MNRAS429,903–914(2013) doi:10.1093/mnras/sts386 New brown dwarf discs in Upper Scorpius observed with WISE P. Dawson,1‹ A. Scholz,1 T. P. Ray,1 K. A. Marsh,2 K. Wood,3 A. Natta,1,4 D. Padgett5 and M. E. Ressler6 1SchoolofCosmicPhysics,DublinInstituteforAdvancedStudies,31FitzwilliamPlace,Dublin2,Ireland 2SchoolofPhysicsandAstronomy,CardiffUniversity,CardiffCF243AA 3SchoolofPhysicsandAstronomy,UniversityofStAndrews,NorthHaugh,StAndrewsKY169SS 4INAF–OsservatorioAstrofisicodiArcetri,LargoE.Fermi5,I-50125Firenze,Italy 5GoddardSpaceFlightCenter,Greenbelt,MD20771,USA 6JetPropulsionLaboratory,CaliforniaInstituteofTechnology,4800OakGroveDrive,Pasadena,CA91109,USA Accepted2012November8.Received2012October12 D o w n lo a d ABSTRACT e d We present a census of the disc population for UKIDSS selected brown dwarfs in the 5– fro m 10MyroldUpperScorpiusOBassociation.For116objectsoriginallyidentifiedinUKIDSS, h the majority of them not studied in previous publications, we obtain photometry from the ttp Wide-FieldInfraredSurveyExplorerdatabase.Theresultingcolour–magnitudeandcolour– ://m n colour plots clearly show two separate populations of objects, interpreted as brown dwarfs ras .o withdiscs(classII)andwithoutdiscs(classIII).Weidentify27classIIbrowndwarfs,14of xfo themnotpreviouslyknown.Thisdiscfraction(27outof116,or23%)amongbrowndwarfs rd jo u wasfoundtobesimilartoresultsforK/MstarsinUpperScorpius,suggestingthatthelifetimes rn a ofdiscsareindependentofthemassofthecentralobjectforlow-massstarsandbrowndwarfs. ls .o 5outof27discs(19percent)lackexcessat3.4and4.6µmandarepotentialtransitiondiscs rg a/ (i.e. are in transition from class II to class III). The transition disc fraction is comparable to t N A low-massstars.Weestimatethatthetime-scaleforatypicaltransitionfromclassIItoclassIII S A islessthan0.4Myrforbrowndwarfs.Theseresultssuggestthattheevolutionofbrowndwarf G o discsmirrorsthebehaviourofdiscsaroundlow-massstars,withdisclifetimesoftheorderof d d a 5–10Myrandadiscclearingtime-scalesignificantlyshorterthan1Myr. rd S p Key words: techniques: photometric–open clusters and associations: individual: Upper ac e Scorpius–infrared:stars. Flig h t C tr o n A p 1 INTRODUCTION OfoBrmaisnsgocreiagtiioonnw(UithpSacsoubinstathnetiaflolnluomwibnegr)o,fthberoowldnedstwnaerfasr.bUypsStacro- ril 3, 2 Browndwarfs–substellarobjectswithmassesbelowtheHydrogen is often assumed to have an age of 5Myr (Preibisch et al. 2002) 0 1 3 burninglimitof0.08M(cid:2)–areidealtotestthemassdependenceof but recently Pecaut, Mamajek & Bubar (2012) have derived an criticalparametersinstellarevolution.Oneexampleforsuchapa- older age of 10Myr for this region. In UpSco, Carpenter et al. rameteristhelifetimeofcircumstellardiscs,whichisanimportant (2006) derived a disc frequency of <8percent for F and G stars constraintforthecore-accretionscenariosforplanetformation.The and19±4percentforK0–M5stars(with1σ binomialconfidence disclifetimeisaffectedbyanumberofphysicalprocesses,e.g.disc intervals).Thebrowndwarfsinthisregionexhibitadiscfraction ionization by the central object and cosmic rays, accretion, grain of37±9percent,basedonanexaminationof35objects(Scholz growth(e.g.Dullemondetal.2007).Ourunderstandingoftherela- et al. 2007). Thus, the Spitzer data tentatively show that the disc tiveimportanceoftheseprocessesandhowtheychangewithobject fractionsinUpScoincreasemonotonicallywithdecreasingobject massisstillincomplete,i.e.observationalguidanceisimportantto massforearlyF-tolateM-typeobjects.Thiswouldimplyamass advancethetheory. dependenceinthediscevolution,resultinginlong-liveddiscsinthe Theclearmajorityoflow-massstarslosetheirdiscwithinless substellarregime. than5Myr(Haisch,Lada&Lada2001;Jayawardhanaetal.2006). Sofar,thebrowndwarfdiscfrequencyinUpScoisaffectedby MaybethebesttestforthelongevityofdiscsistheUpperScorpius lownumberstatistics.Herewesetouttotestpreviousfindingsbased onamuchenlargednumberofbrowndwarfsinUpSco,identified fromUKIDSS.Toidentifytheobjectsinoursamplethathaveadisc (cid:2) (class II objects) and those that do not (class III objects), we use E-mail:[email protected] (cid:3)C 2012TheAuthors PublishedbyOxfordUniversityPressonbehalfoftheRoyalAstronomicalSociety 904 P.Dawsonetal. Figure1. (Z−J,Z)and(W1−W2,Z)colour–magnitudediagramsfor116outof119browndwarfsidentifiedinUpScoforwhichWISEdatawereavailable. TheclassIIobjectsaremarkedinredintheonlineversionofthispaper.The5MyrDUSTYmodel(Chabrieretal.2000)isochronesarealsoshownwith D o massdecreasingfrom0.09(top)to0.01M(cid:2)(bottom).The0.05M(cid:2)positionsontheisochronesareindicated.Inthe(Z−J,Z)diagramalltheobjectsare w n groupedclosetotheisochroneandnoneshowanysignificantcolourexcess.However,twodistinctpopulationsofobjectsareclearlyvisibleinthe(W1−W2,Z) lo a diagram,oneclosetotheisochroneandoneshowinganexcessinW1−W2.The11objectsringedhavebrightunambiguoussignalsinW4(22µm),diagnostic de d ofthepresenceofadisc(seethetext;Section4.1.4).ThefourobjectsmarkedwithacrosshavesignificantvariationsintheirUKIRTand2MASSJorH fro magnitudes,acharacteristicassociatedwithaccretioneventsorvariableextinction(alsoseethetext;Section4.2). m h ttp