ebook img

NASA Technical Reports Server (NTRS) 20140005250: A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514 PDF

0.22 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20140005250: A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

Mon.Not.R.Astron.Soc.000,1–10(2011) Printed5December 2012 (MNLATEXstylefilev2.2) A Suzaku X–ray observation of one orbit of the supergiant fast X–ray transient IGRJ16479–4514 L. Sidoli,1⋆ P. Esposito,1 V. Sguera,2 A. Bodaghee,3 J.A. Tomsick,3 K. Pottschmidt,4,5 J. Rodriguez,6 P. Romano,7 and J. Wilms,8 1INAF,IstitutodiAstrofisicaSpazialeeFisicaCosmica,ViaE.Bassini15,I-20133Milano,Italy 2INAF,IstitutodiAstrofisicaSpazialeeFisicaCosmica,ViaGobetti101,I-40129Bologna,Italy 3SpaceSciencesLaboratory,7GaussWay,UniversityofCalifornia,Berkeley,CA94720,USA 4CRESSTandNASAGoddardSpaceFlightCenter,AstrophysicsScienceDivision,Code661,Greenbelt,MD20771,USA 5CenterforSpaceScienceandTechnology,UniversityofMarylandBaltimoreCounty,1000HilltopCircle,Baltimore,MD21250,USA 6LaboratoireAIM,CEA/IRFU-Universite´ParisDiderot-CNRS/INSU,CEADSM/IRFU/SAp,CentredeSaclay,F-91191Gif-sur-Yvette,France 7INAF,IstitutodiAstrofisicaSpazialeeFisicaCosmica,ViaU.LaMalfa153,I-90146Palermo,Italy 8Dr.KarlRemeis-SternwarteandErlangenCentreforAstroparticlePhysics,Freidrich-Alexander-Universita¨tErlangen-Nu¨rnberg,Sternwartstraβe7, 96049Bamberg,Germany ABSTRACT We report on a 250 ks long X–ray observation of the supergiant fast X–ray transient (SFXT) IGRJ16479–4514 performed with Suzaku in 2012 February. During this observa- tion,about80%oftheshortorbitalperiod(P (cid:24)3.32days)wascoveredascontinuouslyas orb possibleforthefirsttime.Thesourcelightcurvedisplaysvariabilityofmorethantwoorders ofmagnitude,startingwithaverylowemissionstate(10−13ergcm−2s−1;1–10keV)lasting thefirst46ks,consistentwithbeingduetotheX–rayeclipsebythesupergiantcompanion. ThetransitiontotheuneclipsedX–rayemissionisenergydependent.Outsidetheeclipse,the source spends most of the time at a level of 6-7(cid:2)10−12 erg cm−2 s−1 punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4(cid:2)10−11 erg cm−2 s−1, separated by about 0.2 in orbital phase. Remarkably, the firstfaintflareoccursatasimilarorbitalphaseofthebrightflarespreviouslyobservedinthe system. This indicates the presence of a phase-locked large scale structure in the supergiant wind,drivingahigheraccretionrateontothecompactobject.TheaverageX–rayspectrumis hardandhighlyabsorbed,withacolumndensity,N ,of1023 cm−2,clearlyinexcessofthe H interstellarabsorption.Thereisnoevidenceforvariabilityoftheabsorbingcolumndensity, exceptthatduringtheeclipse,wherealessabsorbedX–rayspectrumisobserved.Anarrow FeK emissionlineat6.4keVisviewedalongthewholeorbit,withanintensitywhichcor- (cid:11) relates with the continuum emission above 7 keV. The scattered component visible during theX–rayeclipseallowedustodirectlyprobethewinddensityattheorbitalseparation,re- sultinginρ =7(cid:2)10−14 gcm−3.Assumingasphericalgeometryforthesupergiantwind,the w derived wind density translates into a ratio M_w/v∞ = 7(cid:2)10−17 M⊙/km which, assuming terminal velocities in a large range 500–3000 km s−1, implies an accretion luminosity two ordersofmagnitudehigherthanthatobserved.Asaconsequence,amechanismshouldbeat workreducingthemassaccretionrate.Differentpossibilitiesarediscussed. Keywords: X–rays:individual(IGRJ16479–4514) 1 INTRODUCTION 50hr)andpeakfluxes(from20toabout600mCrab,20–60keV; Sgueraetal.2005,2006,2008,Walter&ZuritaHeras2007,Ducci IGRJ16479–4514 is a hard X–ray transient discovered by etal.2010).RecurrentoutburstswerealsoobservedbytheSwift INTEGRAL on 2003, August 8–10 (Molkov et al. 2003) in satellite(Kenneaetal.2005,Markwardt&Krimm2006,Romano the energy range 18–50 keV. Several X–ray flares were caught etal.2008,LaParolaetal.2009,Bozzoetal.2009). byINTEGRAL/IBIS,displayingvariabledurations(from0.5to The proposed counterpart (2MASS J16480656-4512068, Walteretal.2006)wasconfirmedbyanaccuratelocalizationob- ⋆ E-mail:[email protected] tained with Chandra (Ratti et al. 2010) and classified as a late ⃝c 2011RAS 2 L.Sidoli,etal. O-typesupergiantwithaspectraltypeO8.5Ilocatedatadistance whichthespacecraftwaspassingthroughthelowcut-offrigidity of 4.9 kpc (Rahoui et al. 2008, Chaty et al. 2008) or a O9.5 Iab ofbelow6GV. starlocatedat2.8+4.9kpc(Nespolietal.2008).Theopticalidenti- FortheXISweconsideredonlyeventswithGRADE=0,2– −1.7 ficationconfirmedtheinitialclassificationofIGRJ16479–4514as 4,6andremovedhotandflickeringpixelsusingSISCLEAN;forthe a member of the new sub-class of high mass X–ray binaries, the spectralanalysis,theresponsematricesweregeneratedwith XIS- supergiant fast X–ray transients (SFXTs), at first suggested only RMFGEN andusingray-tracingsimulationswith