12197(Cycle18,PI:Richard)unlessotherwisestated. Targetcluster Arcposition z Hαflux Magnification Resolution Broad-band Narrow-band Lens RA Dec. (intrinsic) μx×μy(PA) μ (pc) filter filter model (J2000) (J2000) (10−18ergs−1cm−2) reference Abell611 08:00:57.30 +36:03:37.0 0.908 30±5 10.4×2.7(1◦) 28±5 338 F125Wa F126N [1] Abell2390 21:53:34.55 +17:42:02.4 0.912 39±6 5.5×2.3(73◦) 12.6±1.9 435 F125Wb F126Nb [2] Abell773 09:17:58.80 +51:43:42.3 1.010 274±49 7.0×1.0(61◦) 7±1 336 F110W F132N [1] F160Wc MACSJ0947.2+7623 09:47:15.26 +76:23:02.9 1.012d 8.5±2.2 3.0×17.7(51◦) 53±14 172 F125W F132N [3] Abell68 00:37:04.91 +09:10:21.0 1.017 119±11 3.0×1.7(41◦) 5.1±0.5 615 F110W F132N [4] F160We MACSJ0159.8−0849 01:59:04.68 -34:13:03.4 1.488e 7±1 10.7×3.0(111◦) 32±4 592 F160W F164N [3] MACSJ1149.5+2223 11:49:35.30 +22:23:45.8 1.490f 11±2 4.5×3.5(140◦) 15±3 315 F160Wb F164N [5] MACSJ1133.2+5008 11:33:14.31 +50:08:39.7 1.550 8±1 1.1×12.7(67◦) 14±2 68 F160W F167N [6] aProgram12065-9;bProgram11678;cProgram11591;dEbelingetal.(2010);eEbelingetal.(inpreparation);fEbelingetal.(2007). References:[1]Richardetal.(2010);[2]Pelloetal.(1991);[3]Richardetal.(inpreparation);[4]Richardetal.(2007);[5]Smithetal.(2009);[6]Sandetal. (2005). (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS 690 R. C. Livermore et al. the detection and removal of cosmic ray hits and bad pixels. At Wederivetotalmagnificationfactorsbycomparingthetotallu- the same time, three of the targets (MACSJ0947, MACSJ0159 minositiesoftheimage-andsourceplaneHα excessimages.The andMACSJ1133),whichdidnothaveWFC3datainthearchive, intrinsic Hα luminosities are in the range 0.45–15 × 1041ergs−1 were observed in the corresponding broad-band filter using the correspondingtoSFRsof0.4–12M(cid:3)yr−1.Theseareatthefaint samesequenceofobservationsastheircorrespondingnarrow-band endoftheHαluminosityfunction(LF)forthisredshiftrange(see data, for a total of 3ks (1 orbit). The narrow-band data and new Fig.3),andprobefaintergalaxiesthanthez∼2sampleofJones broad-bandobservationswereobtainedinCycle18underProgram et al. (2010), which covers the range 2.5–32 × 1041ergs−1, al- 12197(PI:Richard),withtheexception ofAbell2390,forwhich though the two samples overlap in luminosity. Because of the thebroad-bandandnarrow-banddataweretakeninCycle17under increased sensitivity provided by the lensing magnification, both Program11678(PI:Rigby).Theremainingbroad-banddatawere of the lensed samples cover a lower range of intrinsic Hα lumi- obtainedunderCycle17Program11591(PI:Kneib)orCycle18 nosities than the sample of Spectroscopic Imaging Survey in the Program12065-9(PI:Postman)asindicatedinthenotestoTable1. Near-Infrared with SINFONI (SINS) galaxies studied by Fo¨rster AlloftheWFC3datawerereducedusingtheMULTIDRIZZLEsoft- Schreiberetal.(2011b),whichwereselectedtohavebrightHαand ware (Koekemoer et al. 2002) under PyRAF to perform a cosmic lieintherange28–43×1041ergs−1,makingthemrare,intensely ray rejection, sky subtraction and drizzling on to an output pixel star-forminggalaxies.Thus,byharnessinggravitationallensingwe scaleof0.05arcsec.Thenarrow-bandandbroad-bandimagesofthe areabletoprobethemore‘normal’star-formingpopulation. sameclusterwerealignedusingthelocationof∼20brightstars.A Sincegravitationallensingcanpreferentiallyshearonedirection, narrow-bandexcessimagewasconstructedbydirectpixel-to-pixel weestimatetheeffectivesourceplaneresolutionbyreconstructing subtraction between the narrow-band and broad-band images, in- theimageofastarfromthefieldrepositionedtolieatthecentre cludinganarbitraryscalingfactor.Wecalibratedthisscalingfactor ofthetarget.Themaximumlinearresolution,derivedfromthefull bycheckingthatallbrightclustermembers,whicharefeatureless width at half-maximum (FWHM) of the reconstructed star in the elliptical galaxies with no emission lines in the respective filters, directionofgreatestmagnification,is68–615pcwithamedianof