datafromtheWide-FieldInfraredSurveyExplorer(WISE)(Wright sonetal.2011,alsoseeAppendixAthispaper).Consequently,it ://m et al. 2010). As will be shown, with improved statistics we find canbeinferredthatthe(Z−J,Z)valueforanyoftheobjectsis n ra a disc fraction for brown dwarfs that is consistent with the value photospheric in origin with negligible contribution from any cir- s.o publishedforlow-massstarsinthisregion. cumsubstellardisc.Thus,themethodofselectingthese119objects xfo isunbiasedwithrespecttothepresenceofcircumsubstellardiscs. rd jo As pointed out above, the 26 objects in our sample with pub- u rn 2 TARGETS lishedspectrahavebeenconfirmedtobeverylow-massmembers als of UpSco. In addition, we have recently obtained spectra for 25 .o rg Dawson,Scholz&Ray(2011)identified19newbrowndwarfcan- furtherobjectsfromthissample;allofthemareconfirmedasvery a/ didatesinthesouthofUpScoviaaphotometricandpropermotion low mass members of UpSco as well (Dawson et al., in prepara- t N A analysisofUKIDSSdata.Thelevelofcontaminationfromback- tion).Althoughthespectroscopicfollow-upisnotyetcompletefor S A groundstarsinthesamplewasshowntobenegligible.Usingthe oursample,the100percentsuccessrateforalmosthalfthesam- G samemethodinthenorthofUpScoafurther49objectspreviously ple indicates that our selection method based on photometry and od d identifiedbyLodieu,Hambly&Jameson(2006)andLodieuetal. propermotiongeneratesaclean,unbiasedsamplewithnegligible ard (2007) as brown dwarf candidates were recovered. Spectra have contaminationbybackgroundobjects(≤2percent). S p been taken of 26 of these 49 objects (Martin, Delfosse & Guieu ac e 2004;Lodieuetal.2006,2008;Slesnick,Carpenter&Hillenbrand F 2006;Lodieu,Dobbie&Hambly2011)andall26havebeencon- 3 WISE DATA ligh fistremlleadraansdbrsouwbsntedlwlaarrofsb.jTechtissipnroUvpidSecsoa.sDaamwpsloenofet6a8lv.e(2ry01lo1w)-dmetaesrs- FTohre1r1e6moafinthineg11th9retaergweetsredinsocutslsisetdedabionvethweeWoIbStEaindeadtaWbIaSsEe.daFtoar. t Ctr on minedthatthe68objectsrangedinmassfrom0.01to0.09M(cid:2)by the116,the2MASSidentifierlistedintheWISEdatabaseagrees Ap comparingtheirobservedZmagnitudeswiththeoreticalZmagni- withtheonefromUKIDSS.Inaddition,allobjectswerevisually ril 3 tudesfromtheDUSTYmodelsfor5Myroldobjects. examinedintheWISEimagesandintheUKIDSSimages.Itwas , 2 0 Dawsonetal.(2011)usedtheEighthDataReleasefromUKIDSS foundthatforthe116objectsanalysedhere,theidentificationof 13 toidentifythenewbrowndwarfs.Sincethen,UKIDSShasissued theUKIDSSsourcewiththeWISEsourceatthesamepositionis a Ninth Data Release which covers a substantially larger area in unambiguous (for the three excluded targets this is not the case). UpSco. Using the same method as in Dawson et al. (2011), we Furthermore,sinceourtargetfieldsaresparselypopulatedandwell haveidentifiedafurther51objectsinthesamemassrangetoadd above the Galactic plane (latitude 10–30 deg), the likelihood of to the sample. The details of this extended survey are given in accidentalcontaminationbyotherobjectsisverylow. AppendixA.Theadditionofthesenewobjectsincreasesthesize WISE surveyed the whole sky in four mid-infrared wavebands ofthehomogeneoussampleofobjectsuniformlyselectedviatheir simultaneously,usingpassbandswitheffectivewavelengthsof3.4 colour and proper motion characteristics to 119. Although some (W1),4.6(W2),12(W3)and22µm(W4).Weusedtheresultsof objectsinoursamplemaybeslightlyabovethesubstellarthreshold, profile-fitting photometry from the All Sky Data Release, further wewillrefertoourtargetsas‘browndwarfs’throughoutthispaper, details of which can be found in Cutri et al. (2012).1 Among the forsimplicity. 116 objects are 2 that were previouslyexamined by Scholz et al. All119objectslieclosetothe5MyrDUSTYmodelisochrones (2007)andconfirmedtohavediscs. ofChabrieretal.(2000)ina(Z−J,Z)UKIDSSpassbandscolour– magnitudediagram,asshowninFig.1,i.e.noneofthemexhibitany substantialexcessatthesenear-infraredwavelengths.Theobjects 1For more details of the WISE All Sky Data Release also see arealsogenerallyfreefromreddeningcausedbyextinction(Daw- http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/. NewbrowndwarfdiscsinUpperScorpius 905 4 COLOUR ANALYSIS 4.1.2 W1−W2:ComparisonwithScholzetal.(2007) ThefiveUnitedKingdomInfraredTelescope(UKIRT)passbands; Totestthatthemethodoutlinedabovewassuccessfullydiscriminat- Z,Y,J,HandKhaverespectivewavelengthsof0.88,1.03,1.25, ingbetweenclassIIandclassIIIobjects,itwasalsoappliedtothe 1.63 and 2.20µm. Similar J, H and K passbands are also used 35objectsinUpScoexaminedbyScholzetal.(2007).Thatstudy in 2MASS. As noted above, the four WISE passbands, W1, W2, usedaSpitzersurveycombiningspectroscopyfrom8to12µmand W3andW4,havelongerwavelengthsof3.4,4.6,12and22µm,re- photometryat24µm.As33ofthe35objectslieoutsidethearea spectively.Differentcolour–colourandcolour–magnitudediagrams covered by UKIDSS there is no Z or Y passband data available usingcombinationsofallninepassbandswereexamined.The(Z− forthem.However,theyarerecordedintheJ,H andKpassbands J, Z ) andW( 1–W2,Z) colour–magnitude diagrams are shown in of2MASS.The35objectswereplottedina(W1−W2,J)colour– Fig.1.Theoreticalisochronesfor5Myroldsubstellarobjectsare magnitudediagram(shownintheright-handpanelofFig.2)using alsoshownoverplottedonthediagrams.Theseisochronesarebased datafrom2MASS.The116objectsfromthisworkwerealsoplotted ontheDUSTYmodelsderivedbyChabrieretal.