XISSIMARFGEN. basedontheshortdurationofitshardX–rayactivity(Sgueraetal. Withalltheaforementioneddataselectioncriteriaapplied,there- 2006). sultingtotaleffectiveexposureisroughly136ksforeachXIS.The IGRJ16479–4514isaneclipsingSFXT(Bozzoetal.2008b) XISeventsofIGRJ16479–4514wereaccumulatedineachofthe andtheonewiththenarrowestorbit,showinganorbitalperiodof threeXIScameraswithinacircularregion(3arcminradius)cen- 3.32 days (Jain et al. 2009), later refined to 3.3193(cid:6)0.0005days tredonthetarget,whilethebackgroundswereestimatedfroman (Romanoetal.2009). annuluswithradii5and7arcmin.Duringtheobservation,thestan- X–ray long-term monitoring outside outbursts revealed that dardcriterionfortheattitudedeterminationrequiringthattheresid- thesourcespendsmostofitstimeatareducedlevelofX–rayemis- ualsarelessthan0.005◦couldnotbefullfilled,withresidualsstill sion(1033-1034ergs−1),from2to3ordersofmagnitudelessthan remainingatabout0.008◦forabout20hours,inthetemporalwin- the flare peaks, while for the remaining (cid:24)19% of the time, it is dowfromFebruary2501:00through22:00,butstillsmallerthan undetected, compatibly with being in eclipse (Sidoli et al. 2008, theSuzakupointspreadfunction(PSF)forusualpoint-likesource Romanoetal.2009). analysis. Thenatureofthecompactobjectisunclear(asinaboutahalf In the HXD-PIN (no significant emission was detected in ofthemembersoftheSFXTsclass;forarecentreviewseeSidoli the GSO) the net exposure time, after dead-time correction (live 2010)butthereisindirectevidencebasedonthespectralsimilarity time:92.8%)is141.9ks.Tosubtractnon-X-raybackground(NXB) withaccretingpulsarssuggestingthattheX–raysourceisaneutron eventsthatareincludedintheHXD-PINweusedthe‘tuned’NXB star(NS). synthesizedbackground(Fukazawaetal.2009).Aftersubtracting HerewereportonthefirstX–rayobservationwhichcontinu- thesynthesizedNXBfromtheHXD-PINdata,wealsosubtracted ously(exceptthatduringtheinterruptionsbecauseofthesatellite contributions of the cosmic X-ray background (CXB) using the orbit) covers most of an orbital cycle of IGRJ16479–4514. Our modelreportedinGruberetal.(1999)andoftheGalacticRidge main goal is to investigate the variability of the X–ray properties X–rayemission(GRXE;Valinia&Marshall1998). alongasingleorbitalcycle. Toensureapplicabilityoftheχ2statistics,thenetXISspectra wererebinnedsuchthatatleast20countsperbinwerepresent.All spectraluncertaintiesandupper-limitsaregivenat90%confidence for one interesting parameter. Data were analysed using FTOOLS 2 OBSERVATIONSANDDATAREDUCTION version6.11.1andXSPECversion12.Inthespectralfittingweused IGRJ16479–4514 was observed by Suzaku (Mitsuda et al. 2007) thephotoelectricabsorptionmodelPHABSinXSPECwiththeinter- between 2012 February 23 and 26. The observation (Obs ID stellar abundances of Wilms et al. (2000) and cross section table 406078010) was performed with the source located at the X–ray set of Balucinska-Church & McCammon (1992). The three joint Imaging Spectrometer (XIS; Koyama et al. 2007) nominal posi- XIS0,XIS1andXIS3spectrawerefittedtogether,includingcon- tion.TheXISconsistsoffourtelescopeswithaspatialresolutionof stant factors to allow for normalization uncertainties between the about2arcmincoupledtofourCCDcamerasoperatinginthe0.2– instruments.Forthetiminganalysisphotonarrivaltimeswerecor- 12keVenergyrangeandwith18′(cid:2)18′fieldofview(1024(cid:2)1024 rectedtotheSolarSystembarycenter. pixels; 1.05 arcsec pixel−1; Koyama et al. 2007). At the time of ourobservationonlythetwofrontilluminated(FI)XIS0andXIS3 (effectivearea:330cm2at1.5keV),andtheback-illuminated(BI) 3 ANALYSISANDRESULTS XIS1(effectivearea:370cm2at1.5keV)wereoperating.Thethree 3.1 Lightcurves detectorswereoperatedinNormalModewithnowindoworburst option(allthepixelsontheCCDarereadoutevery8seconds).The The XIS barycentred and background-subtracted light curve of otherinstrumentaboardSuzakuistheHardX-rayDetector(HXD; IGRJ16479–4514 in the energy range 0.2–10 keV, is shown in Takahashietal.2007),whichconsistsofPINsilicondiodes(HXD- Fig.1,whilethehardnessratio(HR)betweennetcountsextracted PIN; 10–70 keV) and Gd SiO Ce (GSO; 50–600 keV) scintilla- inthehard(above3keV)andthesoft(below3keV)energybands 2 5 tors.TheHXDwasoperatedinthestandardmode,withatimeres- is reported in Fig. 2, both versus time (upper panel) and in de- olutionof61µs.TheHXDisacollimatedinstrumentandthePIN pendenceofthesourceintensity(lowerpanel).NumbersinFig.1 inparticularhasa67.6′(cid:2)67.6′fieldofview(FWHM:34′(cid:2)34′). indicate time intervals which show different source intensity be- Data reduction and analysis employed version 19 of the haviour. At the beginning of the observation a very low intensity SuzakuSoftwareincludedintheHEASOFTsoftwarepackageand stateispresent(n.1),consistentwithbeingtheX–rayeclipsepro- followed the procedures described in the Suzaku ABC Guide.1 