This article was downloaded by: [NASA Goddard Institute for Space Studies] On: 16 April 2013, At: 14:47 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Aerosol Science and Technology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/uast20 A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model Y. H. Lee a & P. J. Adams a b a NASA Goddard Institute for Space Studies and Center for Climate Systems Research, Columbia University, New York, New York, USA b Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA Accepted author version posted online: 29 Nov 2011.Version of record first published: 19 Jan 2012. To cite this article: Y. H. Lee & P. J. Adams (2012): A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model, Aerosol Science and Technology, 46:6, 678-689 To link to this article: http://dx.doi.org/10.1080/02786826.2011.643259 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. AerosolScienceandTechnology,46:678–689,2012 Copyright(cid:2)C AmericanAssociationforAerosolResearch ISSN:0278-6826print/1521-7388online DOI:10.1080/02786826.2011.643259 A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model Y. H.Lee1andP. J.Adams1,2 1NASAGoddardInstituteforSpaceStudiesandCenterforClimateSystemsResearch,Columbia University,NewYork,NewYork,USA 2DepartmentofEngineeringandPublicPolicy,CarnegieMellonUniversity,Pittsburgh,Pennsylvania, USA 3 1 0 2 ril p A [Supplementarymaterialsareavailableforthisarticle.Goto 16 Thisstudydevelopsmorecomputationallyefficientversionsof thepublisher’sonlineeditionofAerosolScienceandTechnology 7 the TwO-Moment Aerosol Sectional (TOMAS) microphysics al- toviewthefreesupplementaryfiles.] 4 4: gorithms,collectivelycalled“FastTOMAS.”Severalmethodsfor 1 ] at snpuemedbienrgoufpsitzheesaelcgtoiornitshmwawseardeoapttteedm.pFtaesdt,TbOutMoAnlSymreoddueclisn,gcothue- 1. INTRODUCTION es pled to the GISS GCM II-prime, require a new coagulation al- Changes in aerosols that act as cloud condensation nuclei di gorithmwithlessrestrictivesizeresolutionassumptionsbutonly (CCN)sincetheIndustrialRevolutionarebelievedtoenhance u St minorchangesinotherprocesses.FastTOMASmodelshavebeen cloud reflectivity, known as the cloud albedo effect (Twomey e evaluated in a box model against analytical solutions of coagu- c 1974), and to modify precipitation efficiency and cloud distri- pa lation and condensation and in a 3-D model against the original S TOMAS (TOMAS-30) model. Condensation and coagulation in bution,knownasthecloudlifetimeeffect(Albrecht1989).The or the Fast TOMAS models agree well with the analytical solution effects of aerosols on clouds are among the most uncertain of f e butshowslightlymorebiasthantheTOMAS-30boxmodel.Inthe anthropogenic climate forcings (Solomon et al. 2007). These stitut 3p-rDocmesosd(eil.,e.e,rreomrisssrieosnusl,tinclgoufrdomprdoeccersesainsged/wseiztedreepsoosluittiioonn,imniecarcoh- aerosol “indirect effects” are not easily estimated from obser- n vations because of natural variability in cloud properties and d I physics)arequantifiedinaseriesofmodelsensitivitysimulations. thelackofobservationsofthepre-industrialatmosphere.Thus r Errors resulting from lower size resolution in condensation and a d coagulation,definedasthemicrophysicserror,affectnumberand estimations of the impacts of aerosols on global radiative flux d o massconcentrationsbyonlyafewpercent.Themicrophysicserror changehavebeenmainlybasedoncomputermodeling. G A in CN70/CN100 (number concentrations of particles larger than Recently,agrowingnumberofglobalaerosolmicrophysics S 70/100nmdiameter),proxiesforcloudcondensationnuclei,range A models have been developed to improve our understanding of from–5%to5%inmostregions.Thelargesterrorsareassociated N aerosol–cloud interactions and specifically the processes that [ withdecreasingthesizeresolutioninthecloudprocessing/wetde- by positioncalculations,definedascloud-processingerror,andrange controlCCNconcentrations(AdamsandSeinfeld2002;Lauer d from –20% to 15% in most regions for CN70/CN100 concentra- etal.2005;Spracklenetal.2005;Stieretal.2005;Pierceand e ad tions.Overall,theFastTOMASmodelsincreasethecomputational Adams 2006; Pierce et al. 2007; Bauer et al. 2008; Trivitaya- nlo speedby2to3timeswithonlysmallnumericalerrorsstemming nurak et al. 2008; Lee et al. 2009; Makkonen et al. 2009; Yu w from condensation and coagulation calculations when compared Do toTOMAS-30.ThefasterversionsoftheTOMASmodelallowfor and Luo 2009). Because CCN behavior depends strongly on thelonger,multi-yearsimulationsrequiredtoassessaerosoleffects