SUBMITTEDTOTheAstrophysicalJournal PreprinttypesetusingLATEXstyleemulateapjv.5/25/10 DISCOVERYOFAGIANTRADIOHALOINANEWPLANCKGALAXYCLUSTERPLCKG171.9-40.7 SIMONAGIACINTUCCI1,2,RUTAKALE3,4,DANIELR.WIK5,6,TIZIANAVENTURI3,MAXIMMARKEVITCH5 submittedtoTheAstrophysicalJournal ABSTRACT Wereportthediscoveryofagiantradiohaloinanew,hot,X-rayluminousgalaxyclusterrecentlyfoundby Planck,PLCKG171.9-40.7.TheradiohalowasfoundusingGiantMetrewaveRadioTelescopeobservationsat 3 235MHzand610MHz,andinthe1.4GHzdatafromaNRAOVeryLargeArraySkySurveypointingthatwe 1 havereanalyzed.ThediffuseradioemissioniscoincidentwiththeclusterX-rayemission,hasanextentof∼1 0 Mpcandaradiopowerof∼5×1024WHz−1at1.4GHz. Itsintegratedradiospectrumhasaslopeofα≈1.8 2 between235MHzand1.4GHz,steeperthanthatofatypicalgianthalo. TheanalysisofthearchivalXMM- b Newton X–ray data shows that the cluster is hot (∼10 keV) and disturbed, consistent with X-ray selected e clustershostingradio halos. This is the first giantradio halodiscoveredin oneof the new clustersfoundby F Planck. 1 Subjectheadings:galaxies: clusters: general— galaxies: clusters: individual(PLCKG171.9-40.7)— inter- galacticmedium—radiocontinuum:general—X–rays:galaxies:clusters ] O 1. INTRODUCTION 2010; Brown&Rudnick 2011; Brunettietal. 2012). In par- C ticular,radiohaloswith verysteepspectralindex7 (α>1.5) h. briSgphetncteascsulaanrdd∼iffMuspecreaxdtieonts,ouarrceeso,bsweirtvhedveirnysloomwesuorffathcee have been found (the prototype case is A521 with α 2, p Brunettietal. 2008; Dallacasaetal. 2009), consistent with most massive galaxy clusters. Depending on their loca- - turbulent reacceleration in weak mergers, i.e., collisions be- tion, i.e., cluster center versus outskirts, these cluster-wide ro sources are classified as giant radio halos or relics (see tween clusters with relatively low mass (<1015 M(cid:2)) or ac- t Ferrarietal. 2008; Venturi 2011; Ferettietal. 2012, for re- cretionofsmallersystemsintoamassivecluster. Secondary s a views; see vanWeerenetal. (2012); vanWeeren (2011); models have difficulty explaining such ultra-steep spectrum [ Kale&Dwarakanath (2010,2012);Giacintuccietal.(2011); radio halos (USSRHs), due to the large energy required in the form of relativistic protons (e.g., Brunettietal. 2008; Brown&Rudnick (2011); Bonafedeetal. (2012) for recent 1 results). Halos and relics are due to synchrotron emission Macarioetal.2010;vanWeerenetal. 2011). However,only v two giantradiohalosare confirmedUSSRHs so far – A521 from ultra-relativistic electrons with energy of several GeV, 8 spinning in μG magnetic fields that permeate the hot intra- and A697 – based on a well constrained spectrum with five 1 clustermedium(ICM). data points between 150 MHz and 1.4 GHz (Macario et al. 2 Particle acceleration and magnetic field amplification 2013).OtherpossibleUSSRHsstilllackconfirmationoftheir 0 . during cluster mergers have been proposed as mecha- spectralindex(e.g.,Giacintuccietal. 2011)andarecurrently 2 nisms by which diffuse radio emission is generated in underinvestigation. Therefore,itisnecessarytoconfirmthe 0 clusters. In particular, relics should be produced by candidates and find more of these USSRHs, with an accu- 3 electron (re)acceleration at merger shocks (Ensslinetal. rate determination of their spectral index, before ruling out 1 1998; Markevitchetal. 2005; Hoeft&Brüggen 2007; thesecondarymodels. v: Kang&Ryu 2011; Kangetal. 2012), while giant ha- A number of dedicated searches for cluster dif- i los may be caused by reacceleration of lower energy fuse radio sources have been carried out in the past X relativistic electrons by MHD turbulence during merg- decade (e.g., Giovanninietal. 1999; Kempner&Sarazin r ers (Brunetti 2011, and references therein). Although 2001; Venturietal. 2007, 2008; Giovanninietal. 2009; a alternative possibilities have been proposed for the ori- vanWeerenetal. 2009; vanWeerenetal. 2011), and the gin of the radio-emitting electrons – the secondary mod- numberofgianthalosandrelicshasrapidlyincreased.While els (e.g., Dennison 1980; Blasi&Colafrancesco 1999; ∼50 objects are presently known (including candidates), because of their low surface brightness, most of them lack Pfrommer&Enßlin2004;Keshet&Loeb2010;Enßlinetal. detailedspectralinformation,crucialtotesttheoreticalmod- 2011) – turbulent reacceleration models seem to be fa- els and understand the origin of the radio-emittingelectrons voredbycurrentradioobservations(e.g.,Venturietal.2008; (e.g.,Venturietal.2013). Brunettietal.2008,2009;Macarioetal.2010;Donnertetal. ThePlanck8 EarlySunyaev-Zel’dovich(ESZ)clustersam- ple (PlanckCollaborationetal. 