duced by the companion star. Indeed, folding the light curve on Following standard practices, we excluded times within 436 s of therefinedorbitalperiodP =286792(cid:6)43s(Romanoetal.2009) orb SuzakupassingthroughtheSouthAtlanticAnomalyandwealso andassumingtheepoch54547.05418(MJD)asorbitalphaseϕ=0 excluded the data when the line of sight was elevated above the (Bozzo et al. 2009), we obtain the orbital phases reported as top Earth’slimbbylessthan5◦,orwaslessthan20◦fromthebright- x-axisinFig.1.Theuncertaintyontheepochofϕ=0canbeesti- Earth terminator. Moreover, we excluded time windows during matedinaboutϕ=(cid:6)0.065,obtainedextrapolatingtheerroronthe orbitalperiodtothetimeoftheSuzakuobservation(432orbital cyclesbetweentheepoch54547.05418MJDandtheSuzakuob- 1 heasarc.gsfc.nasa.gov/docs/suzaku/analysis/abc/. servations). ⃝c 2011RAS,MNRAS000,1–10 SuzakuobservesoneorbitofIGRJ16479–4514 3 0.0 0.2 0.4 0.6 0 1 7 4 3 6 2 5 8 1 1 1 − s 1 nt 0. u o C 1 0 . 0 3 − 0 1 0 5×104 105 1.5×105 2×105 Time (s) Figure1.Background-subtractedlightcurveofIGRJ16479–4514inthe0.2–10keVenergyrange,obtainedcombiningnetsourcecountratesobservedby thethreeXISunits.Intheupperx-axis,theorbitalphaseisindicated,assumingtheorbitalperiodPorb=286792s(Romanoetal.2009),assumingepoch 54547.05418MJDasorbitalphaseϕ=0(Bozzoetal.2009).Thebinsizeis2048s.Verticaldashedlinesandnumbersindicatetheintervalsoftheeight time-selectedspectrareportedinTable2. TheSuzakuobservationdidnotcovertheingresstime,sowe two ramp-and-step functions, characterized by seven parameters: areunabletodeterminetheexacteclipseduration.Wecanatleast thecountratesofthethree“steps”inthelightcurveandthefour constrainittobebetween46ks(thedurationoftheeclipseathard times,t ,displayedinFig.3.Thefitresultedinthefollowingtimes i X–rays)and143ks(thatis,0.5inphase,assumingaperfectlyedge- measured from the beginning of the observation: t =46 (cid:6) 1 ks, 1 onsystemwithatightorbit).Aneclipsedurationofabout0.6days t =47(cid:6)1ks,t =85(cid:6)2ks,t =88(cid:6)2ks.Thetimet corresponds 2 3 4 1 (52ks)asproposedbyJainetal.2009couldimplythatwemight tothedate55981.5131(cid:6)0.0116(MJD). beseeingalmostthefulldurationoftheeclipse.Aftertheeclipse (timeintervaln.2)anintermediatelevelofemissionisobserved, lastingabout38ks,duringwhichthesoftX–rayintensitybelow3 3.2 TimingAnalysis keVisindistinguishablefromtheemissionduringeclipse(Fig.2), Barycentredlightcurveswith8secondsbintimewereproducedfor while at harder energies the source appears uneclipsed, although eachunitoftheX-rayImagingSpectrometer(XIS0,XIS1,XIS3) with a reduced intensity with respect to the uneclipsed emission in three energy bands (0.2–3, 3–10, 0.2–10 keV). We considered displayedintheintervalsn.5andn.8. two time ranges: i) the entire duration of the Suzaku observa- Two flares are present peaking at 2 counts s−1 and tion (interval from 1 to 8 in Fig. 1) and ii) the part of the obser- 4 counts s−1 in the time intervals n. 4 and n. 7, respectively. In- vation excluding the eclipse and the transition to the uneclipsed tervalsn.3andn.6canbeconsideredtherisetothesetwoflare emission(timeintervalsfrom3to8inFig.1).Inordertosearch peaks,whileintervalsn.5andn.8arecharacterizedbyaveryvari- forspinperiodicitiesintheXISlightcurves,weusedtheLomb- able, intra-flare emission, which covers about 40% of the orbital Scargleperiodogrammethodbymeansofthefastimplementation cycle. ofPress&Rybicki(1989)andScargle(1982),whichisgenerally The X–ray light curve shows two sharp transitions from the preferredfordatasetwithgapsandunequalsampling.Periodici- eclipsetowardstheuneclipsedX–rayemission.Tobetterestimate tiesweresearchedinthefrequencyrangefromi)0.000013Hzor the time of the eclipse, we simply modeled the light curve with ii)0.000022Hz(afterwhichthesensitivityisreducedduetothe ⃝c 2011RAS,MNRAS000,1–10 4 L.Sidoli,etal. IGRJ16479−4514 Bin time: 2048. s 1 T 1 F 0. O S 1 0 0. 0−3 1 1 D 1 R 0. A H 1 0 0. 0−3 1 0 1 R H 1 1 0. 0 5×104 105 1.5×105 2×105 Time (s) 0 0 1 0 1 R H 1 1 0. 1 0 0. 0.01 0.1 1 Count rate (0.1−10 keV) Figure2.Hardnessratio(hard/soft)variationswithtime(Upperpanel)andwiththesourceintensity(Lowerpanel).Thebinsizeis2048s.Softandhard energyrangesarebelowandabove3keV,respectively. finitelengthofthelightcurves)to0.0625Hz(correspondingtothe 3.3 Spectroscopy Nyquistfrequencyofthedataset).Nosignificantandunambiguous evidenceforcoherentmodulationwasfoundintheperiodograms. We first analysed the joint XIS spectra extracted from the entire observation,correspondingtoanetintegrationtimeof136ks.The netsourcecountrates(0.2–10keV)inthethreeXISwerethefol- lowing: 0.157(cid:6)0.001 count s−1 (XIS0), 0.144(cid:6)0.001 count s−1 (XIS1)and0.165(cid:6)0.001counts−1(XIS3).Adoptinganabsorbed ⃝c 2011RAS,MNRAS000,1–10 SuzakuobservesoneorbitofIGRJ16479–4514 5 0.02 1 t4 