particle size, these models have included specific treatment of oncloudlifetimeandprecipitation. aerosolmicrophysicalprocesses.Thesemodelssolvetheaerosol generaldynamicequation(GDE)thatgovernshowtheaerosol sizedistributionevolvesovertimeasaresultofmicrophysical processessuchasnucleation,condensation/evaporation,andco- agulation.AccurateandflexiblealgorithmsforsolvingtheGDE Received26July2011;accepted26October2011. areespeciallynecessarytoobtainprecisenumberandmassdis- ThisstudywassupportedbytheEnvironmentalProtectionAgency tributions of aerosol particles, although model performance is (EPASTARAward83337401). mostly limited by uncertainties in key inputs. In particular, it AddresscorrespondencetoY.H.Lee,NASAGoddardInstitutefor appearsnecessarytotreatthemicrophysicsofultrafineparticles Space Studies and Center for Climate Systems Research, Columbia indetailsincemanyCCNresultfromthegrowthofthesepar- University, 2880 Broadway, New York, NY 10025, USA. E-mail: [email protected] ticles to CCN sizes (Pierce et al. 2007; Spracklen et al. 2008; 678 FASTANDEFFICIENTTOMASMODELS 679 Merikanto et al. 2009; Chen et al. 2010). Thus it is important TheTwO-MomentAerosolSectional(TOMAS)aerosolmi- for these models to have sufficient size resolution in the size crophysicsmodelhasbeenimplementedintotheclimatemodel range of particles that contribute the most CCN (Zhang et al. of Goddard Institute for Space Studies General Circulation 2002; Korhonen et al. 2005). For the coarse mode (1 μm < Model II-prime (GISS GCM II-prime) referred as “GISS- particlediameter<10μm),detailedmicrophysicscalculations TOMAS”model(LeeandAdams2010),ortheGEOS-CHEM maynotbenecessarybecausetheirgrowthratesareslow,and model(Trivitayanuraketal.2008),andtheregionalmodelPM- theircontributiontoCCNnumberconcentrationsarenegligible CAMx,referredasPMCAMx-UF(Jungetal.2010).Modules (Heintzenberg1989;Raesetal.2000). for each of the major aerosol species have been developed for In general, accurate and flexible algorithms for solving the the GISS GCM, and the GISS-TOMAS model (i.e., TOMAS- GDE impose a high computational burden, and this is an im- 30 model in the paper) have been evaluated with ground-level portant issue in large-scale aerosol transport models that must measurements such as number and mass concentrations, de- balancepredictionaccuracyversusfastercomputertime.Aspe- position fluxes, and remote sensing observations (Adams and cial challenge is to simulate cloud lifetime effects. Because Seinfeld2002;PierceandAdams2006;Pierceetal.2007;Lee 3 thesesimulationsperturbthemeteorologicalfieldsoftheglobal etal.2009;LeeandAdams2010).Coagulationandcondensa- 01 model, long (multi-year) simulations are required to separate tionintheoriginalTOMASmodelhavebeenevaluatedagainst 2 ril the aerosol effect (signal) from chaotic meteorological vari- analyticalsolutionsandhaveshownexcellentagreement(Jung p ability (noise). Methods for solving the GDE differ primar- etal.2010).ThisfeaturemakestheTOMASmodelanexcellent A 6 ily in how they represent the aerosol size distribution and can toolfortheaerosolindirecteffectstudy.However,theTOMAS 1 7 becategorizedintomoment,modal,andsectionalapproaches. modeldominatesthecomputationaltimeoftheGISS-TOMAS 4 4: Moments-based approaches track lower-order radial moments modelthatismostlyduetothemicrophysicsandtracertransport. at 1 of the size distribution, and modal approaches use analytical Thegoalofthisworkistodevelopmorecomputationallyef- ] functions(e.g.,lognormaldistributions)thatrepresentthesev- ficientversionsoftheTOMASmodel(hereafter,FastTOMAS) s die eralmodesoftheparticlepopulation.Sectionalapproachesrep- whilestillmaintainingacceptableaccuracy.Section2includes u resent a size distribution by predicting the amount of aerosols theoriginalTOMASmodeldescription,andSection3explains St e inseveralsizesectionsor“bins.”Single-momentsectionalap- the methods used to develop the Fast TOMAS models. Sec- c a proachestypicallytrackeitheraerosolnumberormassineach tion 4 shows results of box model evaluation of Fast TOMAS p S r bin, while two-moment sectional approaches explicitly track modelsagainstanalyticalsolutionsofcoagulationandconden- o f both aerosol number (i.e., zeroth moment) and mass (i.e., first sation. Section 5 evaluates Fast TOMAS against the original e ut moment) in each size section. Two-moment sectional method TOMASmodelinthecontextofaglobal,3-Dmodelandana- stit can conserve both number and mass very accurately (Tzivion lyzessourcesoferrorinthiscomparison.Section6isasummary n I etal.1987;Tzivionetal.2001;AdamsandSeinfeld2002;Jung anddiscussionofthisstudy. d ar etal.2006),whereassingle-momentsectionalapproachesmay d d result in less accurate aerosol number information than two- o G momentsectionalmethod(HarringtonandKreidenweis1998). 