(2000)andob- ina(W1−W2,J)colour–magnitudediagram(shownintheleft-hand tainedfrombothBaraffeandAllard(privatecommunications).The panelofFig.2)forcomparison,usingdatafromtheUKIDSSJpass- isochroneswerecomputedusingboththeUKIDSSandWISEfilter band.TwooftheobjectsfromScholzetal.(2007)lieinsidethearea profiles. The (Z − J, Z) isochrone was used to assign masses to coveredbyUKIDSSandwererecoveredbyDawsonetal.(2011). objectsbyDawsonetal.(2011).Theuppermostpointonthe5Myr The differences in their UKIDSS and 2MASS J magnitudes are D o w isochronecorrespondstoamassof0.09M(cid:2)whilethelowestpoint negligible(0.06maginbothcases). n correspondstoamassof0.01M(cid:2). Ascanbeseenfromtheright-handpanelofFig.2,alltheobjects loa d withcircumsubstellardiscshavesufficientexcessinW1−W2(3.4– ed 4.6µm)tostandclearoftheobjectswithnodiscsclusteredalong fro m theisochrone.Afewoftheobjectswithdiscsexhibitalesser,but h 4.1 WISEdataforUpScobrowndwarfs stillsignificantcolourexcessinW1−W2(i.e.theyaremorethan2σ ttp 4.1.1 W1−W2(3.4–4.6µm) awayfromtheisochrone).Themethodsuccessfullydiscriminated ://mn betweenthe13classIIand22classIIIobjectsinthissample. ra Inthe(Z−J,Z)diagramalltheobjectsaregroupedclosetothe s.o x isochroneandnoneshowanysignificantcolourexcess,asdiscussed fo rd above.However,twodistinctpopulationsofobjectsareclearlyvis- 4.1.3 W3(12µm) jou ible in the (W1−W2,Z) diagram, one close to the isochrone and rn a one showing an excess in W1−W2 (3.4–4.6µm). The population Colours that utilize the longer wavelength W 3 (12µm) passband ls .o with excess is best understood as objects harbouring dusty discs areoflimiteduseasonly39ofthe116objectshaveanS/N>5.0in rg atwndotphoepreufloatrieonesmditotinngotthsehromwalupinfinrarthede draiadgiartaimons(tchlaatssutIiIl)iz.eTohneslye TWh3e.3B9yocbojnetcrtasstw,iatlhl1an16So/Nbje>ct5s.h0aivneWan3Sw/Nere>fu8r.t0heinreWxa1mainndeWdi2n. at NA/ UKIRTpassbands.OtherdiagramsthatcombinebothUKIRTand the(W1−W2,W3)colour–magnitudediagramshowninFig.3.They SA WISEpassbandsdoshowthetwopopulations.Coloursthatusea areallamongthehighermassobjectsinthesample,asevidenced G o UKIRTandWISEW1(3.4µm)passbanddoshowthetwopopula- bythelackofobjectsaroundthelowerpartoftheisochrone.The dd a tionsbutnotasclearlyascoloursincorporatingW2(4.6µm).The population with the W1−W2 (3.4–4.6µm) colour excess is again rd S K−W2 colour inparticular discriminates between the twopopu- distinctfromthepopulationclosetotheisochroneasintheprevious pa lationsalmostaswellastheW1−W2colour.TheW1−W2colour diagrams.TheninthbrightestobjectinW3nowstandsclearfrom ce F was chosen as the primary diagnostic for distinguishing between thepopulationneartheisochrone.Whilethisobjectisnotobviously lig classIIandclassIIIobjectsinthiswork(seeFigs1and2). partofthepopulationwithexcessinW1−W2seeninFigs1and ht C tr o n A p ril 3 , 2 0 1 3 Figure2. (W1−W2,J)colour–magnitudediagrams.The116browndwarfswithavailableWISEdataanalysedinthisworkareshownintheleft-handpanel withsymbolsandisochroneasinFig.1.Theright-handpanelshowsthesamediagramfor35objectsinUpScoidentifiedinScholzetal.(2007).Objects confirmedashavingdiscsinScholzetal.(2007)areshownasclosedtriangleswhilethosewithnodiscdetectedareshownasclosedcircles.Ascanbeseen, theobjectsinthepopulationwithobviouscolourexcessallhavediscs.Afewobjectswithdiscsexhibitasmaller,butstillsignificantcolourexcess(i.e.they aremorethan2σ awayfromtheisochrone).Objectswithnodisclieclosetotheisochrone. 906 P.Dawsonetal. Table 1. Objects with photometric variability >0.2maginJ,HorK. Name (cid:4)J (cid:4)H (cid:4)K 2MASSJ15514709−2113234 0.84 0.59 0.25 2MASSJ15521088−2125372 0.24 0.11 0.03 2MASSJ15472282−2139141 0.38 0.25 0.21 2MASSJ16030235−2626163 0.17 0.30 0.11 4.1.5 (W1−W2,J−K) The(W1−W2,J−K)colour–colourdiagraminFig.4wasexamined to see if class II and class III objects could be clearly separated. ApartfromthetwoobjectswhicharebrightinW4andhavelarge differencesintheirUKIDSSand2MASSJmagnitudes,noneofthe Figure3. (W1−W2,W3)colour–magnitudediagramfor39ofthe116ob- objectsshowanysignificantexcessinJ−K.Thisservestoconfirm D jectswithanS/N>5.0inW3(12µm).Symbolsandisochronearethesame previousfindings(Natta&Testi2001;Nattaetal.2002)thatthe o w asinFig.1.The39objectsareallamongthehighermassobjectsinthe efficacyofusingJ−Kexcessasadiagnosticforthepresenceof nlo sample,asevidencedbythelackofobjectsaroundthelowerpartofthe discsaroundverylowmassstarsandbrowndwarfsisverylimited. ad isochrone. ed fro b2a,siitsiosfmitosreextcheasnsi2nσWa1w−aWy2fraonmditthsebirsiogchhtnroesnse.inOWn3t,hietacpopmebairnsetdo 4.2 Variableobjects httpm haveadiscandsoisincludedinthegroupofclassIIobjects.This A comparison was also made of the UKIDSS and 2MASS pho- ://m oobfjSecchtoislzoenteaol.f(t2h0e0t7w)owohbojencotstectohmatmitohnatsoabboitnhatrhyiscostmudpyanainodntahtaat taotmdeiftfreyrefonrteeapcohchosbjseecvt.erUaKl IyDeaSrSsaanpdar2tM–A2SMSAdSaStabweetwreegeanth1e9r9ed7 nras.o