2011b) is an all-sky sam- 1DepartmentofAstronomy,UniversityofMaryland,CollegePark,MD ple of clusters, detected by their multi-frequency signa- 20742,USA;[email protected] 2JointSpace-Science Institute, UniversityofMaryland, CollegePark, MD,20742-2421,USA 7WeadopttheconventionSν∝ν−α,whereSνistheisthefluxdensityat 3INAF-IstitutodiRadioastronomia,viaGobetti101,I-40129Bologna, thefrequencyν. Italy 8 Planck (http://www.esa.int/Planck), a project of the European Space 4DipartimentodiFisicaeAstronomia,viaRanzani1,I-40127Bologna, Agency(ESA)withinstrumentsprovidedbytwoscientificconsortiafunded Italy byESA member states (in particular the lead countries France and Italy), 5AstrophysicsScienceDivision,NASA/GoddardSpaceFlightCenter, withcontributions fromNASA(USA)andtelescopereflectorsprovidedby Greenbelt,MD20771,USA acollaborationbetweenESAandascientificconsortiumledandfundedby 5NASAPostdoctoralPositionFellow Denmark. 2 S.Giacintuccietal. 235 MHz. Details on these observationsare summarized in TABLE1 Table 2, which reports observing date, frequency and total GENERALPROPERTIESOFPLCKESZG171.94-40.65 bandwidth (columns 1, 2 and 3), total time on source (col- umn4),usabletimeafterdataediting(column5),full-width half maximum (FWHM) and position angle (PA) of the full RDAECJ2J0200000(h(◦m(cid:3)s(cid:3))(cid:3)) 003812225170.4 array(column6),rmslevel(1σ)atfullresolution(column7). zFe 0.27 ThedatasetswerecalibratedandreducedusingtheNRAO LX[0.1−2.4]kev(1045ergs−1) 1.13 AstronomicalImageProcessingSystem(AIPS)package.The kT (keV) 10.65 datawereinitiallyinspectedtoidentifyandremovebadchan- M500(M(cid:4)) 1.09×1015 nels,timeintervalsandvisibilitieswithradiofrequencyinter- DL(Mpc) 1364.5 ference(RFI). The data were foundto be affected by severe angularscale(kpc/(cid:3)(cid:3)) 4.135 phase instabilities caused by ionosphericscintillation during mostoftheobservation,leavingonly∼1hourofusabletime at both 610 MHz and 235 MHz. The data were then cali- NotestoTable1–RAJ2000 andDECJ2000 arethecoordinates oftheX-ray peak, zisfromtheironKline. Theluminosity LX[0.1−2.4]kev,temperature brated. Thefluxdensityscalewassetusing3C48and3C147 kT andmassM500 areestimatedwithinR500,whereR500 istheradiuscor- asamplitudecalibratorsandtheBaarsetal.(1977)scale. The respondingtoadensitycontrastof500(PlanckCollaborationetal.2011c). source 0323+055was used as a phase calibrator. The band- pass calibration was carried out using the flux density cali- ture in the Planck microwave observing bands (30–857 brators. Few of the central channels free of RFI were used GHz; PlanckCollaborationetal. 2011a). Clusters are de- tonormalizethebandpassforeachantenna. Afterthe band- tected through the measurement of the spectral distortion passcalibration,thecentral420channelswereaveragedto35 of the cosmic microwave background (CMB) due to in- channelseach 0.78 MHz wide to reduce the size of the data verse Compton scattering of CMB photons by the thermal setat610MHz,and,atthesametime,tominimizetheband- electrons in the ICM – the Sunyaev Zel’dovich (SZ) effect widthsmearingeffectswithintheprimarybeamoftheGMRT (Sunyaev&Zeldovich 1972). The Compton y-parameter, a antenna.At235MHz,72channelswereaveragedto18chan- measure of the SZ effect, does not suffer dimming due to nelsof0.25MHzwidtheach. distance, and its integral over the cluster is a measure of Afterfurthercarefuleditingintheaverageddata,anumber the total thermal energy in the cluster. Therefore, SZ sur- of phase-only self-calibration cycles and imaging were car- veysareapowerfultooltofindmassiveclustersathighred- ried out to reduce residual phase variationsand improvethe shifts. A totalof51new clustersdiscoveredbyPlanckhave quality of the final images. Wide-field imaging was imple- been confirmed by follow-up X-ray XMM-Newton and op- mentedateachstepoftheself-calibrationprocess,toaccount tical observations (PlanckCollaborationetal. 2011c, 2012a, for the non-planarnature of the sky. The final images were 2012b). Most of these new clusters appear to be hot, mas- madeusingthemulti-scaleCLEANimplementedinIMAGR, sive systems with highly irregular and disturbed X-ray mor- whichresultsinbetterimagingofextendedsourcescompared phologies,andthusgoodtargetstosearchfornewradiohalos tothetraditionalCLEAN(e.g.,Clarke&Ensslin2006,fora and relics. Recently, double radio relics in one of the new detaileddiscussionseeAppendixAinGreisenetal.(2009)). Planckclusters,PLCKESZG287.0+32.9,havebeendiscov- Weusedδ-functionsasmodelcomponentsfortheunresolved ered by Bagchietal. (2011) using the Giant Metrewave Ra- featuresandcircularGaussiansfortheresolvedones,within- dio Telescope (GMRT). Here, we report a GMRT detection creasingwidthto progressivelyhighlightthe extendedemis- of a giant radio halo in the newly discovered Planck cluster sionduringthe clean. Thermssensitivity levelsachievedin PLCKESZ G171.94-40.65 (hereafter PLCK171). The clus- theimagesatfullresolutionis∼0.12mJybeam−1at610MHz ter, whose general properties are summarized in Table 1, is and∼0.80mJybeam−1 at235MHz(Table2). We also pro- anX-rayluminous(L ∼1045ergs−1)systemataredshiftof ducedimageswithlowerresolutions,downto40(cid:3)(cid:3),bytaper- X z =0.27±0.01,asdeterminedthroughtheXMMFeKline ing the uv data using UVTAPER and ROBUST in IMAGR. Fe spectroscopy(PlanckCollaborationetal.2011c). Anoptical The noise reached in the images at the lowest resolution is photometricredshiftofz =0.31±0.03,basedon29cluster ∼0.3mJybeam−1 at610MHzand∼2.3mJybeam−1at235 opt members,isreportedbyPlanckCollaborationetal.