became consistent with the background in the excess image. For 360pc,sufficienttoresolvegiantHIIregions. Abell773 and Abell68, the broad-band images available in the archive did not directly overlap the Hα emission line, so an esti- 2.1 Comparisonsamples mateofthebroad-bandcontinuumwasmadebylinearinterpolation In order to interpret our high-z data, we exploit the Hα narrow- betweentheadjacentF110WandF160Wfilters. band imaging from the Spitzer Infrared Nearby Galaxies Survey ThefluxcalibrationofeachimagewasverifiedusingTwoMicron (SINGS; Kennicutt et al. 2003), which comprises Hα imaging of All Sky Survey (2MASS) stars in the fields, and in all cases was 75galaxieswithcorrectedSFRsofupto11M(cid:3)yr−1.Weusethe foundtoagreetowithin15percent,whichissufficientprecision publiclyavailablecontinuum-subtractedHαnarrow-bandimaging forourpurposes. and restrict the sample to those with Hα detections with signal- Colour HST images of the clusters are shown in Fig. 1, with to-noiseratioof>5thathavenosignificantdefectsinthegalaxy thecriticallinesattheredshiftofthetargetarcoverlaid.Weusethe images(determinedbyvisualinspection).ThisrestrictstheSINGS transformationbetweenimageandsourceplanemappingfromthe sampleto41galaxieswithSFR>4×10−4M(cid:3)yr−1. best-fitting cluster mass models (for details of the mass models, Toensureafaircomparison,werebintheSINGSimagessothat seereferencesinTable1)withLENSTOOL(Kneib1993;Julloetal. theresolutioniscomparabletothehigh-zdataandthenthresholdto 2007)toreconstructtheimagesinthesourceplane,andshowthese themediansurfacebrightnesslimitofthez∼1–1.5observations.It in Fig. 2. In order to reconstruct the source plane morphology, isworthnotingthatthresholdingtheimagesinthismannerexcludes LENSTOOL uses the mapping between the image and source planes 10–50percentofthetotalstarformation.Thisshouldnotaffectthe onacluster-by-clusterbasisandraytracesthegalaxyimage.The comparisonbetweensampleswhichhavethesamesurfacebright- lensingeffectistostretchthegalaxyimage–inmostcasesalong ness limit, but may serve as an indication of the fraction of star onedirection–andsothereconstructioncannot‘create’newHII formationmissedinhigh-zobservations. regions,butratherthelensinghasactedtoextendthem.Assurface To provide a comparison to local galaxies which are more ac- brightnessisconservedbylensing,wethenapplythisconservation tivelystarforming,weusetheVisibleMulti-ObjectSpectrograph toobtaintheintrinsicsourceplaneflux.Thetotalmagnificationis (VIMOS) Hα imaging spectroscopy of Rodr´ıguez-Zaur´ın et al. thensimplytheratiooftheimage-tosourceplaneflux.Toobtain (2011),whichincludes38luminousinfraredgalaxies(LIRGs)and theerrorsonthemagnification,weusethefamilyofbest-fittinglens ultraluminousinfraredgalaxies(ULIRGs)atz<0.13withspatial modelswhichadequatelydescribetheclusterpotential,derivedby resolutionof130–1.2kpcandSFR(cid:2)25M(cid:3)yr−1. sampling the posterior probability distribution of each parameter Wealsocomparethez∼1–1.5sampletothez∼2lensedarcs of the model (see Richard et al. 2010 for more details). For each ofJonesetal.(2010),whichwereobservedwithKeck/OSIRIS.In acceptable lens model, we reconstruct the arc and remeasure the amplification.Wegivetheresultingmagnificationfactors,μ,and order to provide a fair comparison, we have constructed narrow- bandimagesbysummingtheOSIRIScubesover100Åeitherside associatederrorsinTable1. oftheredshiftedHαemissionline,matchingthewidthoftheWFC3 In cases where the target is multiply imaged, the images were narrow-band filters. The resulting images are then corrected for reconstructedseparatelyandthenadjustedforsmalldifferencesin lensing using the same image-to-source plane mapping as Jones positionandorientationbeforebeingcombined.ForMACSJ0159, etal.