2. ORIGINALTOMASMODELDESCRIPTION A S The modal and the moments-based approaches are generally Basedonearlieralgorithmsfortreatingcloudmicrophysics A morecomputationallyefficientbutlessaccuratethansectional (Tzivion et al. 1987; 1989), the TOMAS global microphysics N y [ approaches.Forexample,thesectionalapproachisshowntobe modelwasadaptedforaerosolsbyAdamsandSeinfeld(2002) d b moreaccurateandflexiblewhendealingwithabrupttransitions andwasincorporatedintotheGISSGCMII-prime.TheGISS de in a size distribution occurring during aerosol activation pro- GCM II-prime has horizontal grid dimensions of 4◦ latitude oa cesses(Zhangetal.1999).Thus,eventhoughtheyarecomputa- by 5◦ longitude and vertical grid dimensions of 9 vertical lay- nl w tionallyexpensiveinaglobalmodel,theiraccuracyandflexibil- erscoveringthetroposphereandthestratospheretothe10-hPa o D ityhasfoundseveralapplicationsin3-dimensional,global-scale level(Hansenetal.1983).AdamsandSeinfeld(2002)providea models (Jacobson 2001; Adams and Seinfeld 2002; Spracklen detaileddescriptionoftheTOMASmodel,andLeeandAdams et al. 2005; Trivitayanurak et al. 2008; Lee et al. 2009). How- (2010)providemostupdateddescriptionofitsimplementation ever,theircomputationalrequirementslimittheiruse,especially intotheGISSGCM.Here,itsimportantfeaturesarebrieflysum- for multi-year simulations that are generally required to study marized.The“TwO-Moment”referstothetwomomentsofthe aerosolindirecteffects.AsaglobalCCNmodel,itisimportant aerosolsizedistributiontrackedforeachsizebin,totalaerosol toachieveacomputationalefficiencyaswellasanaccuratepre- number, and mass concentrations for each aerosol species, to diction.Avarietyoftechniquesareused(moment,modal,and predicttheaerosolnumberandmasssizedistributions(Tzivion sectional) for a global CCN model, but little systematic work et al. 1987; 1989) and, therefore, represents a highly accurate has been done to evaluate accuracy and to compare compu- andflexibledescriptionofaerosolmicrophysics. tational speed of different configurations. This work evaluates The original model has thirty size sections (hereafter, theaccuracyofdifferentsectionalmodelconfigurationsforthe TOMAS-30)withthelowerboundaryofthesmallestsizebinbe- specificpurposeofpredictingaerosolnumberdistributionsand ing10−21kgdrymassperparticle,andeachsuccessiveboundary CCNconcentrationsonaglobalscale. has twice the mass of the previous boundary (so-called “mass 680 Y.H.LEEANDP.J.ADAMS doubling”). For typical aerosol densities, the TOMAS-30 size 0.2%and1.0%,respectively.Forin-cloudscavenging,modified distribution therefore ranges approximately from 10 nm to 10 Ko¨hler theory is used to determine the activation diameter for μm in dry diameter. The model tracks 9 quantities for each thecriticalsupersaturation,andparticleslargerthantheactiva- size bin: total number of aerosol particles, sulfate mass, sea- tiondiameterareactivatedandsubjecttonucleationscavenging salt mass, mass of pure (externally mixed) elemental carbon, (Lee et al. 2009). Note that in-cloud scavenging is applied to massofinternallymixedelementalcarbon,massofhydropho- internally mixed elemental carbon but not to externally mixed bic organic matter, mass of hydrophilic organic matter, min- elementalcarbon.Whentheactivationdiameterisintermediate eral dust mass, and aerosol water mass. The model includes betweenthesizeboundaries,thefractionofparticlesactivatedin aerosol microphysics processes, such as condensation of sul- thebinisdeterminedbylinearinterpolationwithintheactivat- furicacid,coagulation,nucleationandin-cloudoxidation,and ingsizeboundaries(i.e.,dryaerosolmass).Foraerosolactiva- size-resolvedemissionsanddeposition.Sulfuricacidconcentra- tion,allaerosolsaretreatedasinternallymixedexceptforpure tionsusedforthenucleationandcondensationratesaresolved elemental carbon. Dry deposition uses the resistance-in-series simultaneouslywiththepseudo-steadystateassumption(Pierce approach that treats a size-dependent gravitational settling of 3 andAdams2009a),andthegrowthofnucleatedparticlesupto particles and a size-dependent resistance in the quasi-laminar 01 thefirstsizebin,adiameterof10nm,istakenintoaccountusing sublayer.Aerodynamicresistancesarecalculatedasafunction 2 ril the parameterization of Kerminen et al. (2004). Details of the ofGCMsurfacemomentumandheatfluxes.Nosurfaceresis- p TOMASmodelforsulfate(AdamsandSeinfeld2002),sea-salt tanceisassumedforaerosolspecies. A 6 (PierceandAdams2006),carbonaceousaerosols(Pierceetal. 