(2012a). MHz. Residual amplitude errors should be within ∼5% at Inthispaper,weadoptz=0.27andtheΛCDMcosmology 610MHz(e.g.,Chandraetal.2004);acalibrationuncertainty with H0=70 km s−1 Mpc−1, Ωm =0.3 and ΩΛ =0.7. Under of∼20%isestimatedat235MHz. theseassumptions,1(cid:3)(cid:3)correspondsto4.135kpc. 2.2. VLAobservations 2. RADIOOBSERVATIONS WealsoreprocessedandanalyzedVeryLargeArray(VLA) 2.1. GMRTobservations data at 1.4 GHz from the NVSS (NRAO VLA Sky Survey; PLCK171 was observedwith the GMRT at 235 MHz and Condonetal. 1998) pointing containing PLCK171 (project 610MHz in October2011, as partof a projectto search for AC308). Thedata werecalibratedandreducedin AIPS.We diffuseradioemissionin 8 Planckclusters(project21_017). usedthestandardFouriertransformdeconvolutionmethodto The cluster was observed for ∼5 hours in dual-frequency produce the images (CLEAN and RESTORE), and applied mode, recordingLL polarizationat 235MHz and RR polar- self-calibrationto reduce the effectsof residual phase errors izationat610MHz. inthedata. Thermssensitivitylevelachievedinthefinalim- The data were collected in spectral-line mode, using the ageis∼0.2mJybeam−1,witharestoringbeamof58(cid:3)(cid:3)×48(cid:3)(cid:3). GMRT software backend(GSB; Royetal. 2010) with a to- Ourimageis∼2timesmoresensitivethanthepublicNVSS tal observing bandwidth of 32 MHz at 610 MHz divided in image,whichhasalocalrmsnoiseof∼0.4mJybeam−1(50(cid:3)(cid:3) 512 spectral channels. A bandwidth of 6 MHz was used at restoringbeam).Residualamplitudeerrorsarewithin∼5%. AgiantradiohaloinanewPlanckcluster 3 TABLE2 DETAILSOFTHEGMRTOBSERVATIONS. Observation ν Δν ttot t FWHM,p.a. rms date (MHz) (MHz) (hours) (hours) ((cid:3)(cid:3)×(cid:3)(cid:3),◦) (mJybeam−1) Oct22,2011 235a 6 5 ∼1 15.4×9.0,64 0.80 Oct22,2011 610a 32 5 ∼1 5.5×4.5,0 0.12 NotestoTable2–a:observedinsimultaneous235MHz/610MHzmode. TABLE3 DISCRETERADIOSOURCESINPLCK171 Source RAJ2000 DECJ2000 Stot,610MHz Stot,235MHz α263150MMHHzz morphology (h,m,s) (◦,(cid:5),(cid:5)(cid:5)) (mJy) (mJy) S1 031253.2 +082312 11.7±0.6 >15.5±3.3 >0.3±0.2 NAT S2 031253.9 +082305 4.3±0.2 14.6±3.1 1.3±0.2 unresolved S3 031256.9 +082211 2.7±0.2 † - unresolved S4 031257.5 +082209 85.8±4.3 † - NAT S5 031257.3 +082137 6.0±0.3 >8.1±1.9 >0.3±0.3 NAT S6 031258.3 +082114 39.2±2.0 66.5±13.3 0.6±0.2 NAT S7 031254.4 +082035 1.9±0.1 - - unresolved NotestoTable3–Peakcoordinates arefromtheGMRTfull-resolution imageat610MHz(Fig.1). Fluxdensities havebeenmeasuredontheGMRTfull- resolutionimagesat610MHzand235MHz(Fig.2). S1andS5arepartiallydetectedat235MHz,thereforelowerlimitsarereportedforStot,235MHzandα. † SourcesS3andS4arenotresolvedinthe235MHzimage.Theircombinedfluxdensityat235MHzis248.4mJy. 3. RADIOGALAXIESINTHECLUSTERREGION Figure 1 presents the GMRT 610 MHz contour image of PLCK171atfullresolution(∼5(cid:3)(cid:3)),overlaidontheopticalim- agefromtheDigitalSkySurvey(DSS).Discreteradiosources s 0 S1 are labelledfromS1 to S7. Theirflux densitiesat610MHz 0 m and positions, both measured from the image in Fig. 1, are 3 S2 2 summarizedin Table3. All haveopticalcounterpartson the DSS, exceptforS7. Noredshiftmeasurementsarecurrently n racSeol6opi)ngosscrh.tiedodewTnhftaoewrnciattlhrhuresotsthweeer-gapXanel-gaarlkxaeiyoetasfcieSlinn(4Nt.rtehAFeTo(Tu)liramtbesorloearutpru1hcr)eoesilsoa(gnSayd1p.,poTSrpoh4txei,ciStmaa5lialctsaeanoltdy-f Declinatio 8d22m00s S4 S3 S4 andS6are bothorientednorthward,while the tailsofS1 + S5 andS5pointtowardSouth-EastandNorth-West,respectively, almostoppositetoeachother. AssumingthattheNATsareat s 0 the redshift of the cluster, the length of their tails ranges, in 0 S6 m projection, from ∼90 kpc (S5) to ∼180 kpc (S6), and their 1 0.5’ 2 S7 radio powers at 610 MHz are of the order of ∼1024−25 W 120 kpc Hz−1. Thesevaluesareconsistentwiththerangeofsize and radiopowertypicallymeasuredforNATradiogalaxies(e.g., 3h13m00s 56s 12m52s Feretti&Venturi2002). Right ascension ThefullresolutionGMRTimageat235MHzispresented FIG.1.—GMRTfull-resolutionimageat610MHz(contours)overlaidon in Fig.2 (greyscale), with thepositionsof sourcesS1 toS7 theopticalDSSimage. Therestoringbeamis5.5(cid:3)(cid:3)×4.5(cid:3)(cid:3),inp.a. 0◦. The markedby redcrosses andlabels. SourceS7 is notdetected r.m.s.levelintheimageplaneis0.12mJybeam−1.Contoursstartat0.4mJy at 235 MHz. This is consistentwith the fact that the source beam−1 andthenscale byafactor of2. Nonegative levels corresponding appears very compact at 610 MHz, so it is probably an ac- tothe−3σ levelarepresentinthisregion. Labelsindicate thediscretera- diosources,whosepropertiesaresummerizedinTable3. TheclusterX-ray tive AGN with flator invertedspectrum. The 235MHz flux centerisatRA=3h12m57.4s,DEC=+08d22m10.3s(Tab.1). densitiesofS1,S2, S5andS6arereportedinTable3, along with the spectral index α computed between 235 MHz and 610 MHz. Sources S1 and S5 are only partially detected at tomeasuretheirindividualfluxdensityat235MHz. Atotal 235MHz,thusthefluxdensityandspectralindecesinTable of248.4mJyismeasuredfortheblend. 