and2001(Skrutskieetal.2006)andUKIDSSfrom2005onwards x separationof12au. fo (Lawrenceetal.2007).Ofthe116objects,112showedavariationof rd lessthan0.2maginJ,HandK.Theremainingfour,whicharelisted jou 4.1.4 W4(22µm) inTable1(andmarkedwithcrossesinFigs1,2,3and4),showed rnals variationsofgreaterthan0.2maginJ,HorK.Suchvariationsin .o TheobjectsalsohadtheirdetectionintheW4(22µm)WISEpass- rg bandexamined.Photosphericemissionfrombrowndwarfsisneg- Jcrheativoen.bSeecnhoilnzteertparle.t(e2d0b0y9)Sfcuhrtohlezrentoatle.t(h2a0t0c9o)oalsspsoigtsn(actuormespaorfabacle- at N/ ligible by comparison with emission from a disc at wavelengths tosunspots)areexpectedtoproducevariationsof<0.15maginJ AS longerthan20µm(Scholzetal.2007).Therefore,anyobjectwith and<0.1maginKwhilelarge-scalephotometricvariabilitywith A G abrightunambiguoussignalinW4showsclearevidenceofthepres- amplitudes declining towards longer wavelengths – as displayed od (e3n.c4e–4o.f6aµdmu)s.ty10d5isoc,fethveenobifjeitctdsoweserneontohtavdeisatinngeuxicsehsasbilneWfro1m−Wth2e bbyythhoetstphoretseomrovsatrviaabrilaebelxetoinbcjteicotnsidnueTatbolea1ro–taitsinggendeisrca.llHyoctasupsoetds dard S backgroundinW4,havingS/Nvaryingfrom4.7to0.Theremaining inyoungstarsandbrowndwarfsarethoughttobeadirectconse- pac 11weredetectedwithS/N>5.0andhavethebrightestsignalsin quenceofaccretionandsotheyareevidenceoftheexistenceofa e F W4.These11aremarkedwithringsinFigs1,2,3and4.Ofthe11, disc.Likewise,variableextinctionisalsoevidenceoftheexistence ligh 7 are in the population of 22 with distinct W1−W2 (3.4–4.6µm) ofadisc.AllfourobjectsareinthepopulationwithW1−W2colour t C colourexcess. excess. tr o n A p 5 DISCUSSION ril 3 , 2 Inall,22objectswereidentifiedasclassIIobjectsonthebasisof 01 3 theirW1−W2colouralone.OneobjectwithasmallW1−W2excess wasalsoplacedinthepopulationofclassIIobjectsbecauseofits bright W3 signal. A further four other objects with no W1−W2 excess were also categorized as class II because of their bright signals in the 22µm W4 passband. All 27 objects are listed in Table2.Theremaining89objects(listedinTable3)weredeemed to be class III, i.e. they have no discs or discs with a large inner opacityholeofatleast5–20au(seeScholzetal.2007).Weshow thespectralenergydistributionsforsixcharacteristicexamplesof theclassIIobjectsinAppendixB. Figure4. (W1−W2,J−K)colour–colourdiagramwithbrowndwarfsand 5.1 Discfraction isochronesasinFigs1and2.ThetwoobjectswhicharebrightinW4and whichshowsignsofaccretionhaveanexcessinbothW1−W2andJ−K. The overall disc fraction is 27 out of 116 or 23 ± 5percent (the Apartfromthosetwo,therestofthepopulationwithexcessinW1−W2 uncertainty corresponds to a 1σ confidence interval based on bi- showsnoobviousexcessinJ−K. nomial statistics). As noted in Section 2 above, contamination in NewbrowndwarfdiscsinUpperScorpius 907 Table2. Positions,UKIDSSZandJphotometry,WISEW1,W2,W3andW4photometryofthe27classIIobjects.Objectsarelistedin orderofdecreasingmass,basedontheirZmagnitude.CoordinatesareJ2000. Name RA Dec. ZMag. JMag. W1Mag. W2Mag. W3Mag. W4Mag. 2MASSJ16075049−2125200 16:07:50.49 −21:25:20.2 14.03 12.69 11.27 10.73 9.10 7.22 2MASSJ15465432−2556520 15:46:54.32 −25:56:52.1 14.16 12.75 11.40 10.81 9.10 6.23 2MASSJ16052875−2655496 16:05:28.75 −26:55:49.7 14.18 12.89 11.67 11.21 9.90 8.03 2MASSJ16095852−2345186 16:09:58.52 −23:45:18.7 14.20 12.57 11.34 10.97 9.96 8.73a 2MASSJ16030235−2626163 16:03:02.36 −26:26:16.4 14.46 13.12 11.44 10.92 9.59 8.04a 2MASSJ15470374−2601183 15:47:03.74 −26:01:18.4 15.02 13.32 12.03 11.74 10.42 7.39 2MASSJ16134880−2509006 16:13:48.81 −25:09:00.7 15.04 13.56 11.96 11.32 9.55 7.58 2MASSJ15514709−2113234 15:51:47.09 −21:13:23.5 15.12 13.54 10.56 9.88 8.85 7.41 2MASSJ16035573−2738248 16:03:55.73 −27:38:25.1 15.19 13.80 12.70 12.45 12.13a 7.89 2MASSJ15472572−2609185 15:47:25.73 −26:09:18.5 15.40 13.55 11.87 11.51 9.58 7.37 2MASSJ16145253−2718557 16:14:52.53 −27:18:55.7 15.65 14.06 12.34 11.79 10.63 8.70a 2MASSJ15412655−2613253 15:41:26.55 −26:13:25.4 15.65 14.00 12.59 12.10 10.75 8.24a 2MASSJ15521088−2125372 15:52:10.88 −21:25:37.4 15.72 13.86 11.01 10.15 8.90 6.92 D 2MASSJ16143287−2242133 16:14:32.87 −22:42:13.5 15.82 14.16 12.88 12.34 11.74a 8.38a ow n 2MASSJ15501958−2805237 15:50:19.58 −28:05:23.9 16.04 14.56 13.28 12.72 12.03a 8.98a lo 2MASSJ16080745−2345055 16:08:07.45 −23:45:05.6 16.06 14.40 12.86 12.21 10.30 8.43a ade 22MMAASSSSJJ1155552741581830−−22770151556607 1155::5527::4158..1831 −−2277::0151::5566..18 1166..1369 1144..4728 1133..0462 1122..3856 1110..9704a 98..0656aa d from 2MASSJ16142144−2339146 16:14:21.44 −23:39:14.8 16.59 14.97 13.57 12.99 11.95a 8.25a h 22MMAASSSSJJ1166011020263088−−22710287149440 1166::0110::2026..3098 −−2271::0287::1494..51 1166..6882 1144..7802 1133..2249 1122..5655 1111..9101a 88..7423aa ttp://m 2MASSJ15541998−2135428 15:54:19.99 −21:35:43.0 16.85 14.98 13.26 12.57 11.22 8.39a nra 2MASSJ16083048−2335109 16:08:30.49 −23:35:11.0 16.95 14.88 13.37 12.86 11.69a 8.63a s.o x 2MASSJ16082847−2315103 16:08:28.47 −23:15:10.4 17.64 15.45 13.77 13.22 12.21a 8.34a fo 2MASSJ15472282−2139141 15:47:22.82 −21:39:14.3 17.97 15.65 13.69 13.07 11.63a 8.67a rdjo 