Counts s keV−1−1 5×01.00−13 Count/sec 0.1 t2 2×10−3 t3 4 t1 2 χ 0.01 0 −2 0 2×104 4×104 6×104 8×104 105 1.2×105 2 5 10 Time (s) Energy (keV) Fligighutrceur3v.eD.Touhbelfeoruarmtipm-aensdd-isstceupssfuedncitniotnhefiStteinctg.3th.1eainreitiianldpicaartteodf.theXIS 2×10−4 rtpooeofswit1dhe.ue3ra-5lpl)aso,wwaareomsru-torlnaoddwnelg6.cr4aoebnskusteiolVntreupd(utFimoiinng,.wa(4Ne)fl.HaoA(cid:24)tbdt1sda0piin2en3cgatrcaubmmne−attr2e(rp)orhwafionttG,donareiunsisnuspdlitaoeinnsxig,ltiinv(cid:0)inee, Photons cm s keV−2−1−1 105×10−4−5 a line energy of 6.37 (cid:6) 0.03 keV, compatible with being pro- duced by Fe K fluorescence. The spectral parameters of the av- erage X–ray spαectrum are listed in Table 1. The average flux, F, ×10−5 of1.16(cid:2)10−11ergcm−2s−1(correctedfortheabsorption),trans- 2 latesintoanX–rayluminosityof1034ergs−1(assumingadistance 2 5 10 Energy (keV) of2.8kpc,Nespolietal.2008).Notehoweverthat,giventhelarge uncertainty in the distance determination (Nespoli et al. 2008), Figure4. XIS spectrum extractedfrom the whole Suzaku observation. this luminosity can range from 1.7(cid:2)1033 erg s−1 (at 1.1 kpc) to Count spectrum is shown (Upper panel), together with the residuals (in 8.2(cid:2)1034ergs−1(at7.7kpc). unitsofstandarddeviations)ofthedatatotheabsorbedpower-lawmodel ThehardX-rayspectrumextractedfromtheHXD-PINfield (seeTable1,firstcolumn,forthespectralparameters).Lowerpanelshows the photon spectrum, graphically rebinned to better show the residuals of view (FOV) is much brighter than the extrapolation at higher around6.4keV. energiesoftheXISpower-lawbest-fit.Indeed,theHXD-PINflux ((cid:24)1.5(cid:2)10−10 erg cm−2 s−1, after taking into account CXB and GRXE)intheenergyrange15–25keVis(cid:24)15timesgreaterthan Table 1. Spectral results of the time averaged spectrum from the that calculated extrapolating at high energies the power-law best Suzaku/XISobservation.(cid:0)isthepower-lawphotonindex.AGaussian fit to the XIS spectrum. Note however that this latter extrapo- lineisrequiredat∼6.4keV(seeFig.4).Fluxisinthe1–10keVenergy latedfluxshouldbeconsideredasaconservativeupperlimit,since rangeinunitsof10−11ergcm−2s−1andiscorrectedfortheabsorption, IGRJ16479–4514typicallyshowsaspectralcut-offabove10keV. NH(inunitsof1022cm−2).Thefluxoftheironline,Fline,isinunitsof This implies a strong contamination by other X–ray sources in 10−6 phcm−2 s−1.LX istheX–rayluminosity(1–10keV),inunitsof the FOV, probably a residual contamination by the Z-track low- 1034ergs−1,foranassumeddistanceof2.8kpc. mass X-ray binary GX340+0, located at about 34 arcmin from IGRJ16479–4514,and/oranunknownbrighthardX–raytransient. Parameter Power-law Power-law+Gaussianline Forthisreason,wewillnotdiscussitfurther. The hardness ratio is variable (Fig. 2) especially during NH 9.5±0.3 9.5±0.3 eclipse,wheretheemissionappearssofterand/orlessabsorbed,so (cid:0) 1.33±0.04 1.35±0.04 wenextexploredthevariabilityofthespectralparametersindepen- Fline − 7.4±1.5 denceoftheorbitalphaseperformingatime-selectedspectroscopy EW(eV) − 70±10 extractingcountsfromthesameintervalsindicatedinFig.1.Dur- Eline(keV) − 6.37±0.03 Unabs.Flux 1.16 1.16 ingtheeclipsearemainingdetectablefluxispresent,astypicalin eclipsing high mass X–ray binaries, mainly produced by Thom- χLX2/dof 11..00198/2172 10..09991/2169 ν son scattering into the line of sight of the direct component by freeelectronsresidinginthesupergiantwind(Haberl1991).Wefit thespectrawithanabsorbedpower-lawmodel,resultinginaless absorbed and softer spectrum during the eclipse compared to the other time intervals (Table 2). The absorption during the eclipse is consistent with the interstellar reddening observed to the opti- ⃝c 2011RAS,MNRAS000,1–10 6 L.Sidoli,etal. absenceofsignaturesfromhighlyionizingilluminatingcontinuum furtherconfirmsalowsourceX–rayluminosity. We can distinguish several types of variability on different timescales, especially evident in the energy range 3–10 keV. On longtimescalesoftensofksweobservethreemainintensitystates: theendoftheeclipsebythesupergiantcompanion(whichwecov- eredforabout46ks),atransitionphasetotheuneclipsedemission (timeintervaln.2inFig.1,lasting38ks)andtheintra-flarelowlu- minosityemissionwhichcoversmostoftheremainingorbit(40%), lastingaround110ks(timeintervalsn.5andn.8). X–ray flares with different durations are present: two main lowluminosityflares,lasting10–15ks,withacomplexandstruc- turedshape,punctuatetheorbit,reachingpeakluminositiesof4.4 and 6.4(cid:2)1034 erg s−1 (at 2.8 kpc), separated by about 0.2 in or- bitalphase.Their0.2–10keVspectraareharderthantheintra-flare X–rayemission,asusuallyobservedinSFXTsandaccretingpul- sars. Even in the part of the orbit in-between the two main low luminosity flares, the source exhibits a large intensity variability