3 should be considered as lower limits. Sources S3 and S4 appearblendedtogetherinFig.2, thereforeitisnotpossible 4. THEGIANTRADIOHALO 4 S.Giacintuccietal. the source-subtracteddata set, using only the long baselines (>3 kλ). We indeedfoundsomeresidualemissionpossibly 0s associatedwiththeblendofS3andS4(∼7mJy)andwithS6 m0 2’ (∼6 mJy). Thiswill be takeninto accountwhen measuring 5 500 kpc thefluxdensityandspectralindexofthehaloinSect.5. 2 HintsofthehaloarealreadyvisibleonthepublicNVSSim- ageat1.4GHz.Toobtainabetterqualityimageofthediffuse source, we re-analyzed the NVSS pointing (see Sect. 2.2). s Our 1.4 GHz imagesare presented in Fig. 3. Panel a shows ation 3m00 S2 S1 tFhoelltoowtailngratdhieopermoicsesdiounre, ia.de.opthteedhaatlo23a5ndMtHhez,rawdeioreg-adlearxivieesd. n 2 theimageusingonlythebaselineslongerthan0.8kλ(angular ecli S4 S3 scales (cid:2)4(cid:3)) to identifythe contributionof the discrete radio D sourcesin the cluster area. A central regionof the resulting s S5 image is shown in panel b, with the position of the sources 0 S6 0 detected at 610 MHz (Fig. 1) highlightedby crosses and la- m 1 bels. Even though the resolution of the two images is very s2 different(∼5(cid:3)(cid:3)at610MHzand∼50(cid:3)(cid:3)at1.4GHz),thereisa 8 S7 0 goodmatchbetweenthelocationofthe radiosourcesat610 + MHzandthestructureimagedat1.4GHz.TheCLEANcom- 04s3h13m00s 56s 52s 12m48s ponentsassociatedwiththisimagewerethensubtractedfrom Right ascension the uv-data, and the resulting data set was used to obtain an Jy/beam imageof just the radiohalo, shownin Figure 3c (colorsand contours). An overlay of this 1.4 GHz diffuse emission on theGMRT235MHzimageoftheradiohalo,convolvedwith 0.0010 0.0030 0.0050 0.0070 0.0090 0.0110 a circular beam of 40(cid:3)(cid:3), is shown in Figure 3d. The overall shapeofthehaloissimilaratbothfrequencies,whileitsex- FIG.2.—GMRTfull-resolutionimageat235MHz(grayscale)withover- tentisslightlylargerat1.4GHz(∼1Mpc).Thedifferenceis laid the low-resolution image shown as contours. The restoring beam is 15.4(cid:3)(cid:3)×9.0(cid:3)(cid:3),inp.a. 64◦(showninthebottom-leftcorner)and28(cid:3)(cid:3)×25(cid:3)(cid:3), likely dueto the low sensitivity and quality of the 235MHz inp.a. 73◦,respectively. Ther.m.s. levelis0.8mJybeam−1 atfullreso- observation,whichwasstronglyaffectedbyionosphericscin- lutionand2.3mJybeam−1 inthelow-resolutionimage. Contourlevelsare tillationduringmostoftheobservingtime(Sect.2.1). 6.9,11.5,18.4,27.6mJybeam−1.Nonegativecontourscorrespondingtothe −3σlevelarepresentintheportionoftheimageshown.Thediscretesources 5. INTEGRATEDSPECTRUMOFTHERADIOHALO detectedat610MHz(Fig.1;Table3)arelabelledandmarkedbythecrosses. Usingtheimagesofthediffusecomponentalone(Fig.2and Fig.3c),wemeasuredatotalfluxdensityofthehaloof483± 110mJyat235MHz9and18±2mJyat1.4GHzintheregion TABLE4 PROPERTIESOFTHERADIOHALOINPLCK171 defined by the first contour in Fig. 3d (3σ). These are also reportedin Table 4, alongwith the other main observational propertiesof the halo, andin Fig. 4. The derivedtotalradio S235MHz(mJy) 483±110 powerat1.4GHzisP1.4GHz=(4.9±0.1)×1024WHz−1. S610MHz(mJy) >50 Our flux density values at 235 MHz and 1.4 GHz corre- S1400MHz(mJy) 18±2 spondto a verysteep spectralindex,α=1.84±0.14,which α(235MHz÷1400MHz) 1.84±0.14 makes PLCK171 one of the steepest-spectrum giant halos P1400MHz(WHz−1) (4.9±0.1)×1024 known so far. However, large uncertainties affect our mea- Linearsize(Mpc) ∼1 surement. In particular, it is possible that some of the halo flux density is missed in both the reprocessed NVSS image andthe GMRT 235 MHz image due to the shortdurationof theobservations,whichresultsin sparsecoveragesoftheuv A low-resolution (28(cid:3)(cid:3) ×25(cid:3)(cid:3)) image at 235 MHz of planeandlossofsensitivitytostructure.Furthermore,thelow PLCK171is presentedas contoursin Fig. 2, overlaidon the resolution of the 1.4 GHz image does not allow an accurate full-resolution image in gray scale. The image shows the removalofthediscreteradiogalaxiesinthehaloregion,and, residual emission after subtraction of the CLEAN compo- consequently,thehalofluxdensitycouldbeoverestimated. nentsofsourcesS1toS6fromtheuvdata.TheCLEANcom- A flux density of ∼45–50 mJy is measured from low- ponentswereobtainedfromanimageproducedusingonlythe resolution(∼30−40(cid:3)(cid:3))imagesat610MHz(notshownhere), baselineslongerthan 3 kλ, containinginformationon struc- obtained after the subtraction of the discrete sources. How- turesonangularscales(cid:2)1.4(cid:3). Thepresenceofalargediffuse ever,theseimagesdetectonlythebrightestpeaksofthehalo source filling the central region of the cluster is evident. Its