(2010)inordertoobtaintheintrinsicgalaxyproperties. which consists of five images, only the first three were used due to the high magnification gradients in the fourth and fifth images 2.2 Determinationofgalaxyproperties resultinginhighdistortioninthesourceplanereconstructions.In thecaseofAbell611,weuseonlythenorthernmostarcduetohigh The total Hα luminosities of the galaxies in all samples are de- distortionbyaforegroundgalaxylyingclosetothelineofsightof termined by summing all pixels in sky-subtracted images with thesouthernarc. signal-to-noise ratio of >3. In the case of the SINGS galaxies, (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS Evolution in the properties of giant HII regions 691 Figure1. HST/ACSandWFC3three-colourimagesoftheobservedclusterswiththecriticallineattheredshiftofthetargetarcoverlaid,showingthepositions ofthetargetarcs.ThearcsarecontainedwithinthewhitedashedboxeswhichdenotetheregionsextractedinFig.2. eachimagewascheckedbyvisualinspectionandanyforeground WeconvertHα luminositytoSFRusingtheKennicutt(1998a) sourcesanddefectsmasked.Theresultingluminositieswerethen prescription, corrected to a Chabrier (2003) IMF, which reduces compared to the published values and found to agree to within the SFR by a factor of 1.7×. As we do not have constraints ∼20percent. on the dust extinction, we adopt an estimate of AHα = 1 in all (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS 692 R. C. Livermore et al. Figure2. Hαexcessimagesintheimageplane(left)andreconstructedinthesourceplane(right).Theimagescalesareinarcsecintheimageplaneandin kpcinthesourceplane.Identifiedclumpsareindicatedinthesourceplaneimagesbyblackcrosses,andthemagentaellipseshowstheFWHMoftheeffective sourceplanePSF,asdescribedinthetext. samples.Thisassumptioniswidelyusedintheliteraturealthough increase by factors of 1.3–1.8×, and the z ∼ 1 galaxies Abell68 it is the subject of some disagreement. Garn et al. (2010) sug- andAbell773;theformerwouldbeafactorof1.8×lower,while gestaluminosity-dependentAHα ismoreappropriate;wereweto thelatterwouldbeunchanged.Qualitatively,thereisnosignificant adopttheirrelation,wewouldobtainAHα=0.7–1.6withamedian impactonourresults,asadoptingeitherluminosity-dependentex- AHα=1.15.However,wealsonotethatrecentworkbyDom´ınguez tinctionrelationwouldservetoincreasetheevolutionweobservein et al. (2012) suggests that galaxies with LHα (cid:2) 4×1041ergs−1 Section3.2.2.Forsimplicityandreproducibility,weadoptAHα=1 maybeconsistentwithhavingAHα=0,andthatabovethisthresh- throughout. old extinction increases in a luminosity-dependent way. Had we Wedefinethesizesofthegalaxiesastwicethehalf-lightradius. adopted this correction instead, the SFRs of the majority of our Thehalf-lightradiusisdeterminedusingthecontinuumimagesto galaxies would be reduced by a factor of 2.5×. The exceptions findtheshape(i.e.thecentreandmajortominoraxisratioofanel- are the three brightest z ∼ 2 galaxies, in which the SFRs would lipsethatbestfitsthegalaxy),andthenadjustingthesemimajoraxis (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS Evolution in the properties of giant HII regions 693 –i.e.thepointsatwhichthelinestendtozero–wecanseethatthe samplesaredifferent,withthez∼2galaxieshavingpeaksurface brightnessesofaroundanorderofmagnitudehigherthanthelower zsamples.Similarly,thez∼1–1.5sampleissystematicallybrighter thantheSINGSsample,withtheexceptionofMACSJ1133,which issimilartothefainterz=0galaxies,MACSJ0947whichissimilar to the median of the z = 0 sample, and Abell773 which appears similartothez∼2galaxies. Asastatisticalmeasureoftheclumpinessofgalaxies,weinves- tigateusingtheGinicoefficient,G,whichisusedineconomicsto measuretheinequalityofwealthinapopulation(Gini1912).Ithas valuesfrom0to1,whereattheextremesG=0foracompletely uniformdistribution,andG=1ifthereisonlyonenon-zerovalue. FollowingFo¨rsterSchreiberetal.