Figure6.FeKαemissionlinefluxversusthefluxintheenergyrange7–10 ontimescaleof1000s.Thislowluminosityflaringactivityhadal- keV,correctedfortheabsorption. readybeenunveiledinSFXTs(andinIGRJ16479–4514)thanksto Swift/XRTlongtermmonitoringobservations(Sidolietal.2008). InthesofterlightcurvetheX–rayeclipseappearslongerand calcounterpart(Nespolietal.2008),whilethatmeasuredoutside thereisnoevidenceforthepresenceofthetransitionphase(time theeclipseissignificantlyhigher,andconsistent,withintheuncer- intervaln.2)clearlypresentinthehardlightcurve.Thustheeclipse tainties,withbeingconstant,ataboutN (cid:24)1023cm−2.TheX–ray egress appears to be energy dependent. This behaviour is simi- H emissionisharderwhenthesourceisbrighter(X–rayflares),atyp- lar to that reported by Jain et al. (2009) from the shape of the icalbehaviourobservedinSFXTsandinaccretingpulsars. IGRJ16479–4514foldedlightcurvesobservedwithRXTE and WenextaddedanarrowGaussianlinetothesinglepower-law withSwift/BAT,wheretheX–rayeclipseseemsmoreevidentat model,resultingintheparametersreportedinTable2andshown higherenergiesandwithsharpertransitions.Thereisalsoasimilar- inFig.5.Theresultingcontinuumpower-lawparametersarefully ityoftheIGRJ16479–4514temporalvariabilityneareclipseegress compatible,withintheuncertainties,withthosederivedwithoutthe with what has been observed in the HMXB 4U1700–37 (van der Gaussianline,sowedonotreportthemagaininTable2.Theen- Meeretal.2005andreferencestherein),showingavariableeclipse ergyofthenarrowlineindicatesK emissionfromneutral(oral- durationandasimilaregressphase.Thelongduration(38ks)of α mostneutral)iron.Itsequivalentwidth(EW)hasbeencalculated this phase roughly corresponds to a region as large as the com- withrespecttothepower-lawcontinuum,anditslargevalueduring panionradius(althoughaprecisedeterminationofboththedonor theeclipseisduetothefactthatithasbeencalculatedwithrespect radiusandofthesysteminclinationislacking),probingtheinner- tothescatteredcomponent.ThedirecteclipsedX–rayemissionis moststructureofthesupergiantwind. unknown,giventhelargesourcevariability.Theintensityoftheflu- Onshortertimescalesofaround1000sweobservetwosharp orescenceFeKαlineiscorrelatedwiththeunabsorbedhardX–ray transitions,indicatedinFig.3bythefourcontactsti:(1)fromthe flux(above7keV),atleastoutsidetheeclipse(Fig.6). eclipsetotimeintervaln.2,whichshowsanintermediatelevelbe- Finally,weadoptedapower-lawmodeltogetherwithaGaus- tweentheeclipseremainingfluxandtheun-eclipsedflux,and(2) sianline,butnowfixingthepower-lawphotonindexto1.35,the fromtimeintervaln.2tothefirstflare.Giventhatthecompactob- valueobtainedfromtheaveragespectrum.Thefitsareacceptable jectispoint-likewithrespecttothesupergiantcompanion,thefirst andtheresultingvaluesoftheabsorbingcolumndensityshownow shorttransitionlikelyprobesthetransitionoutoffbehindthestellar somevariability,againwiththelessabsorbedspectrumseendur- atmosphere,which,assuminganorbitalvelocityofafewhundreds ingtheeclipse.Morecomplexmodelsarenotrequiredbythecount kms−1,resultsinalinearsizeofaroundafew1010cm.Thesecond statistics of the data and result in unconstrained spectral parame- sharptransitionisinterestinglycoincidentwiththerisingphaseto ters. thefirstX–rayflare,suggestingapossiblephysicalconnection(see thediscussionbelow). Anironlineisdetectedalongtheorbit,withalineenergyof 6.4keV,indicativeofneutralironoranionizationstatelowerthan 4 DISCUSSION FeXVIII(Kallman&McCray1982).Acorrelationisobservedbe- The long Suzaku observation we have reported on here, allows tweentheironfluorescentlinefluxandtheilluminatingunabsorbed ustoinvestigatethepropertiesofaSFXTascontinuouslyaspos- flux above 7 keV, as expected (Inoue 1985) outside the eclipse sible within one single orbital cycle for the first time. This has (Fig.6).Thelinefluxobservedduringeclipsedoesnotshowev- beenmadepossiblebytheshortorbitalperiodofIGRJ16479–4514 idenceforareduction,withinthelargeuncertainties,withrespect whichistheSFXTwiththeshortestorbitknowntodate.TheX–ray to the value detected during the intra-flare emission, so most of source shines with an average low luminosity L (cid:24)1034 erg s−1, thefluorescingmatterislocatedfarawayfromthecompactobject. X (ifadistanceof2.8kpcisassumed)andnobrightflares(exceeding Notethatwecalculatetheequivalentwidthofthelinewithrespect L (cid:24)1036ergs−1)havebeencaughtduringthisobservation.Nev- toasinglepower-lawcontinuum.Ifthefluorescingmatterisopti- X ertheless,ahighamplitudevariabilityisobserved,spanningmore callythintotheilluminatingcontinuum,theluminosityoftheiron than two orders of magnitude (including the X–ray eclipse). The K linedependsonthespectrumandX–rayluminosityofthecen- α ⃝c 2011RAS,MNRAS000,1–10 SuzakuobservesoneorbitofIGRJ16479–4514 7 Table2.Suzaku/XISresultsofthetime-selectedspectroscopy(numbersmarkthesametimeintervalsdisplayedinFig.1)withanabsorbedpower-law model.Fluxesareinunitsof10−11ergcm−2s−1.Bothobserved(notcorrectedfortheabsorption)andunabsorbed(correctedfortheabsorption)fluxesare reported.LXistheX–rayluminosity(1–10keV),inunitsof1034ergs−1,foranassumeddistanceof2.8kpc.Theabsorbingcolumndensity,NH,isinunits of1022cm−2. 