and,therefore,itsfluxdensityatthisfrequencyisonlyalower largelinearsize(∼800kpcinFig.2),roundishmorphology limit. The 610 MHz measurementis ∼40% lower than the andthecentralclusterlocationareconsistentwiththeproper- valueexpectedbasedonthespectralindexbetween235MHz tiesofagiantradiohalo. and1.4GHz(Fig.4). OurexperiencewiththeGMRTat610 We note that the peaks of the radio halo image in Fig. 2 MHz suggests that the flux density losses at this frequency areapproximatelycoincidentwiththepositionofsomeindi- vidualsources. Toestimatethepossibleresidualcontribution 9Theresidual13mJy,possiblyassociatedwiththeindividualsources(see of these sources, we madean image of the haloregionfrom Sect.4),havebeenaddedintotheerror. AgiantradiohaloinanewPlanckcluster 5 a 2’ b s m00s m00 500 kpc 6 4 2 2 0s S1 0 m Declination 2422m00sm00s Declination 22m00s SS45 S3 S2 0 2 8d 4’ + S6 ~ 1 Mpc S7 10s 3h13m00s 50s 12m40s s 0 (Jy/beam) Right ascension m0 0 2 d 8 0.00039 0.00048 0.00082 0.00219 0.00767 0.02935 + 04s 3h13m00s 56s 52s 12m48s Right ascension c d m00s m00s 26 26 Declination 24m00s22m00s Declination 24m00s22m00s m00s m00s +8d20 4’ +8d20 4’ ~ 1 Mpc ~ 1 Mpc 10s 3h13m00s 50s 12m40s 10s 3h13m00s 50s 12m40s (Jy/beam) Right ascension (Jy/beam) Right ascension 0.00018 0.00054 0.00090 0.00126 0.00162 0.00198 0.0010 0.0046 0.0082 0.0118 0.0155 0.0191 FIG.3.—VLA–Darrayimagesat1.4GHzofPLCK171obtainedfromthere-processedNVSSdata. Contourlevelsare−1(dashed),1,2,4,8,16,...×3σ. a: ContoursandcolorscaleimageofPLCK171.Therestoringbeamis58(cid:3)(cid:3)×48(cid:3)(cid:3),inp.a. −5◦and1σ=0.17mJybeam−1.b:Imageobtainedusingonlybaselines longerthan0.8kλ.Therestoringbeamis50(cid:3)(cid:3)×42(cid:3)(cid:3),inp.a.−7◦and1σ=0.4mJybeam−1.Crossesandbluelabelsshowthepositionofthediscreteradiosources detectedat610MHz(Fig.1,Table3). c: Imageofthediffuseradiohaloafterthesubtractionofthediscreteradiosourcesderivedfromtheimageinpanelb. Theimagehasbeenrestoredwithacircularbeamof50(cid:3)(cid:3).Ther.m.s.noiseis1σ=0.12mJybeam−1.d:1.4GHzcontours(sameaspanelc)overlaidonthe235 MHzimageoftheradiohaloconvolvedwithacircularbeamof40(cid:3)(cid:3). canindeedbeconspicuous,upto∼40%(Venturietal.2008; tively),excludinganomalousMOSCCDs(inthiscaseCCDs Dallacasaetal.2009;Macarioetal.2010). 4, 5, and 6 for MOS1), and identifying and excluding point sources. Spectraandimagesarethenextracted,includingfor 6. X-RAYANALYSIS the quiescent particle background, which is derived from a PLCK171 was observed with XMM-Newton for 14 ks in databaseoffilterwheelclosedobservationsthatarematched 2010 August under ObsID 0656201101. The EPIC data todatafromtheunexposedcornersofthechips. Theremain- were reduced using the Extended Source Analysis Software ingbackgroundcomponents(residualsoftprotoncontamina- (XMM-ESAS)10packagepartofSASversion11.0.0.Forthe tion,instrumentallines,solarwindchargeexchange(SWCX) EPICMOSdetectors,theanalysisofgalaxyclusterswiththis emission,andthecosmicfore-andbackgroundsfromthelo- software was introduced by Snowdenetal. (2008), but the calhotbubble,theGalaxy,andextragalacticunresolvedpoint methodology has since been expanded to include the EPIC sources) are all explicitly modeled and determined empiri- pndata(e.g.,Bulbuletal.2012, foramoredetaileddescrip- cally when fitting spectra in XSPEC. While robust best fits tion). Insummary,afilteredeventlistiscreatedbyremoving ofthesecomponentscanbetrickiertoobtaininshorterexpo- periods of excessive count rate in the light curve caused by suressuchasthisone,thesmallerangularextentofthiscluster proton flaring events (retaining 13.7 ks, 13.4 ks, and 8.2 ks providesforalargelocalbackgroundregionfromwhichtheir oftheexposuresfortheMOS1, MOS2, andpndata,respec- parameterscanbesufficientlyconstrained. In this case, nearly all of the cluster emission is taken to 10http://heasarc.gsfc.nasa.gov/docs/xmm/xmmhp_xmmesas.html fallwithinacircleof320(cid:3)(cid:3)radius;EPICMOSandpnspectra 6 S.Giacintuccietal. purelycosmeticpurposes).Then,anabsorbedMeKaLmodel with fixed absorption (2.8×1021 cm−2), abundance (0.3 so- lar), and redshift (0.27) is fit to the coarse spectrum in the sevenenergybinscorrespondingtoeachpixel. Theresulting best-fit temperaturesare shown in Figure 5b, which have 1- sigmaerrorsontheorderof1keVinthecenterand∼2keV neartheedge. The general picture that emerges is a roughly isothermal centralregion, withouta central coolcore and with a slight, butonlymarginallysignificant,temperaturepeak(∼11keV) coincidentwiththeX-raypeak.Thetemperaturepeakextends in the same direction, but more narrowly, as does the broad bandsurfacebrightness. Thiselongationfollowsthatevident in the core of the radio halo, suggesting a merger along the NW-SEaxis. ThetemperatureofthecoolerregiontotheSW of the X-ray peak (∼7−8 keV) deviates from the tempera- turesalongtheNW-SEaxisatthe2.3σlevelandisconfirmed in direct spectral fits. Deeper X-ray observationsare neces- sarytodiscernexactlywhatthisfeatureisanditsrelationship tothemerger. 