(2011a),weuseittoquantifythe distributionof fluxin animage, soavalue close toone indicates thattheprofilehasasinglepeak(inthecaseofG=1,allofthe flux would be in a single pixel), a galaxy with multiple clumps wouldhavealowerG,andattheextreme,agalaxywithcompletely uniformsurfacebrightnesswouldhaveG=0. Inthez∼1–1.5sample,wefindanarrowrangeof0.25≤G≤ 0.39withamedianofG=0.34.Thez∼2sampleismarginally higher, with 0.42 ≤ G ≤ 0.56 and a median of G = 0.43. The z=0SINGSsamplehasasimilarmedianG=0.45butamuch wider range of 0.05 ≤ G ≤ 0.82, and the low-z (U)LIRGs have 0.38≤G≤0.85withthehighestmedianG=0.70.Onthebasis Figure3. IntrinsicHαluminositiesofthehigh-zsamplescomparedtoHα of the Gini coefficient there are no clear differences between the LFsfromHigh-zEmissionLineSurvey(HiZELS;Sobraletal.2012).Also samples.ComparingtheGinicoefficientswiththevisualappearance shownistherangeofHαluminositiesoftheFo¨rsterSchreiberetal.(2011b) of the galaxies, the lack of distinction reflects the fact that a low samplefromtheSINSsurveyatz∼2.Thetwolensedsamplesoverlapin Gini coefficient may arise from either a smooth distribution of luminosityandarebothatthefaintendoftheLF,withthemedianofthez∼ star formation or from star formation that is concentrated into a 1–1.5WFC3samplelowerthanthatofthez=1.6−2.6OSIRISsampleby large number of distinct clumps. Furthermore, we find no strong afactorof6.6×,whiletheunlensedSINSgalaxiescoverarangeofhigher correlations between G and any of the properties of the galaxies. Hαluminosities. Clearly,toprogressfurtherwewillhavetocomparetheproperties of individual clumps. In particular, we will show that the clump oftheellipseuntilitencompasseshalfofthetotalHα luminosity LF provides a good means of distinguishing different galaxy star calculatedinthemannerdescribedabove.Thegalaxy-averagedstar formationmorphologies. formationsurfacedensity,(cid:4) ,isdefinedfromthetotalluminosity SFR enclosedwithintwohalf-lightradiiperunitarea. 3.2 Propertiesofstar-formingclumps 3 RESULTS AND ANALYSIS 3.2.1 Definitionofclumps StudiesofHIIregionsorstar-formingclumpshaveusedavariety 3.1 Thespatialdistributionofstarformation of methods to define and separate clumps from the background Acommonthemeintherecentliteratureisthathigh-redshiftgalax- emissionofthegalaxy.Usuallyanisophoteisdefinedat3σ above iesare‘clumpier’thangalaxiesinthelocalUniverse.Thisconcept thebackgroundnoise(e.g.GonzalezDelgado&Perez1997;Jones originatesfromthefrequentappearanceof‘chain’galaxiesinthe etal.2010).However,thismethodisclearlydependentonthenoise high-redshift universe (e.g. Cowie et al. 1995; Elmegreen et al. propertiesoftheimage,andthusisproblematicwhencomparing 2004;Elmegreen&Elmegreen2005).Evenwithoutlookingatthe localandhigh-redshiftobservations.Inparticular,ashigh-redshift properties of individual star-forming regions, it is interesting to galaxyimagestendtohavehighrelativenoiselevelsandlowdy- compare the morphologies of the star-forming regions across the namicrange,thechoiceofisophotetendstoselectonlythebright- samples. estregionsinthegalaxy,neglectinganylower surfacebrightness Fromvisualinspection,itisclearthattherearesignificantdif- clumpsandunderestimatingtheirsizes. ferencesbetweenthesamples.Inparticular,thesurfacebrightness An alternative is the IRAF task DAOFIND as employed by Fo¨rster distributionsofthegalaxiesshowdistinctdifferencesinthediffer- Schreiberetal.(2011b),whichisdesignedtolocatepointsources ent samples. In Fig. 4, we show the fraction of star formation in inimages.However,wefoundthatitdidnotperformwellonour pixelsaboveagiven(cid:4)SFRforthez∼1–1.5andz∼2samples,with sample.ThisislikelytobebecauseDAOFINDrequiresanexpected theinterquartilerangeofthethresholdedSINGSsampleshownfor size of features to look for. As the clumps of Fo¨rster Schreiber comparison. etal.