1 2 3 4 5 6 7 8 Power-law NH 4.6+−32..41 8.5+−22..61 9.9+−11..96 10.6−+11..10 9.8+−00..77 9.9+−00..87 9.9+−00..76 9.8+−00..76 (cid:0) 3.1+−11..50 1.46+−00..3352 1.07+−00..2221 1.16−+00..1133 1.42+−00..0099 1.28+−00..1009 1.21+−00..0098 1.49+−00..0088 Obs.Flux(1-10keV) 0.014 0.13 1.23 2.9 0.7 3.6 4.2 0.6 Unabs.Flux(1-10keV) 0.045 0.22 1.9 4.7 1.2 5.9 6.8 1.1 LX 0.042 0.21 1.8 4.4 1.1 5.5 6.4 1.0 χ2/dof 1.672/48 1.047/64 0.836/88 1.092/227 0.922/634 1.001/435 0.887/518 1.130/656 ν Power-law+Gaussianline Fline(10−5phcm−2s−1) 0.32+−00..2129 0.57±0.27 2.7+−11..55 <1.9 0.65+−00..3344 4.9+−22..51 5.4+−22..22 0.54+−00..2277 EW(eV) 5500+−43570000a 280±160 130±80 <40 60±30 80±40 80±30 50±30 Eline(keV) 6.57+−00..2226 6.33±0.20 6.41+−00..0087 6.4(fixed) 6.38±0.06 6.34±0.06 6.37+−00..0045 6.32±0.09 χ2/dof 1.576/45 0.934/61 0.771/85 1.097/226 0.910/631 0.973/432 0.861/515 1.118/653 ν Unabs.Flux(7–10keV) 0.0009 0.05 0.60 1.40 0.30 1.63 1.97 0.26 Power-law+Gaussianline NH 1.3+−00..65 7.3+−11..31 12±1 11.9±0.6 9.2±0.3 10.2±0.4 10.6±0.4 8.8±0.2 (cid:0) 1.35fixed 1.35fixed 1.35fixed 1.35fixed 1.35fixed 1.35fixed 1.35fixed 1.35fixed χ2/dof 1.920/46 0.923/62 0.799/86 1.118/227 0.913/632 0.963/433 0.870/516 1.132/654 ν aThelargeEWduringeclipseiscalculatedwithrespecttothescatteredpower-lawcontinuum. tralsource,onthecoveringfractionoftheilluminatedmatterand emission(timeintervalsfromn.3ton.8).Apossibilityisthatmost ironabundance(e.g.Sakoetal.1999).Giventhelargeuncertain- ofthedirectX–rayemissioninthisorbitalregionisblockedbya tiesontheEW(especiallyhugeduringtheeclipsephase)andthe large scale wind structure, as that invoked to explain the period- variabilityofthecoveringfactoralongtheorbitalphase,alsocon- ically recurrent outbursts in the SFXT IGR J11215–5952 (Sidoli sideringthelikelypresenceofdifferentlarge-scalestructuresinthe et al. 2007), or by dense shells or other kind of inhomogeneities supergiantwindwhichcanbeobvious,althoughunknown,sitesof presentinhotmassivestarswinds(see,e.g.,Oskinovaetal.2012 fluorescingmaterial,itisnotpossibletogainfurtherconstraintson or Lobel & Blomme 2008). This implies that most of the X–ray thepropertiesofthereprocessingwind(alsothesupergiantsurface emissioninthistimeintervalisscatteredX–rayemission,whichis becomesareprocessoronlyvisibleatcertainorbitalphases). lessabsorbedbecausemainlyproducedbylessdensewindmaterial Consideringthespectroscopy,amorephysicaldescriptionof locatedofftheorbitalplaneandfartherawayfromthecompanion theX–rayspectruminaneclipsingHMXBinvolvesthepresence star.Thiscouldexplainwhytheobservedcolumndensityintime oftwopower-lawcontinua,accountingforthedirectandscattered intervaln.2isnotlargerthanintheremaining(fullyout-of-eclipse) componentwiththelatterproducedbyThomsonscatteringbyfree partoftheorbit. electron in the companion wind and/or on the supergiant surface Thelikelypresenceoflargescalestructuresinthesupergiant (Haberl1991).Boththedirectandthescatteredcomponentsshould windisalsosuggestedbytheorbitalphaseofthefirstflare,which havethesamespectralslope,sinceThomsonscatteringisenergy iscompatible(withintheuncertainties,seeSect.3.1)withthelo- independent. This implies that the only way to disentangle these cationalongtheorbitofotherbrightflaresobservedinthepastin two components is the different absorptions, the scattered com- IGRJ16479–4514(ϕ(cid:24)0.36;Bozzoetal.2009).Thissuggeststhat ponentbeinglessabsorbedthanthedirectone.DuringtheX–ray the flares are triggered by a higher accretion rate during the pas- eclipse,wherethedirectcomponentisunseen,theX–rayemission sage inside a phase-locked denser wind component, like the one shouldonlybeduetoscattering.Indeed,fittingthisspectrumwitha predictedbySidolietal.(2007).Thisseemstobealsoindicatedby power-lawwithaphotonindexfixedattheaverageslopeof(cid:0)=1.35, the fact that, interestingly, the egress X–ray emission (n. 2) ends theeclipseshowsthelowestabsorption,consistentwiththeinter- with the sharp transition to the first X–ray flare (see Sect. 3.1). stellar value (Nespoli et al. 2008). Unfortunately, given the high Ifthisexplanationiscorrect,afterthefirstflare,thecompactob- absorption(localandinterstellar)andthelowstatistics,wecould jectliesin-betweentheobserverandthedensewindstructure,with notfindbettercontraintstothespectralparametersadoptingmore thedirectX–rayemissionfinallydominatingtheobservedX–rays complexmodels. alongtheremainingpartoftheorbit. AlsotheegressX–rayemission(n.2)inIGRJ16479–4514is