1 7 2007), and mineral dust (Lee et al. 2009) have been described 4 4: elsewhere,butabriefdescriptionofaerosolemissionusedfor 3. FASTTOMAS at 1 this work is provided here. Primary sulfate is assumed to be The computational burden of GISS-TOMAS mostly results ] 1% of anthropogenic sulfur emissions and to be emitted in 2 fromthe2-momentsectionalapproachthatusesthirtysizebins s die modes;15%ofthemasstohavealognormaldistributionwith (e.g.,about5.6daysfora1-monthsimulationwithTOMAS-30 Stu a number median diameter (NMD) of 10 nm and a geometric usinga250MHzsingleprocessorofanSGIOrigin2000).To e standarddeviation(GSD)of1.6and85%ofthemasstohavea speed computations, the number of size bins is reduced with c a lognormal distributionwitha NMDof 70 nm and a GSD of 2 thefollowingmannerasshowninTable1.First,theTOMAS- p S r (AdamsandSeinfeld2002).Emissionsfromfossilfuel,biofuel, 15 model is developed by merging each 2 adjacent bins in the o f andbiomassburningarebasedonBondetal.(2004),and1.8is originalTOMASmodel,therebydecreasingthenumberofsize e ut usedastheconversionoforganiccarbonmasstoorganicmatter binstofifteen.Second,wetakeadvantageofthefactthatcoarse stit (Pierceetal.2007).Thesizedistributionofbiofuelandbiomass particleshaveslowmicrophysicsanddonotcontributemuchto n I burning carbonaceous emission follows a lognormal distribu- CCNconcentrationsand,thus,wedecreasethesizeresolution d ar tionwithaNMDof100nmandaGSDof2,and,forfossilfuel, ofthecoarsemodefurtherto2binsandcallthismodelversion d d alognormaldistributionwithaNMDof30nmandaGSDof2 “TOMAS-12.” o G isassumed(Pierceetal.2007).Sea-saltemissionsarebasedon With these new size resolutions, several aerosol processes A S theemissionsparameterizationofClarkeetal.(2006).Notethat need to be changed: aerosol emissions, deposition, in-cloud A mineraldustisexcludedinthisworkbecausethedustemission scavenging, aqueous oxidation, and microphysical processes N y [ parameterization cannotproduce thesameemissionratewhen (condensationandcoagulation).Exceptcoagulation,mostpro- d b reducingsizebins.Withmineraldust,itwouldbeproblematic cesses require minor changes or are straightforward to imple- de toestimate“emissionerror”(Section5.1). ment. However, the coagulation scheme used in the original a o Description of wet deposition and dry deposition can be TOMAS-30 model is based on Tzivion et al. (1987), in which nl w found in Adams and Seinfeld (2002) and Lee et al. (2009). thestochasticcollectionequationisreducedtoasetofmoment o D Briefly wet deposition occurs in large-scale (stratiform) and equationsforeachsizesectionusing2moments,Nk (thetotal convectivecloudsthatareassumedtohaveasupersaturationof number of aerosol particles in the k-th size bin) and M (the k TABLE 1 ConfigurationsofsizeresolutioninTOMAS-30,TOMAS-15,andTOMAS-12 Aitkenmode Accumulationmode Coarsemode TOMASmodel (10nm<D <100nm) (100nm<D <1μm) (1μm<D <10μm) p p p TOMAS-30 10bins 10bins 10bins TOMAS-15 5bins 5bins 5bins TOMAS-12 5bins 5bins 2bins FASTANDEFFICIENTTOMASMODELS 681 massofaerosolparticlesinthek-thsizebin),thatarepresented f −ψ (cid:2)k−1 K M N in Equations (1) to (4) in Adams and Seinfeld (2002). These − k6xk kξ3 Kk,iMim2i − k,k3k k equations for TOMAS-30 assume mass doubling size bound- i=1 aries,whichsimplifiesthecoagulationequationbyeliminating −ψkK M x − fk+2ψkK M m ξ self-coagulation in a size bin, defined here as the coagulation 3 k,k k k+1 18 k,k k k owfit2hmpaarstsicilnesthferoomrigtihnealssaizmeesesciztieonse(cTtzioivniotnoeftoarml.1a98p7a)r.tiFcoler −fk1−8xψk kKk,kMkm2kξ3 [2] the TOMAS-15 model, a new set of equations for coagulation rate must be obtained using mass quadrupling section bound- whereK isthecoagulationcoefficientforparticlesinthek-th k,i aries and are based on Tzivion et al. (1999; 2001). The basic binwithparticlesinthei-th,x isthelowerboundaryofthek-th k approach is quite similar to that applied to TOMAS-30, and sizebinintermsofdrymass,m istheaveragemassofparticles k Equations(1)and(2)showhowaerosolnumber(Nk)andmass inthek-thbin,I isthetotalnumberofsizebins,ξ isaclosure (Mk)evolvewithtimeintheTOMAS-15model. parameterthatdependsonthebinspacing(equals1.28125for 3 themass-quadruplingusedhere),fk and(cid:4)k areparametersthat 1 0 dN (cid:2)k−2 f −ψ (cid:2)k−2 describethelinearapproximationtothenumberdistributionand