(2011b)arelargelyunresolved,theywereabletousethepoint Toallowforthedifferingsurfacebrightnesslimitsofthesamples, spreadfunction(PSF)oftheirobservationsastheexpectedsize.As weonlyshowstarformationaboveasurfacebrightnessof(cid:4) = ourclumpsareresolved,theroutinedoesnotworkreliably.Forthis SFR 0.001M(cid:3)yr−1kpc−2.Thisenablesustocomparethestarformation paper,wethereforeusethe2DversionofCLUMPFIND(Williams,de occurringinbrightregionsinaconsistentmanner.Fromthepeaks Geus&Blitz1994),whichusesmultipleisophotestodefineclumps. (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS 694 R. C. Livermore et al. Figure4. Thefractionofstarformationwithineachgalaxyoccurringaboveagivensurfacebrightness,forthez∼1–1.5andz∼2samples.Theshaded regionistheinterquartilerangeoftheSINGSz∼0sample.Therearetwogalaxies,MACSJ1133andMACSJ0947,fromthez∼1–1.5samplewithsimilar surfacebrightnessestothez=0sample,andtheremainderaresystematicallybrighter.Thez∼2samplehassignificantlyhighersurfacebrightnesses.Hence, thereisclearevolutioninthesurfacebrightnessesofgalaxieswithredshift. Wedefinedthecontourlevelswithrespecttothermsnoiseinthe Becauseofthemannerinwhichclumpsare‘grown’,theirsizes image,startingat3σ andincreasingin1σ intervalsuntilthepeak returned by CLUMPFIND tend to be larger than those obtained by value of the image is reached. The data are first contoured at the othermethods.Asacomparison,wealsofita2DellipticalGaus- highestleveltolocateclumps,andthealgorithmthenworksdown sianprofiletoeachpeakandmeasuretheFWHM.Acomparison inbrightnessthroughthecontourlevels.Anyisolatedcontoursare of the clump radii found by the two methods is shown in Fig. 5. defined as new clumps, while others extend existing clumps. If The rms difference between the two radii is ∼100pc, and on av- a contour surrounds one existing peak, they are allocated to that eragewefindthatCLUMPFINDoutputssizes25percenthigherthan clump, and any which enclose two or more are divided using a theFWHM.Wisnioskietal.(2012)notethatsizesdefinedthrough ‘friends-of-friends’algorithm.Theadvantagesofthisapproachare isophotes can be unreliable due to the level of ‘tuning’ required thatitenablesaconsistentclumpdefinitiontobeappliedtomultiple to select an appropriate isophote level in a given galaxy. This is datasets,lowersurfacebrightnessclumpsarenotexcludedandthere lesssignificantwithCLUMPFINDbecausethistuningisnotrequired; isnoassumptionmadeabouttheclumpprofile. the use of multiple isophote levels in all galaxies allows the lev- The clumps identified by CLUMPFIND were all confirmed by vi- els to be defined in a consistent way across a large sample. We sualinspectiontoremoveanysourcenotassociatedwiththetarget thereforefindmuchlowerscatterbetweentheisophotalsizesout- galaxy,ofparticularimportanceinthecaseoftheSINGSimages put by CLUMPFIND and the clump FWHM than they do in their whereforegroundsourceslieclosetooroverlapthetargetgalax- sample. Throughout this work, we use the CLUMPFIND size for all ies.TheareaAoftheclumpisthenobtainedfromthenumberof samples, and give error bars that encompass the FWHM of the pixelsassignedtoit,multipliedbythesourc√eplanepixelscale,and clumps. fromthiswedefinetheeffectiveradiusr = A/π.Weonlyaccept ThesizesandHα-derivedSFRsofthez∼1–1.5clumpsaregiven clumpswhere2rislargerthantheFWHMofthePSF,soallclumps inTable2.Weanalysethesepropertiesincomparisontotheother areresolved. samplesbelow. (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS Evolution in the properties of giant HII regions 695 Table2. Propertiesofclumpsidentifiedinthez∼1–1.5sample, determinedasdescribedinSection3.2.1. Clump Radius(pc) SFR(M(cid:3)yr−1) MACSJ0947-1 350±56 0.054±0.010 MACSJ0947-2 324±22 0.0328±0.0086 MACSJ0947-3 384±48 0.045±0.012 MACSJ0947-4 334±39 0.0350±0.0092 MACSJ0947-5 318±38 0.0339±0.0089 MACSJ0947-6 376±6 0.0347±0.0091 MACSJ0947-7 311±17 0.0261±0.0068 MACSJ0947-8 149±9 0.0050±0.0013 MACSJ0159-1 402±89 0.282±0.060 MACSJ0159-2 370±77 0.203±0.043 MACSJ0159-3 530±130 0.355±0.076 MACSJ0159-4 468±13 0.170±0.036 Abell611-1 730±180 0.370±0.083 Abell611-2 560±160 0.181±0.041 Abell611-3 630±140 0.200±0.045 Abell611-4 390±59 0.065±0.015 Abell68-1 