22MMAASSSSJJ1155545333691447−−22554365559419 1155::5453::3369..1457 −−2255::4365::5594..29 1188..2135 1155..8737 1133..6931 1133..1723 1110..1707a 77..9728 urnals aS/N<5. .org a/ Table3. Positions,UKIDSSZandJphotometry,WISEW1,W2,W3andW4photometryofthe89classIIIobjects.Objectsarelistedin t N A orderofdecreasingmass,basedontheirZmagnitude.CoordinatesareJ2000. S A G Name RA Dec. ZMag. JMag. W1Mag. W2Mag. W3Mag. W4Mag. o d d a 2MASSJ16175608−2856399 16:17:56.09 −28:56:40.0 14.01 12.76 11.76 11.53 10.54 8.17a rd 2MASSJ16034797−2801319 16:03:47.97 −28:01:31.9 14.03 12.81 11.83 11.62 11.17 9.02a Sp a 2MASSJ16105728−2359540 16:10:57.28 −23:59:54.1 14.04 12.80 11.68 11.48 11.72a 8.72a ce 22MMAASSSSJJ1156505545282998−−22554566427278 1156::5055::4528..2999 −−2255::4566::4272..89 1144..0170 1122..6559 1111..5520 1111..2242 1100..9833a 89..1088aa Fligh 2MASSJ16105429−2309108 16:10:54.29 −23:09:11.1 14.13 12.97 11.88 11.68 11.60a 8.27a t C 2MASSJ15591513−2840411 15:59:15.12 −28:40:41.3 14.14 12.96 12.00 11.77 12.39a 8.75a tr o n 2MASSJ16095217−2136277 16:09:52.17 −21:36:27.8 14.15 12.51 11.33 10.97 10.72 9.14a A 22MMAASSSSJJ1165046131659113−−22752309544487 1165::0461::3165..9114 −−2275::2309::5444..98 1144..1166 1122..8786 1111..8559 1111..6307 1111..9310a 88..7731aa pril 3 2MASSJ16033799−2611544 16:03:37.99 −26:11:54.4 14.17 12.98 11.96 11.70 11.22 8.63a , 20 2MASSJ16105499−2126139 16:10:54.99 −21:26:14.0 14.22 12.73 11.56 11.30 10.89 8.53a 13 2MASSJ16154869−2710546 16:15:48.69 −27:10:54.7 14.22 12.82 11.69 11.40 11.65a 8.86a 2MASSJ15450519−2559047 15:45:05.20 −25:59:04.7 14.23 12.90 11.76 11.54 12.00a 8.53a 2MASSJ16072196−2358452 16:07:21.96 −23:58:45.3 14.24 12.99 11.86 11.64 11.27 8.79a 2MASSJ16152819−2315439 16:15:28.19 −23:15:44.1 14.24 13.12 12.08 11.90 11.78a 8.18a 2MASSJ16370523−2625439 16:37:05.24 −26:25:44.0 14.27 12.96 11.96 11.69 11.40 8.91a 2MASSJ15492909−2815384 15:49:29.08 −28:15:38.6 14.29 12.96 11.85 11.63 12.05a 8.91a 2MASSJ15491602−2547146 15:49:16.02 −25:47:14.6 14.31 13.01 11.87 11.60 10.90 8.20a 2MASSJ16082229−2217029 16:08:22.29 −22:17:03.0 14.31 12.94 11.85 11.56 11.10 8.81a 2MASSJ16061595−2218279 16:06:15.95 −22:18:28.0 14.31 13.17 12.11 11.91 11.92a 9.02a 2MASSJ15544260−2626270 15:54:42.61 −26:26:27.0 14.32 13.05 11.91 11.72 11.61a 8.23a 2MASSJ16090168−2740521 16:09:01.68 −27:40:52.3 14.33 12.86 11.71 11.44 10.97 8.72a 2MASSJ15582376−2721435 15:58:23.76 −27:21:43.7 14.35 13.07 12.02 11.79 11.37a 8.78a 2MASSJ16132180−2731219 16:13:21.80 −27:31:22.0 14.36 13.25 11.93 11.85 11.60a 8.77a 2MASSJ15415562−2538465 15:41:55.63 −25:38:46.5 14.37 13.10 12.02 11.79 12.14a 8.93a 2MASSJ16002535−2644060 16:00:25.35 −26:44:06.1 14.38 13.02 11.90 11.66 11.67a 8.50a 908 P.Dawsonetal. Table3 – continued Name RA Dec. ZMag. JMag. W1Mag. W2Mag. W3Mag. W4Mag 2MASSJ15545410−2114526 15:54:54.11 −21:14:52.7 14.40 13.26 12.10 11.94 10.71 8.31a 2MASSJ16062637−2306113 16:06:26.37 −23:06:11.4 14.48 13.20 12.12 11.87 11.68a 8.90a 2MASSJ16121609−2344248 16:12:16.09 −23:44:25.0 14.50 13.19 11.96 11.78 10.99 8.21a 2MASSJ16090451−2224523 16:09:04.51 −22:24:52.5 14.57 12.92 11.66 11.40 10.59 8.23a 2MASSJ16113470−2219442 16:11:34.70 −22:19:44.3 14.61 13.24 12.11 11.87 12.25a 8.77a 2MASSJ15505993−2537116 15:50:59.94 −25:37:11.7 14.62 13.33 12.30 12.05 11.55a 8.90a 2MASSJ15524857−2621453 15:52:48.57 −26:21:45.4 14.62 13.30 12.27 12.00 12.51a 9.14a 2MASSJ16372782−2641406 16:37:27.83 −26:41:40.7 14.63 13.30 12.14 12.00 11.42 8.95a 2MASSJ15522943−2721003 15:52:29.44 −27:21:00.4 14.64 13.47 12.45 12.14 12.36a 9.06a 2MASSJ15530374−2600306 15:53:03.75 −26:00:30.7 14.66 13.43 12.36 12.14 12.03a 8.62a 2MASSJ15493660−2815141 15:49:36.59 −28:15:14.3 14.66 13.39 12.36 12.05 11.63a 8.79a 2MASSJ16133476−2328156 16:13:34.76 −23:28:15.7 14.74 13.48 12.39 12.12 11.77a 8.81a 2MASSJ15490803−2839550 15:49:08.02 −28:39:55.2 14.82 13.60 12.45 12.21 10.68 8.15a 2MASSJ16112630−2340059 16:11:26.30 −23:40:06.1 14.83 13.40 12.16 11.92 12.04a 8.55a D 2MASSJ15495733−2201256 15:49:57.33 −22:01:25.7 14.89 13.35 12.15 11.89 11.56a 8.64a ow n 2MASSJ16062870−2856580 16:06:28.70 −28:56:58.2 14.90 13.52 12.39 12.18 11.41 9.06a lo 2MASSJ15572692−2715094 15:57:26.93 −27:15:09.5 14.93 13.66 12.59 12.39 12.00a 9.10a ade 22MMAASSSSJJ1166106045523695−−22383132401837 1166::1060::4552..3696 −−2238::3132::4019..60 1145..9094 1133..7537 1122..6428 1122..3237 1111..6719aa 89..4143aa d from 2MASSJ16132665−2230348 16:13:26.66 −22:30:35.0 15.05 13.52 12.33 11.99 11.00 8.82a h 22MMAASSSSJJ1166101654793170−−22221156036862 1166::1016::5479..3170 −−2222::1156::0368..84 1155..0079 1133..6773 1122..5613 1122..2347 1111..7960aa 88..8749aa ttp://m 2MASSJ15585793−2758083 15:58:57.93 −27:58:08.5 15.13 13.81 12.78 12.54 12.08a 9.06a nra 2MASSJ15420830−2621138 15:42:08.31 −26:21:13.8 15.15 13.74 12.59 12.32 12.10a 9.07a s.o x 2MASSJ16090197−2151225 16:09:01.98 −21:51:22.7 15.16 13.59 12.32 12.08 10.87 8.45a fo 2MASSJ16124692−2338408 16:12:46.92 −23:38:40.9 15.18 13.60 12.42 12.19 12.20a 8.25a rdjo 22MMAASSSSJJ1166115334624684−−22331051127759 1166::1153::3462..4684 −−2233::1051::1278..60 1155..1199 1133..9732 1122..8457 1122..6215 