April 2 dtk =ψk−1 i=1Kk−1,iMi + k−61xk−1k−1ξ i=1Kk−1,iMimi asureffidceiefinntelyd ignenTezriavliotonaeptpally. (t1o9T9O9)M. EAqSu-a1t2ionass (w1e)llanwdit(h2)onalrye 7 16 +0.625Kk−1,k−1Nk2−1+ ψk3−1Kk−1,k−1Nk−1mk−1 msizineorresmoloudtiiofincaotifotnhse.2FsoercTtiOonMsAinSt-h1e2c,oξaresqeumalosd4e..754 for the 4 at 14: +fk−118−xk−ψ1k−1ξKk−1,k−1Nk−1m2k−1−1.125Kk,kNk2 meTthhoedscaosagAudlaatmiosnankderSneeiln,fKelkd,i,(2i0s0c2a)l.cIunlabtreidef,uosninlygBthroewsnaimane s] (cid:2)I (cid:2)k−1 diffusion is accounted for in the coagulation kernel using the e di −Nk Kk,iNi −ψk Kk,iMi particle diffusivity based on the Stokes-Einstein formula, and u St i=k+1 i=1 the correction factor for the transition and kinetic regime is ce f −ψ (cid:2)k−1 ψ based on Dahneke (1983). The kernel is recalculated at every pa − k kξ K M m − kK N m gridcellandtimestepusingtheaveragehydratedparticlesizes or S 6xk i=1 k,i i i 3 k,k k k inbinskandi. stitute f −fk1−8xψk kξKk,kNkm2k [1] munesBtuhecoscdiedssefssofurrled.deFucicrresinat,gsainthRgeucnnougmmep-bKuetuarttotiaofnssoaizllvetiebmriwnesta,hswattretiueedrxnpienldotroheuedtcotoothabgeer- n dard I ddMtk =ψk−1xk(cid:2)k−2Kk−1,iMi uthlaatniothnemfiorsdtu-oler,dwerhEicuhleirsmaemthoordeaindvthaencoeridgninuamlTerOicMalAteScmhnoidqeule. od i=1 However,useofRunge-Kuttaincreasedthecomputationalbur- A G +fk−1+2ψk−1ξ(cid:2)k−2K M m den. This was because the Runge-Kutta method requires 4 it- S k−1,i i i erations in a time step. The original model used an adaptive A 6 N i=1 timestep,butcoagulationisslowenoughinmostgridboxes(in by [ +fk−1−ψk−1ξ3(cid:2)k−2K M m2 theGISSglobalmodel)soonlyasingleiterationwasrequired ded 6xk−1 i=1 k−1,i i i mkeornstelo,fwthheicthimise.aSfeucnocntdio,naolofopkr-euspsutraeb,letefmopretrhaetucroea,gpualrattiicolne a K M N ψ nlo + k−1,k−1 k−1 k−1 + k−1Kk−1,k−1Mk−1xk mass,andparticledensity,wastriedbut,unexpectedly,didnot w 3 3 improvethemodelspeed.Otheraerosolmicrophysicalmodels Do +fk−1+2ψk−1K M m ξ typicallyimplementalook-uptableforthecoagulationkernel k−1,k−1 k−1 k−1 18 andfindthatitimprovescomputationalspeed.Ourmodeluses f −ψ + k−1 k−1K M m2 ξ3 the correction factor based on Dahneke (1983), while a more 18xk−1 k−1,k−1 k−1 k−1 complexformbasedonFuchs(1964)ismorecommonlyused. (cid:2)k−1 (cid:2)I Thechoiceofsimplerformforthecorrectionfactormayexplain +N K M −M K N whythelook-uptablemethodwasnotsuccessful. k k,i i k k,i i i=1 i=k+1 (cid:2)k−1 −ψ x K M 4. BOXMODELEVALUATIONVERSUSANALYTICAL k k+1 k,i i SOLUTIONS i=1 −fk +2ψkξ(cid:2)k−1K M m moNdeelws aTgOaiMnsAtSa-n1a5lyatincdalTsOoMlutAioSn-s1.2Cmonoddeenlssaatrieonteastneddcinoabgoux- k,i i i 6 lation in TOMAS-12 and TOMAS-15 models as well as the i=1 682 Y.H.LEEANDP.J.ADAMS originalTOMAS-30areevaluatedagainstanalyticalsolutions. ference in total mass concentration among models is less than The analytical solution for condensation (Seinfeld and Pandis 1%(notshown).Comparedtotheanalyticalsolution,TOMAS- 1998, pp. 654–655) assumes an initially lognormal size distri- 30 captures the correct location and magnitude of the peak of butionandaconstantconcentrationgradientofthecondensing thesizedistributionasdoTOMAS-15andTOMAS-12models. gas between the surface of particles and the bulk gas phase. However, the new models show slightly less growth after 10 The initial particle size distribution has a geometric mean di- minofcondensation(notshown),whichmeansthatthenumber ameter of 200 nm, a geometric standard deviation of 2, and ofparticlessmallerthanthepeakofthesizedistributioninthe the initial number concentration of 203 cm−3. The following newmodelsis∼10%higherthantheTOMAS-30model. assumptions for condensation are used: constant pressure dif- The analytical solution for coagulation (Seinfeld and Pan- ference,10−10atm;temperatureof298K;molecularweightof dis1998,pp.678–679)requiresasize-independentcoagulation 100gmol−1;particledensityof1.0gcm−3;particlediffusivity coefficient to solve the continuous coagulation equation. The of0.1cm2s−1;idealgasconstantof82.06cm3atmK−1mol−1. comparison of number size distributions evolved by coagula- Figure1ashowsthecomparisonofinitialandpredictedaerosol tion during 1 h is shown in Figure 1b. The initial particle size 3 number size distributions after 1 h of condensation. Because distributionisassumedtohaveanumber concentration of104 01 the 2-moment algorithms incorporate a conservation equation cm−3andvolumeof2.6808μm3withcoagulation kernelof5 ril 2 foraerosolnumberconcentrations,totalnumberconcentrations × 10−8cm3 s−1. The