378±26 0.081±0.016 Abell68-2 132±8 0.0075±0.0015 Abell68-3 375±24 0.076±0.015 Figure5. ComparisonoftheclumpsizerclumpfindoutputbyCLUMPFINDwith Abell68-4 354±25 0.070±0.014 thesizerFWHMobtainedbytakingtheFWHMofa2DGaussianprofilefit. Abell68-5 509±31 0.114±0.023 Onaverage,CLUMPFINDoutputssizes25percentlargerthantheFWHM.For Abell68-6 337±33 0.062±0.013 consistency,weadopttheisophotalsizeoutputbyrclumpfindinallsamples. Abell68-7 386±61 0.099±0.020 Abell68-8 205±42 0.0273±0.0055 Abell68-9 348±44 0.069±0.014 3.2.2 Clumpproperties Abell68-10 299±89 0.066±0.013 Abell68-11 328±31 0.057±0.012 Onewayofquantifyingthe‘clumpiness’ofagalaxyistoconsider Abell68-12 312±15 0.0476±0.0097 the fraction of a galaxy’s total Hα luminosity contained within Abell68-13 412±60 0.100±0.020 clumps.Wefindmediansof31percentinSINGS,36percentfor Abell68-14 293±16 0.0429±0.0087 the z < 0.13 ULIRGs, 50 per cent for the z ∼ 1–1.5 sample and Abell68-15 263±5 0.0302±0.0061 68percentforthez∼2sample.Thus,asexpected,thehigherz Abell68-16 280±50 0.0454±0.0092 galaxiesareclumpierthantheirlocalcounterparts. Abell68-17 169±7 0.0132±0.0027 Abell68-18 195±33 0.0215±0.0044 We now consider the properties of the clumps themselves, and Abell68-19 224±6 0.0199±0.0040 firstcomparetheHα-derivedSFRtotheclumpradius,asshownin Abell68-20 239±51 0.0344±0.0070 Fig.6.Locally,thereisawell-definedrelationshipbetweenthese Abell68-21 135±5 0.0069±0.0014 properties, as found by Kennicutt (1988) who found almost con- Abell68-22 163±23 0.0142±0.0029 stantsurfacebrightnessinlocalHIIregions,exceptinmergingand Abell68-23 112±2 0.00489±0.00099 interacting systems (Bastian et al. 2006). The situation at high-z, Abell68-24 171±31 0.0161±0.0033 Abell68-25 98±5 0.00416±0.00085 though,appearsdifferent;Swinbanketal.(2009)andJonesetal. Abell68-26 122±8 0.0066±0.0013 (2010)foundclumpswithSFRsof∼100×higheratagivensize Abell2390-1 352±59 0.115±0.025 thanfoundlocally,insystemswithnoevidenceofinteractions. Abell2390-2 404±68 0.136±0.030 Fig. 6 is an updated version of one presented in Jones et al. Abell2390-3 409±6 0.086±0.019 (2010),wherewehavere-analysedthez∼2andSINGSgalaxies Abell2390-4 366±26 0.067±0.015 usingCLUMPFINDsothatclumpsaredefinedconsistentlyacrossall Abell2390-5 463±9 0.111±0.024 samples, and we have added the results from our new z ∼ 1–1.5 Abell2390-6 347±13 0.059±0.013 data set and the z < 0.13 ULIRGs as well as the z = 1–2 results Abell2390-7 470±1 0.093±0.020 Abell2390-8 341±73 0.069±0.015 from SHiZELS (Swinbank et al. 2012) and WiggleZ (Wisnioski Abell773-1 1040±200 5.6±1.3 et al. 2012). We show lines of median surface brightness in the Abell773-2 1430±180 9.6±2.2 samples,andverticaloffsetsfromtheselinesrepresentdifferences MACSJ1133-1 1120±100 0.118±0.025 in the surface density of star formation, (cid:4) , in the clumps. We MACSJ1133-2 890±160 0.068±0.015 SFR willexploretherelationoftheseoffsetstoglobalgalaxyproperties MACSJ1133-3 790±280 0.057±0.012 MACSJ1133-4 835±4 0.0334±0.0072 inSection4. MACSJ1149-1 174±34 0.084±0.020 WenotethattheclumpsweidentifyintheSINGSgalaxiesare derivedfromimageswhichhavebeendegradedtocomparablereso- lutiontothehigh-zdata,andwefindtheeffectofthisistodecrease the surface brightness by a factor of ∼2×, as the size increases from the local relation by a factor of ∼100×. This confirms morethantheluminosity.ThepointsinFig.6movealongthevector the large differences between the local and high-redshift popu- labelled‘A’.Definingclumpsinthez=0sampleinthiswayensures lation already noted by Swinbank et al. (2009) and Jones et al. thefairestpossiblecomparisonwiththehigh-zdata. (2010). Uponre-analysisusingCLUMPFIND,wefindsomelower(cid:4)SFRre- Ournewz∼1–1.5samplefitsinbetweentheSINGSandz∼2 gionsintheJonesetal.(2010)sample,buttheyallremainseparated samples, with the exception of the two regions from the most (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS 696 R. C. Livermore et al. Figure6. HαSFRforextractedHIIregionsasafunctionofsize,comparedtothelensedz∼2sampleofJonesetal.