Thesecondflare,spacedbyabout0.2inphase,couldberec- likelydominatedbythescatteredcomponent,giventhehighEWof onciledbythecrossingofasimilarwindcomponent,iftheorbitis theironlinecomparedtothatmeasuredduringtheout-of-eclipse eccentric(asinthelightcurvessimulatedbyDuccietal.2009),or ⃝c 2011RAS,MNRAS000,1–10 8 L.Sidoli,etal. Figure5.Variabilityofthebest-fitspectralparametersadoptinganabsorbedpower-lawmodeltogetherwithaGaussianlineat6.4keV(seeTable2).The observed(notcorrectedfortheabsorption)fluxisintheenergyrange1–10keVandinunitsofergcm−2 s−1.Thefluxoftheironlineisinunitsof photonscm−2s−1.Theorbitalphaseisindicatedintheupperx-axis(seetext). bythecompactobjectapproachingtheperiastronpassage.Unfortu- abilityispresent,withmoreabsorptionduringthelowluminosity nately,welackanyinformationabouttheotherorbitalparameters flares. (e.g.eccentricity)tobeabletoconfirmthishypothesis. Theonlyknownorbitalparameteristheperiodof3.32days. Theabsorbingcolumndensityisalwaysinexcessoftheinter- Wedidnotobservetheeclipseingress,sowecannotconstrainthe stellarreddeninganddoesnotshowevidenceforvariabilityalong companionradius,R .Ontheotherhand,R canbeestimated opt opt theorbit(ifalsotheslopeofthepower-lawismantainedfree),ex- fromthesupergiantspectraltypeandrequiringthatthestardoesnot cept that during the eclipse. On the other hand, if the power-law overflowitsRochelobe.Thespectraltypeofthesupergiant(O8.5I slopeisfixedtothevalueoftheaveragespectrum((cid:0)=1.35),vari- or O9.5I) suggests a mass in the range Mopt=30–34 M⊙ and a ⃝c 2011RAS,MNRAS000,1–10 SuzakuobservesoneorbitofIGRJ16479–4514 9 radiusof22-23R⊙ (Martinsetal.2005).Afurtherconstrainton 5 CONCLUSION thestellarsizecomesfromthefactthatthecompanionshouldnot ThenewSuzakuobservationswehavereportedhereallowedus overlflow its Roche lobe radius (Eggleton 1983). This suggests a toperformanin-depthinvestigationofthepropertiesoftheSFXT donormassaroundMopt=35 M⊙andastellarradiusRopt=20R⊙. IGRJ16479–4514alongoneorbitalcycle,andtoobtainthefollow- Adoptingthesevalues,theorbitalperiodtranslatesintoanorbital ingresults: separationofabout2.2(cid:2)1012cm. (cid:15) the source spends most of the observation with an average We can use the X–ray eclipse to probe the supergiant prop- out-of-eclipse(intra-flares)X–rayluminosityof1034ergs−1,with erties, as follows (see, e.g., Lewis et al. 1992). The average total several kinds of variabilities on different timescales, but with no intensityduringtheeclipseisabout5%oftheout-of-eclipse,intra- flare X–ray intensity, so the wind density can be obtained as n brightflares(exceeding1036 ergs−1)duringtheobservedorbital w =0.05/(aσ ),whereσ istheThomsonscatteringcrosssection cycle. Given long-term monitoring performed with previous mis- T T andaistheorbitalseparation,whichweassumeasthecharacteris- sions,thisisverylikelythemosttypicalappearenceofanorbital cycleinthisSFXT; ticpathlenghtthroughthesystem.Thisresultsinawinddensityat theorbitalseparation,ρ (a),of7(cid:2)10−14gcm−3.Themasscon- (cid:15) the absorbing column density does not show evidence for w tinuityequationcanbeusedtoderivetheratiobetweenthewind variability,withintheuncertainties,exceptfromduringtheX–ray mRass)-loρss(raa)t,eaasnsdumthiengteramsipnhaelrvicealolcgiteyo,masetMry_wfo/rv∞th=e4oπutflao(wain(cid:0)g ecl(cid:15)ipsthe;e remaining flux during the X–ray eclipse, produced by opt w wind and a velocity gradient for the wind velocity, β, of 1 (Cas- Thomsonscattering,allowedustoestimatethewinddensityatthe Ftoorrettearlm.1in9a7l5v).elTohciistireessuinltsthienararnagtieo5M0_0w–/3v0∞00=7k(cid:2)m1s0−−11,7tMhe⊙m/kamss. orb(cid:15)itaalsssuepmairnagtioan,crirecsuullatirngoribnitρwan(da)a=7s(cid:2)ph1e0r−ic1a4lggcemom−e3t;ry for the lroecsst arcactereitsioninfrtohme rtahnegewiMn_dw,=th1e–7a(cid:2)cc1re0t−io6nMra⊙te/ycra.nAbsesuemstiinmgatdeid- sMu_pwe/rgvi∞ant=w7i(cid:2)nd1,0t−h1e7dMer⊙iv/ekdmw.Sinindcedetnhseitaycctrreatnisolnatleusmiinntoosiatyraimtio- asM_ =(πR2 /4πa2)(cid:1)M_ ,whereR istheaccretionradius. pliedbythisratio,assumingterminalvelocitiesintherange500– This aaccccretionacrcate translatwes into anaXcc–ray luminosity L =3– 3000kms−1,isatleasttwoordersofmagnitudehigherthanthat X 15(cid:2)1036 erg s−1 for the range of parameters estimated before, observed,wecanconcludethatamechanismmediatingtheaccre- whichistwoordersofmagnitudegreaterthanthatweobserve. tionontotheputativeneutronstarinthesystemislikelytobeat worktoreducethemassaccretionrate. Giventhehighwinddensitywehavecalculated,itisunlikely that the low luminosity in IGRJ16479–4514 is due to the direct wind accretion. Our findings seems to agree with the recent re- sultsbyOskinovaetal.