difference in total number concentration p predictedbyallTOMASmodelsareconservedexactly.Thedif- predictedbytheTOMASmodelsandtheanalyticalsolutionis A 6 less than 5%, and the difference in TOMAS-12 and TOMAS- 1 7 15modelsandTOMAS-30modelislessthan0.4%(formass, 4 4: 0.02%;notshown).TOMAS-30modelshowsexcellentagree- at 1 ment to the analytical solution as shown in Jung et al. (2006). ] However,theTOMAS-15andTOMAS-12modelsshowslightly s die fastercoagulationalgrowth. u Although the coagulation calculation in TOMAS-15 and St e TOMAS-30performreasonablywell,someaspectsofthecom- c a parisonareartificial.First,theinitialsizedistributionissome- p S r what narrow, and it is expected that the coarse size resolution o f in TOMAS-15 and TOMAS-12 will show higher errors as the e ut widthofinitialsizedistributionisnarrower.Second,theanalyt- stit icalsolutionrequiresaphysicallyunrealisticconstantcoagula- n I tioncoefficient.Therefore,thecomparisonsarerepeatedusing d ar as inputs lognormal distributions with number mean diameter dd of 30 nm but varying their standard deviations (σ) from 1.2 o G to 2.0, and 1-h coagulation is applied. Initially, total number SA concentrationissetto105cm−3.Inthistest,onlyTOMAS-30 A and TOMAS-15 models are compared with each other by us- N y [ ingsize-dependentcoagulationcoefficientbecausethenumber d b predictionsfromTOMAS-12modelareidenticaltothosefrom de TOMAS-15model.InFigure2,theTOMAS-15andTOMAS- a o 30modelspredictthesamemagnitudeandlocationforthepeaks nl w inthenumbersizedistributionsafter1hofcoagulationbutdif- o D ferentnumberconcentrationateachsizebin.Thedifferencein totalnumberconcentrationbetweenTOMAS-30andTOMAS- 15inthe3casesismuchlessthan1%.Themaximumdifference ofnumberconcentrationateachsizebinbetweenTOMAS-30 andTOMAS-15after1-hcoagulationisobservedforσ of1.2, andisapproximatelyafactorof4,butithaslittlecontribution tototalnumberconcentration.Themaximumdifferenceateach FIG.1. EvolutionofthenumbersizedistributionpredictedbytheTOMAS- 30,TOMAS-15,andTOMAS-12boxmodels,comparedagainsttheanalytical sizebinisreducedtoapproximately50%and10%forσ =1.5 solutionsfor(a)condensationand(b)coagulationafter1h.Tofacilitateadirect and σ = 2.0, respectively. The difference in number concen- evaluationoftheneweralgorithms,theanalyticalandTOMAS-30resultshave tration at each bin can be as large as 7%, 4%, and 1% of total beengriddedtothecoarserresolutionofTOMAS-15.Detailsoftheinitialsize numberconcentrationforσof1.2,σof1.5,andσof2.0,respec- distributionsandotherinputparametersareavailableinSection4.Notethat tively.ThesetestsimplythatTOMAS-15andTOMAS-12may theresultsfromTOMAS-15andTOMAS-12areidenticalandthusthelines representing2modelsareoverlapped.(Colorfigureavailableonline.) introduce greater numerical error when dealing with a narrow FASTANDEFFICIENTTOMASMODELS 683 model,theGISSGCMII-prime.FortheFastTOMASmodels coupled with GISS GCM, all size-resolved processes must be changedtoaccommodatelowersizeresolutionsinTOMAS-15 and TOMAS-12 models: emissions, cloud processing, deposi- tion, as well as aerosol microphysics (i.e., condensation and coagulation).Withalowersizeresolution,anyerrorassociated 3 1 0 2 ril p A 6 1 7 4 4: 1 at ] s e di u St e c a p S r o f e ut stit n I d r a d d o G A AS FIG.2. NumbersizedistributionspredictedbytheTOMAS-30andTOMAS- N 15boxmodelsusingasize-dependentcoagulationkernelafter1-hcoagulation. y [ Notethatinitialnumbersizedistributionisassumedtobelognormalwitha b geometricmeandiameterof30nmandgeometricstandarddeviationsvaried ed from1.2to2.0(σ=1.2fora,σ=1.5forb,andσ=2.0forc).Theinitialtotal ad numberconcentrationis105cm−3.(Colorfigureavailableonline.) o nl w o sizedistribution.However,thetestconditionsusedhereare,in D fact,ratherextremecomparedtotheambientatmosphere,where the narrow number size distributions (i.e., σ of 1.2) are quite unusualinambientair.Overall,theFastTOMASmodelsshow goodagreementagainsttheanalyticalsolutionsandTOMAS-30 modelwithlargererrorsundersomespecificconditions. 5. 3-DMODELEVALUATION 5.1. SourcesofErrorintheTOMAS-15andTOMAS-12 FIG.3. GlobaldistributionofemissionerrorofCN10,CN70,andCN100. Emissionerrorisdefinedaserrorsresultingfromdecreasingthesizeresolution Models intheemissionprocessandisestimatedbycalculatingtheratioofCAD-30to TheaccuracyoftheFastTOMASmodelshasalsobeeneval- CAD-30–30EMIS.Notethatthevalueonthetoprightofeachfigureisaglobal uatedagainsttheTOMAS-30modelinthecontextofaglobal averageoftheerrorsdisplayedinthemap.(Colorfigureavailableonline.) 