(2010),high-zunlensedsamplesfrom SHiZELS(Swinbanketal.2012)andWiggleZ(Wisnioskietal.2012),low-z(U)LIRGsfromRodr´ıguez-Zaur´ınetal.(2011)andthez=0SINGSgalaxies (Kennicuttetal.2003).SFRsarecalculatedusingtheKennicutt(1998a)prescriptionadjustedforaChabrierIMFwithadustextinctionAHα=1inallsamples, andtheerrorbarsofthehigh-zlensedsourcesaredominatedbytheuncertaintyinthelensingmagnification.Dashedlinesshowthemediansurfacebrightnesses intheSINGS,z∼1–1.5andz∼2samples.Theblackdottedlineindicatesthesensitivitylimitofthez∼2OSIRISobservations.Thearrowindicatesthe effectofdegradingtheimageresolution,asdiscussedinthetext.Thefourlowestsurfacebrightnessclumpsinthez∼1–1.5samplecomefromonegalaxy (MACSJ1133),andthetwobrightestregionsarefromAbell773,themostcompactgalaxyinthesample.Theremaininggalaxieshaveclumpswithsurface brightnessesinbetweenthoseofthez=0andz∼2samples,similartolocal(U)LIRGs. compact source Abell773, which have (cid:4) similar to the z ∼ a much tighter sequence with all the clumps sharing a common SFR 2sample,andthefourregionsfromMACS1133,whicharesimilar surfacebrightness,particularlyinthelow-redshiftsample.Thusthe to z = 0 clumps. This indicates clear evolution in clump surface spreadinclumppropertiesinFig.6appearstobedrivenbyglobal brightness,(cid:4) ,withredshift. differencesinthegalaxies. SFR The surface brightness limit of the z ∼ 2 data means that we Wethereforenextcomparetheclump(cid:4) tothepropertiesof SFR cannot identify the low SFR clumps in that sample. We show a theirhostgalaxiesinFig.7.Intheleft-handpanel,wecorrelatethe dottedlinerepresentingthelowerlimitatwhichwedefineclumpsin clumppropertieswiththetotalSFRofthegalaxy.Forclarity,we thez∼2galaxies.Itislikelythatthereareadditionalclumpswhich plotthemedianclump(cid:4) ineachindividualgalaxy,andtheerror SFR liebelowthislimitandareundetected;however,suchclumpsmake barsencompassthecentral68percentofclumpswithineachgalaxy only a small contribution to the total SFR, as we shall discuss in (i.e.1σiftheyfollowaGaussiandistribution).Thereisevidencefor Section3.3. correlationbetweentheclump(cid:4) andthegalaxyHαluminosity SFR Selection effects have no impact on the lack of high surface (whichweassumetobeproportionaltothetotalSFR);wefinda brightnessregionsinthelowerredshiftsamples,however.Thein- Spearmanrankcorrelationcoefficientρ=0.69,representinga5.8σ tensestar-formingregionsareclearlymorecommoninhigh-zgalax- deviationfromthenullhypothesisofnocorrelation.Thissuggests ies;theyarefoundonlyinextremesystemssuchastheAntennae thatthestarformationinthehigh-zsamplefollowsasimilartrend locally,butexistinallfiveofthez∼2galaxiesandoneoftheeight tothelocalsample,andthatthedifferencesseeninFig.6mayarise z∼1–1.5sample. fromthehighertotalSFRsofthehigh-redshiftgalaxies. As noted in Section 2, the z ∼ 2 galaxies have ‘normal’ SFRs Forthemajorityofthesamples,anevenstrongerrelationarises fortheirredshift,belowthekneeoftheHαLF.Theoffsetsseenin ifwecomparetheclump(cid:4) tothegalaxy-averaged(cid:4) .This SFR SFR thefigureemphasizetheimportanceofanalysingclumpsinterms is shown in the right-hand panel of Fig. 7, and has a correlation oftheirsurfacebrightness.Thisisevenmoreevidentiftheclumps coefficientρ=0.79with6.6σ significance.Theratioofclump-to- belongingtoasinglegalaxyareexaminedseparately.Ratherthan average(cid:4) canbethoughtofasameasureofthe‘clumpiness’of SFR beingdistributedacrosstheplotatrandom,individualgalaxiesform thegalaxy. (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS Evolution in the properties of giant HII regions 697 Figure7. Comparisonsbetweenthestarformationsurfacedensity(cid:4)SFR ofstar-formingclumpswithineachgalaxyandtheintrinsicHα luminosityand galaxy-averaged(cid:4)SFR.Theclump(cid:4)SFRshownisthemedianforeachgalaxy,witherrorbarsencompassingthefullrangeof(cid:4)SFRforallclumpswithineach