7. DISCUSSION ThePlanckmissionhasdiscoveredseveralnewclustersus- FIG.4.—Spectrumoftheradiohalobetween235MHzand1.4GHz. ingtheSZsignal. Thesesystemswerenotdetectedfromthe allskyX-raysurveys,suchastheROSATAllSkySurvey,be- causeoftheirlow surfacebrightnessandbeingnearthe flux fromthisregionandtheremainingfieldofviewoutto800(cid:3)(cid:3) limitofthesurveys.ThenewlydiscoveredPlanckclustersare (containingonlybackground)aresimultaneouslyfit. Wefind mostlymassivesystemswithhighlydisturbedICM.Withthe aglobalclustertemperatureof10.1±0.7keV,ingoodagree- current knowledge of the connection between cluster merg- mentwiththatreportedinPlanckCollaborationetal. (2011c) ersandthepresenceofgiantradiohalos(Cassanoetal.2010, of 10.65±0.42 keV. Our slightly lower temperature likely and referencestherein; see also Rossettietal. (2011)), these reflects a different source region and background treatment, newclustersareexcellenttargetsforsearchingfornewhalos. andourgreateruncertaintyisaconsequenceoftreatingback- In this paper, we reported the discoveryof the first giant ra- groundcomponentsasfreeparameters. Fortheimageanaly- diohalointhesenewPlanckclusters–inPLCK171–based sis, the best-fit valuesfor the non-cosmicbackgrounds(qui- on GMRT observations at 235 MHz and 610 MHz and re- escent particle, soft proton, and SWCX) are translated into analysisoftheVLA1.4GHzNVSSdata. imagesandsubtractedfromthedata. Thediffusehalois∼1Mpcinextentandiscospatialwith Theresultingadaptivelysmoothed,fullband(0.4-7.2keV) the brightestX-ray emission, as typically observedin radio- imageispresentedin Figure5a with the1.4GHz radiohalo halo clusters (e.g., Govonietal. 2004; Venturietal. 2013). contoursoverlaid(same as Fig. 3c). Structurally,the central The spectral index of the halo between 235 MHz and 1400 region is elongated in the North–West/South–East direction MHzisquitesteep,α=1.84±0.14.Thisisoneofthesteep- with the X-ray peak slightly towards the SE side from the est slopes measured for a giant radio halo so far – in fact, large-scaleemissioncentroid. TheradiohaloandX-raysur- it is similar to α ∼ 1.9 of the prototype USSRH in A521 facebrightnessgenerallyfolloweachother,asoftenobserved (Dallacasaetal. 2009). However, the spectral index of the in clusters hosting radio halos. The asymmetric ICM mor- PLCK171haloisaffectedbylargeuncertainties. In particu- phologyisconsistentwitharecentmergerevent. lar,duetotheshortusabletimeofour235MHzobservation To investigate the merger state in more detail, we con- andshortintegrationtimeoftheNVSSpointing,itispossible structedatemperaturemapusingsmoothednarrow-bandim- that the halo extends more than imaged here, and a fraction agesfittedwiththeMeKaLplasmamodel,usingamethodde- of its flux density is missed at both frequencies. Moreover, scribedin Markevitchetal. (2000). Imagesare extractedin the low resolution of the 1.4 GHz image does not allow an sevenbands(0.4-0.8keV, 0.8-1.1keV, 1.1-1.35keV, 1.9-2.1 accuratesubtractionofthediscreteradiogalaxiesenclosedin keV,2.35-3.2keV,3.2-4.8keV,and4.8-7.2keV)thatavoidin- thehaloemission.Therefore,deeperobservationsat1.4GHz strumentallines. A localbackground,accountingforGalac- withhigherangularresolution,anddeeperexposuresatlower tic and extragalactic non-cluster sources, is estimated from frequenciesareessentialbeforeanyconclusiveinterpretation the region outside the cluster in each image and subtracted, of the spectral indexof this halo can be made. If future ob- after which the image is corrected by vignetting and expo- servationsconfirmitssteepradiospectrum,PLCK171would sure maps. Using the ESAS task comb, which adjusts each be another important case of USSRH (of which only a few exposuremaptotheresponseoftheMOS2,mediumfilterre- other examples are known so far; e.g., Brunetti et al. 2008, sponse,thethreeEPICinstrumentsarecombinedtomaximize Macarioetal. 2010,vanWeerenetal. 2011,andacandidate thesignal-to-noisebeforesmoothing. Theimages,with2.5(cid:3)(cid:3) in Giacintucciet al. 2011), whose study is crucialto under- pixels, are variably smoothed by a 10 pixel Gaussian kernel standthephysicsbehindtheoriginofradiohalosingeneral. attheimageedges,whichtransitionstoa∼5pixelkernelin- While such objects are expected in turbulent reacceleration verselyfollowingthewidebandsurfacebrightnesstothe0.2 models, the existence of halos with α > 1.5 poses serious power. Chipandpointsourcegapsareinterpolatedover(for problemsforsecondarymodelsdueto therequiredlargeen- AgiantradiohaloinanewPlanckcluster 7 2’ 2’ 500 kpc 500 kpc 6 7 8 9 10 11 12 13 14 15 17 FIG.5.—a:AdaptivelysmoothedXMM-Newtonimageinthe0.4-7.2keVband. b:Temperaturemap.ThecolorbardisplaysthetemperatureinkeV.Inboth panelsthe1.4GHzimageofthehaloisoverlaidascontours(sameasFig.3c). 26 Hz] 25 W/ P [1.4 g lo 24 23 -4.2 -4.0 -3.8 -3.6 -3.4 -3.2 -3.0 log Y (<5R ) [sr Mpc2] SZ 500 FIG.7.