684 Y.H.LEEANDP.J.ADAMS TABLE 2 Descriptionofprocess-specificerrorsandsimulationsusedtoestimatetheerror Errortype Errordescription Simulationsused Cloudprocessing ErrorsresultingfromlowersizeresolutionusedtodetermineCCNactivation (KOH-15/KOH-30)∗ fractioninwetdepositionandin-cloudsulfuroxidation OfflineCCN ErrorsresultingfromlowersizeresolutionusedtodetermineCCN(0.2%)based CAD-30outputmerged onmodeloutput(e.g.,monthlyaerosolfield).Thisisofflineprocessinour into15-bin/CAD-30 model Emission Errorsresultingfromlowersizeresolutionusedtorepresentemissionsize CAD-30/CAD-30–30EMS distribution Microphysics Errorsresultingfromlowersizeresolutionusedtocalculatecondensationand CAD-15/CAD-30 coagulationrates 3 Condensation Sameasmicrophysicsbutnochangeincoagulation CAD-15–30COA/CAD-30 1 0 Coagulation Sameasmicrophysicsbutnochangeincondensation CAD-15/CAD-15–30COA 2 pril ∗Notethatcloud-processingerrorisobtainedbymakingaratioofKOH-15toKOH-30andsubtractingmicrophysicserror. A 6 1 with a size-resolved process will necessarily increase. In this explanation can be found in Lee et al. (2009). Fourth, errors 7 4 section,theoverallerrorsassociatedwithchangingthesizeres- directlyassociatedwithusinglowersizeresolutioninTOMAS- 4: 1 olution are separated into 4 process-specific errors (Table 2). 15 and TOMAS-12 to calculate condensation and coagulation ] at First,errorsresultingfromloweringthesizeresolutionofemit- ratesaredefinedasmicrophysicserror.Includedinthe“micro- s e tedparticlesaredefinedas“emissionerror.”Second,errorsfrom physics”errorsarefeedbackstonucleationrates.TheTOMAS di u reducing the size resolution used in cloud processing and wet modulesusethepseudo-steadystateapproximation(Pierceand St e deposition, calculated “online (during the simulations)” in the Adams2009a),whichassumesthatsourcesandsinksofsulfu- ac model,aredefinedas“cloud-processingerror.”Third,errorsin ricacidvaporareapproximatelyinbalance.Changesinmodel p S CCNconcentrationsat0.2%supersaturation(CCN(0.2%))con- size resolution necessarily affect the condensational sink and r o centrationsresultingfromlowersizeresolutioninCCNcalcula- sulfuric acid concentrations, causing differences in nucleation f ute tionisdefinedas“offlineCCNerror.”AlthoughCCNconcentra- ratesaswellasthegrowthofnucleatedparticlesuptothefirst stit tionsarecalculatedduringthemodelsimulationsforpurposes sizebin. In of wet deposition, these are not saved as output. Therefore, Lastly,modelsizeresolutionwillaffectdrydepositionrates d r CCN(0.2%) concentrations in TOMAS models are calculated and below-cloud scavenging rates because these processes are a dd afterthemodelsimulationsarecompletebasedonmonthlyav- size-resolvedasexplainedinAdamsandSeinfeld(2002).Dry o G erageaerosolsizeandcompositiondistributions.Therefore,this depositionisimportantforcoarsemodeparticles,andFigure4 A “offline” CCN error is separated from cloud-processing error, showsanoticeablechangeinsea-saltmassfromTOMAS-15to S A eventhoughbothhavesimilarsources.Itisimportanttomen- TOMAS-12 (Section 5.2). Aerosol number concentrations are N [ tion that the activation process required for cloud-processing, notstronglyaffectedbecausedrydepositionratesareslowfor y b wetdeposition,andofflineCCNcalculationisbasedonmodified the accumulation mode particles that contribute most to CCN d e Ko¨hler theory that is explained in Section 2 but more detailed number.Similarly,errorsinbelow-cloudscavengingratesfrom d a o nl w o D TABLE 3 Descriptionsofsimulationsusedinthisstudy Simulationname Condensation Coagulation Emission Cloudprocessing/Wetdeposition KOH-30 30bins 30bins 15bins KOH KOH-15 15bins 15bins 15bins KOH CAD-30 30bins 30bins 15bins CAD CAD-15 15bins 15bins 15bins CAD CAD-12 12bins 12bins 12bins CAD CAD-30–30EMS 30bins 30bins 30bins CAD CAD-15–30COA 15bins 30bins 15bins CAD Note.KOHandCADrefertoKo¨hlertheoryandconstantactivationdiameter,respectively. FASTANDEFFICIENTTOMASMODELS 685 3 1 0 2 ril p A 6 1 7 4 4: 1 at ] s e di u St e c a p S r o f e ut stit n I d r a d d o G A S FIG.4. Globaldistributionofnumberconcentration(CN10)andmassconcentrationsforsulfate,sea-salt,andorganicmatter(showninthe1stcolumn)and A theirmicrophysicserrors(shownin2ndand3rdcolumns)inthelowermostverticallayer.Microphysicserrorisdefinedhereaserrorsresultingfromlowersize N [ resolutionusedtocalculatecoagulationandcondensationratesandisestimatedbymakingaratioofCAD-15toCAD-30(andCAD-12toCAD-30).Notethatthe y b upperlimitonthecolorbarisdifferentfromthoseinotherfiguresbecausethemaximumerrorinthisfigure(Figure4)exceedsthatlimitandthevalueonthetop d rightofeachfigurein2ndand3rdcolumnisaglobalaverageoftheerrorsdisplayedinthemap.