galaxy.Thesolidlineisthebestfittothedata,andthedashedlineillustratestheclump(cid:4)SFRexpectedfromtheory,discussedinSection4.Wefindthatboth arecorrelatedatthe5σlevel,implyingthatwefindmorehigh(cid:4)SFRclumpsathighredshiftbecausetherearemorehighSFRand(cid:4)SFRgalaxiesatthisepoch. We conclude that the properties of star-forming clumps in a SFRofthehostgalaxies,andshowthisintheright-handpanel.The galaxy are strongly dependent on the global (cid:4)SFR of the galaxy. similarityofalltheHIIregionLFsisnowclear. Galaxieswithhigheroverall(cid:4) havehigherclumpsurfaceden- There is a striking similarity between the LF of the z ∼ 1–1.5 SFR sitiesandarecorrespondinglyoffsetintheclumpsize–SFRrelation. sample and that of the highest SFR galaxies in the low-z SINGS WhilethisaccountsforsomeofthedifferencesseeninFig.6,itis sample. The excess of very bright regions (L ∼ 1041ergs−1) is alsoclearthattherearemorebrightclumpsinthehigherredshift downtoonegalaxy,Abell773,whichisthesamecompactgalaxy galaxies.Wequantifythisbelow. for which we found the clump surface brightnesses to be more typical of the highest redshift galaxies. The low-luminosity slope oftheLFtendsalsotobeflatterthanthatseeninthelow-redshift 3.3 HIIregionluminosityfunctions galaxies,butitishardtoquantifythisdifferencewithoutdirectly A quantitative measure of the clump brightness is to construct a comparable surface brightness limits and is likely to be affected LFofHIIregions.InthelocalUniverse,theHIILFispresentedin byunresolvedregionswhichareexcluded.Inanycase,thesefaint Kennicutt,Edgar&Hodge(1989)andGonzalezDelgado&Perez regionscontributelittletothetotalflux. (1997). They demonstrate that the LF can be fitted by a broken Inbothpanels,theHIIregionLFforthehighestredshiftgalaxies powerlaw,orbyapowerlawwithanexponentialbreak.Inorderto isstronglyoffsetfromtherelationseeninthelow-redshiftSINGS beconsistentwithourdefinitionsofclumpsizes,were-analysethe sampleandfromthesampleatz∼1–1.5,butissimilartothelow- localdatainordertoconstructourownLF.Theresultsareshown redshiftULIRGs.Althoughthedatadonotprobethelow-luminosity in Fig. 8. The left-hand panel of the figure shows the cumulative slopeoftheLF,thesegalaxieshavemuchbrighterregionsthanare numberofregionspergalaxyasafunctionofHαluminosity.The seenatlowerredshift.Theright-handpanelemphasizesthatthisis normalizationofeachbintakesintoaccountthedifferentsurface notbecausetheycontainmanymoreregionsoverall. brightnesslimitofthegalaxies,witherrorbarscomputedfromthe In order to compare our data to models of mass functions, we Poissonerrorincountingregions.Theslopeofthepower-lawpartof must relate the measured Hα luminosities to model clump mass, themassfunctionis∼−0.75,sothatalthoughtheLFappearssteep M. As an estimate, we use the Hα-derived SFR and adopt SFR inthisrepresentation,mostofthetotalluminosityiscontributedby (M(cid:3)yr−1) = 4.6±2.6×10−8M(cid:3) (Lada, Lombardi & Alves thebrightestHIIregions. 2010). This empirical relation is based on local molecular clouds SolidblackpointsshowtheaverageofallSINGSgalaxies.How- andappliestothehigh-densitygaswhereAK >0.8mag.However, ever,sincewewillbecomparingthegalaxiescoveringarangeof wenotethatthisrelationisconsistentwiththefar-infrared-derived luminositiesandredshifts,wehaveseparatedthegalaxiesfromthe SFRandCO-derivedgasmassesofstar-formingclumpsreportedin SINGSsampleintothreetotalHαluminositybins.Atafixedlumi- alensedz=2.3galaxybySwinbanketal.(2011),butclearlymore nosity,galaxieswithlowertotalemissionhavefewerregions,but high-resolutionCOobservationsofhigh-zgalaxiesarerequiredto theshapeoftheLFissimilar.Inordertoemphasizethesimilarity confirmthis.Asaguide,weincludethisconversionontheupper ofthemassfunction,wenormalizeeachofthecurvesbythetotal axisofFig.8. (cid:5)C 2012TheAuthors,MNRAS427,688–702 MonthlyNoticesoftheRoyalAstronomicalSociety(cid:5)C 2012RAS