— Distribution of the radio-halo clusters in the P1.4GHz−YSZ(< 5R500)srMpc2 plane (Basu2012). Thegreen symbolmarks the position ofPLCK171.Theredsymbolsaretheknownradio-haloclusters,theyellow symbolisthemini-haloinA2390andbluesymbolsaretheupperlimitsfrom theGMRTradio-halosurvey(Brunettietal.2007). FIG.6.—Distributionoftheradio-haloclustersintheP1.4GHz−LX plane tures of a recent merger in both the surface brightness and fromBrunettietal. (2009). FilledblacksymbolsaretheGMRTradio-halo gas temperature distributions. A NW-SE elongation of the clustersandopenblacksymbolsareotherradio-haloclustersfromtheliter- central X-ray emission, coupled with a similar structure in ature. ThemagentapointmarksthepositionofPLCK171,usingthecluster X-rayluminosityestimatedwithinR500(PlanckCollaborationetal. 2011c) thetemperaturemap,suggeststhatthemergeroccurredalong andthe1.4GHzradiopowerinTable4. Thesolidlineisthebestfittothe thisaxis. Theradiohalo displaysa similar asymmetryin its distributionofgiantradiohalosfromBrunettietal.(2009). central region, suggesting a correlation between the thermal and non-thermal emissions, as typically observed in radio- ergyin cosmicray protons(Brunettietal. 2008, Macarioet haloclusters. al. 2010, vanWeeren et al. 2011). Such energiesare above Figure6showsthedistributionoftheclustersoftheGMRT thecurrentupperlimitsfromtheγ-rayobservationsofnearby radio-halosurvey(Venturietal. 2007,2008),alongwithother clusters(Aharonianetal. 2009,Ackermannetal. 2010,Jel- radio-haloclustersfromtheliterature,intheP1.4GHz–LX plane tema & Profumo 2011), assuming the μG cluster magnetic (from Brunetti et al. 2009). The bimodality evident in this fieldvaluesindicatedbyFaradyrotationmeasurestudies(e.g., diagram (with some clusters lacking diffuse radio emission, Bonafedeetal. 2010andreferencestherein). while those that exhibit radio halos follow a correlation) is The analysis of the X-ray XMM-Newton observation of oneofthemainoutcomesoftheGMRTradio-halosurveyand PLCK171 reveals high temperature (∼10 keV) and signa- providesquantitativesupporttoreaccelerationmodelsforthe 8 S.Giacintuccietal. radiohalo(α∼1.8,withthecaveatsgivenabove).Ifthesteep spectrumis confirmed,it would be the hottestcluster with a USSRH–allotherUSSRHshavekT ∼5−9keV,asvisiblein Fig.8,thatreportsthedistributionofradio-haloclustersinthe α235MHz −kT planeadaptedfromVenturietal. (2013). The 1400MHz magenta point marks the position of PLCK171 using kT = 10.1±0.7keV,asmeasuredinSect.6. Thus,thisobjectmay provideanimportantdatapointforourunderstandingofgiant radiohalosinclusters. 8. CONCLUSIONS We have discovered a ∼ 1 Mpc-size radio halo in PLCK171, using GMRT observations at 235 MHz and 610 MHz and re-analysis of NVSS 1.4 GHz data. This is the firstgiantradiohalofoundinthenewclustersdiscoveredby Planck. Withaspectralindexα≈1.8,thissourcemightbeanother systemwithaverysteepradiospectrum,sofarfoundinonly afewotherclusters. However,deepermulti-frequencyobser- vationsarerequiredbeforeanydefinitiveinterpretationofthe spectralindexofthisradiohalo. TheX-rayluminosityoftheclusterandradiopowerofthe haloat1.4GHzareconsistentwiththecorrelationknownto befollowedbyradio-haloclusters.ItslocationintheP1.4GHz- FIG.8.—Spectralindexofradiohalosinthe235MHz-1.4GHzintervalas Y plane also follows the scaling relation found for clusters functionoftheclusterX-raytemperature(adaptedfromVenturietal.2013). ThemagentapointsmarksthepositionofPLCK171. withradiohalos. TheasymmetriesobservedintheX-raysur- facebrightnessandtemperauredistributions,derivedfromthe originofradiohalos(Brunettietal. 2007,2009).Thesepara- XMMdata,indicateadisturbedICMresultingfromarecent tion betweenclusters hostinga radio haloand those without merger. This is in line with the expectation that giant radio (upperlimits)ismostlikelycausedbythedifferentdynamical halosareexclusivelyassociatedwithclustermergers. propertiesoftheclusters:clusterswithoutaradiohalotendto With an X-rayluminosityof 1.13×1045 ergs−1 and a red- be more relaxed systems, while radio halos are exclusively shiftofz=0.27,PLCK171representsthekindofclustersthat foundindisturbedclusters(Cassanoetal. 2010). have been missed in X-ray flux limited surveys, such as the PLCK171(magentasymbol)fallson the radiohalo corre- Rosat All Sky Survey, and, consequently, in radio surveys lation.Furthermore,ourX-rayanalysisshowsthatthecluster based on X-ray selection criteria, such as the GMRT radio- is unrelaxed, as expected for a system hosting a radio halo. halo survey (Venturi et al. 2007, 2008). It is therefore im- Ongoing dynamical activity in PLCK171 is also suggested portanttoconsiderbiasesduetoclusterssuchasPLCK171in bythepresenceoffourNATsinitscentralMpcregion,with X-rayfluxlimitedsamplesselectedforradiosurveys. tails pointingaway from the cluster center, suggesting infall ofmultiplesubctructuresontothemainclusterandbulkmo- tionsoftheICMdrivenbytheongoingmerger(e.g.,Blitonet WearedeeplygratefultoRossellaCassanoforusefulcom- al. 1998). Thus,theradiohaloinPLCK171providesfurther ments and suggestions, and for