(Colorfigureavailableonline.) e d a o nl w o a lower size resolution are expected to have little impact on 30–30EMS)useemissioninventorieswithfifteenbinsthatgive D CCN particles because this is not efficient to remove particles the same total number and aerosol mass as the original thirty inaccumulationmode. emissioninventories.Toassesstheeffectofusingcoarseremis- Various simulation scenarios used to isolate these errors in sionsinventories,CAD-30–30EMSusestheoriginalthirty-bin thispaperaresummarizedinTable3.Thesimulationsarenamed emissionsinventories.Toseparateerrorsincondensationrates accordingtowhatsizeresolutionisusedforvariousprocesses fromcoagulationrates,theCAD-15–30COAusesthirty-binco- andhowaerosolactivationistreated.KOHmeansthatmodified agulationbyredistributingN andM intothirtybinsbutkeeps k k Ko¨hler theory was used for cloud processing and wet deposi- fifteenbinsforcondensation. tionasisthecaseintheTOMAS-30model.IncontrasttoKOH, Appropriate pairs of simulations are used to estimate each constant activation diameter (CAD) is used to exclude cloud- process-specificerrorwiththeirnumberormassconcentrations processingerrors;theactivationdiameterissetto∼30nmfor (see third column in Table 2). All types of error except the convective clouds and to ∼70 nm for large-scale clouds. To offline CCN error are based on total aerosol number (defined ensureidenticalemissionsinputs,allsimulations(exceptCAD- as CN10, number of particles larger than 10 nm in diameter), 686 Y.H.LEEANDP.J.ADAMS CN70(samebutfor70nmindiameter),andCN100(samebut TOMAS-12models(i.e.,aratioofaerosolnumberandmassof for100nmindiameter).CN70andCN100arechosentoreflect CAD-15 or CAD-12 to CAD-30) in Figure 4. Except for sea- typicalcriticaldiametersforparticlestoactivate,especiallyfor saltmass,alldifferencesshowninFigure4aredueprimarilyto stratiformcloudswithsupersaturationsof∼0.2%. the purely numerical “microphysics” error of using fewer size binsforcondensationandcoagulation.Sulfatemassconcentra- 5.2. 3-DModelEvaluationofFastTOMAS tionsandCN10numberconcentrationinTOMAS-15/TOMAS- Three-dimensional simulations using TOMAS-15 and 12 show very similar results (within ±5% in most regions) to TOMAS-12 in a global model are evaluated against the TOMAS-30. Sea-salt mass concentrations show large changes TOMAS-30 model. Here, we report simulation results from a inTOMAS-12thataremostlycausedbydifferencesinthelast 3-monthaveragefromMarchtoMayafterdiscarding3months size bin, i.e., particles larger than ∼3 μm. Unlike sulfate and ofmodelspin-up.A3-monthsimulationispreferredtoa1-year carbonaceousaerosols,significantnumbersofsea-saltparticles simulationtosavecomputationaltimeandbecausethenumeri- arefoundinthecoarsemode,wheredrydepositionisthemain calerrorsareverysimilarmonthtomonth.Figure3showsthe removal process. Since dry deposition is a strong function of 3 emissionerrorcausedbychangingtheemissionssizeresolution particlesize,adifferentmeandiameteratcoarsebinsresultsin 01 from thirty bins to fifteen bins but otherwise using the higher, verydifferentdrydepositionrates.Asaresult,errorsinsea-salt 2 pril tehrrirotrys-bairneraepsoplruotxioimnaftoerlyalwl oitthhienr±pr2o%cesfsoers.CENm1i0s,siConNs7-r0e,laatnedd maearosssoclonfocernTtrOatMioAnsSa-1re2,lawrgheircthhaunsefsorosnullyfat2esoirzcearbbinosnaicneothues A 6 CN100predictionsinmostoftheregionsasshowninFigure3. coarsemode.InFigure4,microphysicserrorsdisplaysomelat- 1 7 Three-month averages of mass of sulfate, sea-salt, organic itude patterns: negative errors near the equatorial regions for 4 4: matter, and number concentration (CN10) in the lowermost OMandCN10,andincreasingerrorsfrommid-tohigh-latitude at 1 vertical layer are compared in TOMAS-30, TOMAS-15, and regions in Northern Hemisphere for all species except sulfate. ] s e di u St e c a p S r o f e ut stit n I d r a d d o G A S A N [ y b d e d a o nl w o D FIG.5. Globaldistributionofmicrophysicserrorofsurfacelayer(a)CN70,and(c)CN100,andcloud-processingerrorof(b)CN70,and(d)CN100,respectively. Notethatthecloud-processingerrorisdefinedhereaserrorsresultingfromlowersizeresolutionusedinwetdepositionandcloudprocessingandisestimatedby makingaratioofKOH-15toKOH-30andthenbysubtractingmicrophysicserror.Notethatthelowerlimitonthecolorbarisdifferentfromthoseinotherfigures becausetheminimumerrorinthisfigure(Figure5)exceedsthatlimitandthevalueonthetoprightofeachfigureisaglobalaverageoftheerrorsdisplayedinthe map.(Colorfigureavailableonline.)