1122..0230aa 88..2338aa urnals 2MASSJ16113837−2307072 16:11:38.37 −23:07:07.5 15.19 13.74 12.60 12.31 11.97a 8.59a .o 2MASSJ15583403−2803243 15:58:34.03 −28:03:24.5 15.21 13.72 12.53 12.30 11.45 9.03a arg/ 2MASSJ16192399−2818374 16:19:23.99 −28:18:37.5 15.29 13.79 12.73 12.40 11.51a 8.57a t N 2MASSJ15490414−2120150 15:49:04.14 −21:20:15.2 15.31 13.77 12.64 12.37 11.50a 8.92a A S 2MASSJ16051243−2624513 16:05:12.43 −26:24:51.4 15.40 14.06 12.93 12.76 12.29a 9.08a A 2MASSJ15533067−2617307 15:53:30.68 −26:17:30.7 15.49 13.99 12.83 12.60 12.06a 8.64a Go 2MASSJ15544486−2843078 15:54:44.85 −28:43:07.9 15.51 14.12 12.99 12.81 12.60a 8.90a dd a 2MASSJ15531698−2756369 15:53:16.98 −27:56:37.2 15.53 13.96 12.84 12.55 12.50a 8.58a rd 2MASSJ15551960−2751207 15:55:19.59 −27:51:21.0 15.60 14.03 12.93 12.67 12.30a 9.10a Sp 2MASSJ15564227−2646467 15:56:42.28 −26:46:46.8 15.62 14.03 12.85 12.54 11.65a 8.51a ace 22MMAASSSSJJ1166110115341369−−22825366340981 1166::1101::1534..1359 −−2282::5366::3419..03 1155..6773 1144..0267 1123..8094 1122..5890 1121..1866aa 98..0392aa Fligh 2MASSJ16092938−2343121 16:09:29.39 −23:43:12.2 15.96 14.20 12.94 12.65 12.30a 8.98a t C 2MASSJ16103014−2315167 16:10:30.14 −23:15:16.8 16.06 14.37 13.05 12.75 11.97a 8.35a tr o 2MASSJ15561721−2638171 15:56:17.21 −26:38:17.2 16.10 14.52 13.26 13.00 10.38 8.23a n A 22MMAASSSSJJ1166017422604611−−22174445146997 1166::0174::2260..4611 −−2217::4445::1479..18 1166..1371 1144..6409 1133..4232 1132..1973 1122..2266aa 88..5659aa pril 3 2MASSJ15572820−2708430 15:57:28.21 −27:08:43.0 16.40 14.78 13.71 13.47 12.21a 8.77a , 20 2MASSJ16134079−2219459 16:13:40.79 −22:19:46.1 16.49 14.72 13.42 13.08 12.05a 8.99a 13 2MASSJ15442275−2136092 15:44:22.75 −21:36:09.3 16.55 15.01 13.69 13.48 11.68a 8.55a 2MASSJ15543065−2536054 15:54:30.65 −25:36:05.5 16.73 15.03 13.80 13.61 11.58a 8.17a 2MASSJ16064818−2230400 16:06:48.18 −22:30:40.1 16.82 14.93 13.63 13.37 12.04a 8.68a 2MASSJ15444172−2619052 15:44:41.72 −26:19:05.3 17.16 15.21 13.86 13.63 12.26a 8.86a 2MASSJ16072382−2211018 16:07:23.82 −22:11:02.0 17.24 15.20 13.70 13.41 12.20a 8.87a 2MASSJ16104714−2239492 16:10:47.13 −22:39:49.4 17.44 15.26 13.80 13.51 12.02a 8.57a 2MASSJ16084744−2235477 16:08:47.44 −22:35:47.9 17.74 15.69 14.30 14.11 12.28a 8.79a 2MASSJ15491331−2614075 15:49:13.32 −26:14:07.5 18.29 16.04 14.50 14.12 12.16a 8.88a 2MASSJ16081843−2232248 16:08:18.43 −22:32:25.0 18.51 16.10 14.28 14.05 11.56a 8.72a 2MASSJ16195827−2832276 16:19:58.26 −28:32:27.8 18.74 16.18 14.42 14.10 12.47a 8.77a 2MASSJ15451990−2616529 15:45:19.91 −26:16:53.0 18.77 16.27 14.41 14.06 11.85a 8.20a 2MASSJ16362646−2720024 16:36:26.47 −27:20:02.5 18.77 16.33 14.52 14.22 11.44a 8.79a 2MASSJ16360175−2703305 16:36:01.75 −27:03:30.5 19.12 16.64 14.95 14.91 12.07a 8.86a 2MASSJ16073799−2242468 16:07:37.99 −22:42:47.0 19.24 16.76 15.16 14.73 12.51a 8.25a 2MASSJ15504498−2554213 15:50:44.99 −25:54:21.4 19.90 16.93 14.86 14.70 11.84a 8.33a aS/N<5. NewbrowndwarfdiscsinUpperScorpius 909 oursampleappearstobenegligible.Conservativelyassumingthat 10percentoftheobjectsarecontaminantswhichdonotexhibitmid- infraredexcesswouldonlyincreasethediscfractionto27/104,i.e. 26percent. This contrasts with the previous results for UpSco of 37±9percent(Scholzetal.2007)obtainedwithasmallersample of35objects.Thesampleof35objectsinScholzetal.(2007)was selectedfromthesurveysof(Ardila,Martin&Basri2000,12ob- jects)and(Martinetal.2004,23objects).Thehigherdiscfraction reportedinScholzetal.(2007)maybetheresultofusingasmaller sampleofobjectsorofapossiblebias. TheresultsofScholzetal.(2007)werealsoincontrasttothedisc fractionof19percentforK0–M5starsinthesameregionobtained byCarpenteretal.(2006)usingasampleof127K0–M5stars.Our newresult,of23±5percent,fromasimilarlysizedsampleof116 objects,isstatisticallyindistinguishablefromtheresultofCarpenter etal.(2006),suggestingthatdisclifetimesinUpScoforobjectslater Figure5. DiscfractionsforK/Mstarscomparedtodiscfractionsforbrown D thanK0shownodependenceonthemassofthecentralobject.We dwarfsinCha1,IC348,σOriandUpSco.Ineachcasethediscfractionfor ow notethatfromoursampleof27discs,22(from72,31percent)are theK/Mstarsisstatisticallyindistinguishablefromthediscfractionforthe nlo foundtobeinthemassrange0.01–0.05M(cid:2),whileonly5(from browndwarfs(seethetext;Section5.1). ad e d 4in4d,ic1a1tepearctreennt)datroewianrdtshehimghaesrsdraisncgefra0c.0ti5o–n0s.0fo9rMve(cid:2)ry. Tlohwismmaasys hasthesmallestdiscfraction,norobustcorrelationcanbesafely from brown dwarfs, but it is not sufficiently robust to warrant further determined in respect of the disc fractions and ages of the four http discussion. associations. ://m n ra s .o 5.1.1 Discfractionsinotherclusters x 5.2 Transitiondiscs fo rd ThisresultforUpScocanbecomparedwiththoseforChaI(Luhman jo Objectswithverylittleornoexcessatnear-tomid-infraredwave- u et al. 2005; Damjanov et al. 2007), IC 348 (Luhman et al. 2005; rn Lada et al. 2006) and σ Ori (Hernandez et al. 2007), three other lengthsbutexhibitingexcessatlongerwavelengthsarebestunder- als stoodbyassuminganopacityholeintheinnerdisc(seeSection5.3). .o associationsforwhichsimilarinformationisavailable.Damjanov rg etal.