(2012),whohavedemonstratedthatsimple ACKNOWLEDGMENTS Bondi-Hoyleaccretionfromaclumpywindover-predictstheob- ThisworkisbasedondatafromobservationswithSuzaku.This servedX–rayvariabilityinHMXBs.Thissuggeststhepresenceof work was supported by the grant from PRIN-INAF 2009, “The somemechanismabletodampthestrongX–rayvariationsimplied transientX–raysky:newclassesofX–raybinariescontainingneu- bythestructuredsupergiantwinds(Oskinovaetal.2012).Thiscan tronstars”(PI:L.Sidoli).ABreceivedfundingfromNASAgrant beduetothedetails(stillpoorlyknown)oftheinteractionofthe 11-ADAP11-0227.LSisgratefultoAngelaBazzanoandTimOost- accretionflowwiththeshocksintheaccretionwake,leading,for erbroekforveryhelpfulcommentsandsuggestions.PEthanksSara example, to a transitional case of accretion regime, intermediate Motta for fruitful discussions. This research has made use of the betweenRocheLobeOverflowanddirectaccretion(asoriginally IGR Sources page maintained by J. Rodriguez & A. Bodaghee proposed for the SFXT IGR J16418–4532, given its short orbital (http://irfu.cea.fr/Sap/IGR-Sources/). period(Sidolietal.2012),whichdisplaysasimilarX–rayintensity variability). Theroleofthemagnetosphericsurfaceinreducingtheaccre- REFERENCES tionrateontotheNSinSFXTshavebeenstudiedbyseveralauthors (Bozzoetal.2008a,Duccietal.2010,Shakuraetal.2012b).Bozzo Balucinska-ChurchM.,McCammonD.,1992,ApJ,400,699 etal.(2008)haveinvokedmagnetar-likeNSwithslowpulsations, BozzoE.,FalangaM.,StellaL.,2008a,ApJ,683,1031 to halt the accretion most of the time and allow only a residual Bozzo E., Giunta A., Stella L., Falanga M., Israel G., Campana flow of matter (producing (cid:24)1034 erg s−1) by means of Kelvin- S.,2009,A&A,502,21 Helmholtzinstability.Shakuraetal.(2012a)haveproposedthatthe Bozzo E., Stella L., Israel G., Falanga M., Campana S., 2008b, lowX–rayluminositystate((cid:24)1034 ergs−1)sometimesobserved MNRAS,391,L108 inpersistentaccretingpulsarsandinSFXTscouldbeduetosub- CastorJ.I.,AbbottD.C.,KleinR.I.,1975,ApJ,195,157 sonicquasi-sphericalaccretionontoslowlyrotatingpulsars,where ChatyS.,RahouiF.,FoellmiC.,TomsickJ.A.,RodriguezJ.,Wal- theaccretionofmatterismediatedbyaquasi-staticshellabovethe terR.,2008,A&A,484,783 NSmagnetosphere.Inthiscase,theaccretionratefromthequasi- Ducci L., Sidoli L., Mereghetti S., Paizis A., Romano P., 2009, staticshelldependsontheabilityoftheplasmatoenterthemag- MNRAS,398,2152 netospherebymeansofplasmacooling.Theseauthorssuggestthat DucciL.,SidoliL.,PaizisA.,2010,MNRAS,408,1540 transitionsbetweenlow-luminositystatestobrightflaringactivity EggletonP.P.,1983,ApJ,268,368 inSFXTscouldbeduetotransitionsbetweentwodifferentregimes FukazawaY.etal.,2009,PASJ,61,17 ofplasmacooling:fromthermalplasmacoolingtoComptoncool- Gruber D. E., Matteson J. L., Peterson L. E., Jung G. V., 1999, ingdominatedregime.Unfortunately,noneofthesemodelscanbe ApJ,520,124 confirmedtodate,sinceboththepulsationperiodandthemagnetic HaberlF.,1991,A&A,252,272 fieldinIGRJ16479–4514(andinmostofSFXTs)areunknown. InoueH.,1985,SpaceScienceReviews,40,317 ⃝c 2011RAS,MNRAS000,1–10 10 L.Sidoli,etal. JainC.,PaulB.,DuttaA.,2009,MNRAS,397,L11 KallmanT.R.,McCrayR.,1982,ApJS,50,263 KenneaJ.A.,PaganiC.,MarkwardtC.,BlustinA.,CummingsJ., NousekJ.,GehrelsN.,2005,Astron.Tel.,599,1 KoyamaK.etal.,2007,PASJ,59,23 LaParolaV.etal.,2009,Astron.Tel.,1929,1 Lewis W., Rappaport S., Levine A., Nagase F., 1992, ApJ, 389, 665 LobelA.,BlommeR.,2008,ApJ,678,408 MarkwardtC.B.,KrimmH.A.,2006,Astron.Tel.,816,1 MartinsF.,SchaererD.,HillierD.J.,2005,A&A,436,1049 MitsudaK.etal.,2007,PASJ,59,1 MolkovS.,MowlaviN.,GoldwurmA.,StrongA.,LundN.,Paul J.,OosterbroekT.,2003,Astron.Tel.,176,1 NespoliE.,FabregatJ.,MennickentR.E.,2008,A&A,486,911 Oskinova L. M., Feldmeier A., Kretschmar P., 2012, MNRAS, 421,2820 Rahoui F., Chaty S., Lagage P.-O., Pantin E., 2008, A&A, 484, 801 RattiE.M.,BassaC.G.,TorresM.A.P.,KuiperL.,Miller-Jones J.C.A.,JonkerP.G.,2010,MNRAS,408,1866 RomanoP.etal.,2009,MNRAS,399,2021 RomanoP.etal.,2008,ApJL,680,L137 SakoM.,LiedahlD.A.,KahnS.M.,PaerelsF.,1999,ApJ,525, 921 SgueraV.etal.,2005,A&A,444,221 SgueraV.etal.,2008,A&A,487,619 SgueraV.etal.,2006,ApJ,646,452 ShakuraN.,PostnovK.,HjalmarsdotterL.,2012a,ArXive-prints Shakura N., Postnov K., Kochetkova A., Hjalmarsdotter L., 2012b,MNRAS,420,216 SidoliL.,2010,in25thTexasSymposiumonRelativisticAstro- physics SidoliL.,MereghettiS.,SgueraV.,PizzolatoF.,2012,MNRAS, 420,554 SidoliL.etal.,2008,ApJ,687,1230 Sidoli L., Romano P., Mereghetti S., Paizis A., Vercellone S., ManganoV.,Go¨tzD.,2007,A&A,476,1307 TakahashiT.etal.,2007,PASJ,59,35 ValiniaA.,MarshallF.E.,1998,ApJ,505,134 vanderMeerA.,KaperL.,diSalvoT.,Me´ndezM.,vanderKlis M.,BarrP.,TramsN.R.,2005,A&A,432,999 WalterR.,ZuritaHerasJ.,2007,A&A,476,335 WalterR.etal.,2006,A&A,453,133 WilmsJ.,AllenA.,McCrayR.,2000,ApJ,542,914 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbythe author. ⃝c 2011RAS,MNRAS000,1–10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.