providing Fig. 6. We thank supporttotheexistenceofadirectlinkbetweentheradiohalo KaustuvBasuforkindlyprovidingFig.7. Wethankthestaff phenomenonandclustermergers. of the GMRT for their help duringthe observations. GMRT Ascalingrelationbetweentheradiopowerat1.4GHzand is run by the National Centre for Radio Astrophysics of the the integrated SZ effect measurement (Y) has been recently TataInstituteofFundamentalResearch. TheNationalRadio presentedbyBasu(2012).Sucharelationisadirectprobeof AstronomyObservatoryis a facility of the National Science theconnectionbetweenthemassofthe clusterandpresence Foundation operated under cooperative agreement by Asso- of a radio halo. In Fig. 7 we report the position PLCK171 ciated Universities, Inc. SG acknowledges the support of in the P1.4GHz-Y plane using the integrated Y published in NASAthroughEinsteinPostdoctoralFellowshipPF0-110071 PlanckCollaborationetal.(2011c).PLCK171(greensquare) awardedbytheChandraX-rayCenter(CXC),whichisoper- followsthe scaling relationobtainedforthe otherradio-halo atedbySAO.Thisresearchwassupportedbyanappointment clusters. to the NASA Postdoctoral Program at the Goddard Space WhatisunusualaboutPLCK171isitscombinationofhigh FlightCenter,administeredbyOakRidgeAssociatedUniver- gas temperature (∼10 keV) and ultra-steep spectrum of its sitiesthroughacontractwithNASA. REFERENCES Ackermann,M.,Ajello,M.,Allafort,A.,etal.2010,ApJ,717,L71 Bonafede,A.,Brüggen,M.,vanWeeren,R.,etal.2012,MNRAS,426,40 Aharonian,F.,Akhperjanian,A.G.,Anton,G.,etal.2009,A&A,502,437 Brown,S.,&Rudnick,L. 2011,MNRAS,412,2 Baars,J.W.M.,Genzel,R.,Pauliny-Toth,I.I.K.,&Witzel,A. 1977,A&A, Brunetti,G.,Venturi,T.,Dallacasa,D.,etal.2007,ApJ,670,L5 61,99 Brunetti,G.,etal. 2008,Nature,455,944 Bagchi,J.,Sirothia,S.K.,Werner,N.,etal.2011,ApJ,736,L8 Brunetti,G.,Cassano,R.,Dolag,K.,&Setti,G. 2009,A&A,507,661 Basu,K.2012,MNRAS,421,L112 Brunetti,G.2011,JournalofAstrophysicsandAstronomy,32,437 Blasi,P.,&Colafrancesco,S.,1999,APh,12,169 Brunetti,G.,Blasi,P.,Reimer,O.,etal.2012,MNRAS,426,956 Bliton,M.,Rizza,E.,Burns,J.O.,Owen,F.N.,&Ledlow,M.J.1998, Bulbul,G.E.,Smith,R.K.,Foster,A.,etal.2012,ApJ,747,32 MNRAS,301,609 AgiantradiohaloinanewPlanckcluster 9 Cassano,R.,Ettori,S.,Giacintucci,S.,Brunetti,G.,Markevitch,M., Markevitch,M.,Govoni,F.,Brunetti,G.,Jerius,D.,2005,ApJ,627,733 Venturi,T.,&Gitti,M. 2010,ApJ,721,L82 Pfrommer,C.,&Enßlin,T.A. 2004,JournalofKoreanAstronomical Chandra,P.,Ray,A.,&Bhatnagar,S. 2004,ApJ,612,974 Society,37,455 Clarke,T.E.,&Ensslin,T.A.2006,AJ,131,2900 PlanckCollaboration,Ade,P.A.R.,Aghanim,N.,etal.2011,A&A,536, Condon,J.J.,Cotton,W.D.,Greisen,E.W.,etal.1998,AJ,115,1693 A1(a) Dallacasa,D.,Brunetti,G.,Giacintucci,S.,etal.2009,ApJ,699,1288 PlanckCollaboration,Ade,P.A.R.,Aghanim,N.,etal.2011,A&A,536, Dennison,B.1980,ApJ,239,L93 A8(b) Donnert,J.,Dolag,K.,Cassano,R.,&Brunetti,G. 2010,MNRAS,407, PlanckCollaboration,Aghanim,N.,Arnaud,M.,etal.2011,A&A,536,A9 1565 (c) Ensslin,T.,A.,Biermann,P.L.,Klein,U.,Kohle,S.,1998,A&A,332,395 PlanckCollaboration,Aghanim,N.,Arnaud,M.,etal.2012,A&A,543, Enßlin,T.,Pfrommer,C.,Miniati,F.,&Subramanian,K.2011,A&A,527, A102(d) A99 PlanckCollaboration,Ade,P.A.R.,Aghanim,N.,etal.2012, Ferrari,C.,Govoni,F.,Schindler,S.,Bykov,A.M.,&Rephaeli,Y. 2008, arXiv:1205.3376(e) SSRv134,93 Rossetti,M.,Eckert,D.,Cavalleri,B.M.,etal.2011,A&A,532,A123 Feretti,L.,&Venturi,T.2002,MergingProcessesinGalaxyClusters,272, Roy,J.,Gupta,Y.,Pen,U.,Peterson,J.B.,Kudale,S.,Kodilkar,J.,2010, 163 ExA,28,25 Feretti,L.,Giovannini,G.,Govoni,F.,&Murgia,M.2012,A&ARev.,20, Snowden,S.L.,Mushotzky,R.F.,Kuntz,K.D.,&Davis,D.S.2008,A&A, 54 478,615 Giacintucci,S.,Dallacasa,D.,Venturi,T.,etal.2011,A&A,534,A57 Sunyaev,R.A.,&Zeldovich,Y.B.1972,CommentsonAstrophysicsand Giovannini,G.,Tordi,M.,&Feretti,L. 1999,NewA,4,141 SpacePhysics,4,173 Giovannini,G.,Bonafede,A.,Feretti,L.,etal.2009,A&A,507,1257 vanWeeren,R.J.,Röttgering,H.J.A.,Brüggen,M.,Cohen,A.,2009, Govoni,F.,Markevitch,M.,Vikhlinin,A.,etal.2004,ApJ,605,695 A&A,508,75 Greisen,E.W.,Spekkens,K.,&vanMoorsel,G.A.2009,AJ,137,4718 vanWeeren,R.J.,Brüggen,M.,Röttgering,H.J.A.,etal.2011,A&A,533, Hoeft,M.,&Brüggen,M.,2007,MNRAS,375,77 A35 Jeltema,T.E.,&Profumo,S. 2011,ApJ,728,53 vanWeeren,R.J.,2011,PhDT,14 Kale,R.,&Dwarakanath,K.S.,2010,ApJ,718,939 vanWeeren,R.J.,Bonafede,A.,Ebeling,H.,etal.2012,MNRAS,425,L36 Kale,R.,&Dwarakanath,K.S.,2012,ApJ,744,46 Venturi,T.,Giacintucci,S.,Brunetti,G.,etal.2007,A&A,463,937 Kang,H.,&Ryu,D.,2011,ApJ,734,18 Venturi,T.,Giacintucci,S.,Dallacasa,D.,etal.2008,A&A,484,327 Kang,H.,Ryu,D.,&Jones,T.W.2012,ApJ,756,97 Venturi,T.2011,Mem.Soc.Astron.Italiana,82,499 Kempner,J.C.,&Sarazin,C.L. 2001,ApJ,548,639 Venturi,T.,Giacintucci,S.,Dallacasa,D.,etal.2012,arXiv:1210.7617 Keshet,U.,&Loeb,A. 2010,ApJ,722,737 A&A,inpress, Macario,G.,Venturi,T.,Brunetti,G.,etal.2010,A&A,517,A43 Macario,G.,Venturi,T.,Intema,H.T.,etal.2013,A&A,submitted Markevitch,M.,Ponman,T.J.,Nulsen,P.E.J.,etal.2000,ApJ,541,542