(2007)reportadiscfractionof52±6percentfromasample Theymaybeintheprocessofclearingdustfromtheirinnerdiscs a/ (Calvetetal.2002;Muzerolleetal.2006).Suchobjectsareoften t N of 81 K3–M8 objects in Cha I, while Luhman et al. (2005) find A a disc fraction of 50 ± 17percent from a much smaller sample termed ‘transition discs’, but the criteria used to define transition SA of18objectslaterthanM6.Luhmanetal.(2005)alsofindadisc discsdifferintheliterature(seeMerinetal.2010;Luhman&Ma- G fractionof42±13percentfor24objectslaterthanM6inIC348, majek2012foradiscussionofthevariouscriteria).Hereweuse odd whereLadaetal.(2006)reportadiscfractionof47±12percent thetermtoidentifyobjectswithlittleornoexcessinW1−W2,i.e. ard in the range of K6–M2 stars. In an analysis of discs in σ Ori, shortwardsof10µm,butbrightW3and/orW4signals(seeSections Sp Hernandezetal.(2007)findadiscfractionof36±4percentfor 4.1.3and4.1.4).Thefiveobjectsthatsatisfythiscriterionarein- ace sdtwarasrfisnt(hdeefimnaesdsraasnogbej0e.c1ts–1<.00M.1(cid:2)Ma(cid:2)nd).3T3h±e s1p0epcetrracletnytpfeosrborfowthne cfrlouWmdeedcdlaionssnthoIIetfitconlacdslsaasnIsIyIgoIrIbo.juepctatnhdatmmaiyghbtebiencthalelepdroac‘epsrseo-tfratrnasnitsiiotinoanl Flight C mostmassivestarsinthisrangedefinedbyHernandezetal.(2007) disc’(Espaillatetal.2008,2012),showingevidenceforanopacity tr o are a little earlier than K (up to G8). However, the vast bulk of gap (as opposed to an inner hole) in the disc, i.e. with excess at n A theirsampleisinthemassrangeofKandMstars,sotheirresult p is noted here as being valid for K and M stars in σ Ori. Fig. 5 <10µm,noexcessat12µmandexcessagainat22µm. ril 3 showsthatinthewakeofthisrevisionoftheresultsforUpSco,all Basedonouradopteddefinition,thefractionoftransitiondiscs , 20 aroundclassIIbrowndwarfsinoursampleis5/27or19percent. 1 fourassociationsnowshowsimilardiscfractionsforK/Mstarsand 3 Due to the small sample size, the uncertainty in this number is brown dwarfs. Thus, average disc lifetime does not appear to be in the range of ±10percent. Taking this into account, the value dependentonthemassofthecentralobjectinanyoftheseregions. is consistent with most previous estimates for the transition disc fraction for low-mass stars which are, for criteria similar to the oneadoptedhere,intherange0–20percent(e.g.Ercolano,Clarke 5.1.2 Theagesoftheassociations & Robitaille 2009; Muzerolle et al. 2010). Thus, based on our All the associations listed above are young, i.e. <10Myr old. estimateforthebrowndwarfregime,thereisnoevidenceformass Preibischetal.(2002)determinedanageofabout5MyrforUp- dependenceinthetransitiondiscfrequency. Sco, while a revised age of 10Myr has been proposed by Pecaut The small number of transition discs in our sample indicates etal(2012).ChaI,IC348andσ Orihaveeachhadvariousages thatthetransitionphaselastsonlyashorttimecomparedwiththe ofbetween2and5Myrreportedforeachofthem(Oliveiraetal. total lifetime of the discs. Assuming the upper limit for the age 2002; Zaptero Osorio et al. 2002; Luhman et al. 2003; Luhman spreadof2Myr(Preibisch&Zinnecker1999),weobtainanupper 2004,2007;Sherry,Walter&Wolk2004;Mayneetal.2007).So limitof0.4Myrforthetransitiontime-scale,i.e.aboutoneorder whileUpScoappearstobetheoldestofthefourassociations,Cha ofmagnitudeshorterthanthedisclifetime.Thus,atwotime-scale I, IC 348 and σ Ori cannot yet be readily distinguished in terms modelfortheevolutionofthediscs,asoftenadoptedforlow-mass of their ages. Ergo, apart from stating that the oldest association stars,isrequiredforbrowndwarfsaswell. 910 P.Dawsonetal. thelinesproposedbyDullemond&Dominik(2004).Ergo,inthis 5.3 Radiativetransfermodels model,theprocessoftransitionfromclassIItoclassIIIthatmay Scholzetal.(2007)producedmodelspectralenergydistributions beoccurringaroundthisobject’sdiscdoesnotrequirethepresence based on Monte Carlo radiative transfer simulations for the 13 ofmechanisms(e.g.planetformation)thatwouldcompletelyclear class II objects that they found in UpSco. Fig. 6 shows the spec- theinnerdisc. tral energy distributions of the two of those objects recovered in thiswork,whichhavebeenrecreatedusingtheoriginalmodelpa- rameters.DatashownfortheJ,H,K,9,10,11and24µmwave- 5.4 ComparisonwithRiazetal.(2012) lengthsaretakenfromthatofScholzetal.(2007).Thenewdata fortheW1,W2andW3passbandsarealsoshownoverplottedon Inarecentpaper,Riazetal.(2012)analyseasampleof43spec- thetwospectralenergydistributiondiagrams.ItisclearfromFig.6 troscopically confirmed very low mass members (spectral types thatthedataforW1(3.4µm),W2(4.6µm)andW3(12µm)agree M4–M8.5)inUpScousingWISEdata.TheyfindsixnewclassII verywellwithbothoriginalmodels,lyingonorveryclosetothe objectsandrecoverfourotherspreviouslyrecordedbyScholzetal. modelledfluxforacombinedphotosphereanddisc(solidlinesin (2007)andafurthertwothatwerefoundbySlesnick,Hillenbrand Fig.6). &Carpenter(2008).These12objectsarelistedintheirtable1.We Models of the inner part of a disc rely on observational data havebeenkindlyprovidedwithatablewhichincludesthe31other D in the mid-infrared to refine their accuracy. Scholz et al. (2007) browndwarfsthattheyinvestigatedandcategorizedasclassIIIby ow notedthatthegapintheirdatacoverageinthe3–8µmregionre- Riaz(privatecommunication).Fromthe12classIIand31classIII nlo a stricted their ability to constrain the size of any inner disc holes objectsthattheylist,thereare12incommontoboththatstudyand d e idnitisoonurocefsththeatWexh1ibainteddWe2xcdeastsaespaotin9tsµmforantdhebetwyoondo.bTjehcetsadin- othuerss.aBmoethsesvteundioebsjeccattsegaosrcizlaessthIeIIs.amefiveobjectsasclassIIand d from FpriogTb.he6edn.doawtaaflolorwtshethoebajceccutriancythoefltehfet-mhaonddelpsainnetlhiwsarsegoiroingitnoalblye owfitAthhleSso/WNi3n<csl3iug.d0neaidnlaitnhnedthWree3qtaupbiarlseestsbhuaapntpdal.iRseodiuabzrcyeetRhaiala.vz(e2a0are1W2s)ix3reoSlty/hNoenrofot≥hbeje3uc.s0tes. http://mn fitted with a model which included an excess in the mid-infrared Asaresulttheydonotcategorizethesesixbrowndwarfs.However, ras whichnecessitatedthepresenceofanopticallythickinnerdisc.The using the W1−W2 colour as a primary diagnostic instead of W3 .ox fo newlyoverplottedW1(3.4µm)andW2(4.6µm)valuesobserved allows a larger range of objects to be successfully examined. All rd byWISEconformwiththatpartofthemodel,furtherindicationthat 116 objects investigated in our work have an S/N > 8 in the W1 jou asignificantW1-W2excessisevidenceforthepresenceofadisc. andW2passbands,whileonly64ofthemhaveanS/Nof≥3.0in rna The W1−W2 excess for this object places it more than 4σ away theW3passband.Thesixobjectswhichcannotbecategorizedin ls.o fromtheisochroneinthe(W1−W2,Z)colour–magnitudediagram Riazetal.(2012)becausetheyhaveaweakW3signalhavebeen arg/ inFig.1. determinedinthisworktobeclassIIIobjectsusingtheirW1and t N A The diagram in the right-hand panel of Fig. 6 is for the object W2signalsalone. S notedinSections4.1.3and5.2abovethatmaybeintheprocessof RequiringthatasourcehaveaW3S/Nof≥3.0notonlyrestricts A G transitionfromclassIItoclassIII.ItslesserexcessatW1andW2is thenumberofobjectsinanysamplefromUpSco,butalsoproduces od d clear,asisitsrelativelygreaterexcessatW3.Again,theaccuracyof asamplethatisbiasedwithrespecttothepresenceofdiscs.ClassIII ard theoriginalmodelatthesewavelengthsisconfirmedbythenewly objectsinUpScoarelesslikelythanclassIIobjectstohaveastrong S p observedWISEvalues.Whilethemodelshowndoesprecludethe W3signal.Ofthe116objectsexaminedinthiswork,78percentof ac e existence of an optically thick inner disc, it does not require the theclassIIobjects,butonly48percentoftheclassIIIobjects,have F presenceofanevacuatedholeintheinnerdisc.Instead,areduced aW3S/Nof≥3.0.Restrictingtheanalysistothose64objectsonly ligh scaleheight,i.e.aflatterinnerdiscissufficient.Thisevolutiontoa wouldhaveyieldedanartificiallyhighdiscfractionof33percent, t C flatterdisccouldbecausedbygraingrowthanddustsettlingalong ratherthanthe23percentfoundfromthelargerunbiasedsample tr o n A p ril 3 , 2 0 1 3 Figure6. SpectralenergydistributionforthetwoclassIIobjectsoriginallyidentifiedinScholzetal.(2007)andrecoveredinthiswork.Datashownare takenfromthatofScholzetal.(2007)fortheJ,H,K,9,10,11and24µmwavelengths,alongwiththenewlyacquiredW1,W2andW3values.TheMonte CarloradiativetransfersimulationsshownforcomparisonusethesameparametersasweregiveninScholzetal.(2007).Thedottedlinesdepictcalculated photosphericfluxwhilethesolidlinesrepresentcombinedphotosphericanddiscflux. NewbrowndwarfdiscsinUpperScorpius 911 of116objects,whilealsoincreasingthestatisticalerrors.Forthese Examining all the UKIDSS, 2MASS and WISE colour– reasonsourdiscfractionisamorerepresentativevalueforthebrown magnitude and colour–colour combinations shows that the WISE dwarfpopulationinUpSco. W1−W2colouristhebestprimarydiagnosticforthepresenceofa discaroundtheobjects. 27classIIobjectsareidentifiedfromthesample.22wereclassi- 5.5 ComparisonwithLuhman&Mamajek2012 fiedviatheirW1−W2colourexcessalone.Fiveotherobjectswere alsocategorizedasclassIIfromtheirW3and/orW4signals.These AnotherrecentpaperfocusedonthediscsofUpScomembershas fiveobjects(19percentofalldiscs)appeartobeinthetransition been published by Luhman & Mamajek (2012). Similar to Riaz phasebetweenclassIIandclassIII,leadingtotheconclusionthat etal.(2012)theylookatasampleofspectroscopicallyconfirmed thisphaseisshortlived,lastinglessthan0.4Myr,anestimatethat members. Their list of targets includes 387 objects with spectral isconsistentwithfindingsforlow-massstars. typesM4–M8andanother23withM8–L2andisthussubstantially Thediscfractionisfoundtobe23±5percent.Thisfractionis largerthantheRiazetal.sample.TheyanalysetheavailableSpitzer statisticallyindistinguishablefromresultsforK/MstarsinUpSco. andWISEphotometryfortheseobjects.Toidentifytheobjectswith ResultsfromtheliteratureforChaI,IC348andσ Orishowthat discs,theyusethespectralregimefrom4.5to24µm,similartothis theirbrowndwarfdiscfractionsarealsoindistinguishablefromtheir paper. K/Mstardiscfractions.Therefore,theaveragelifetimeofthediscs 48 of their targets also appear in our total sample of 119, D ineachoftheseregionsshowsnoobviousdependenceonthemass ow aomuroncglasthsemII/I1I3I cdliasstisnificteidonasacglraesessIIwiinththtihsepaopneer.iInnLmuohsmtcaanse&s, of the central object. Combined with the short transitional phase nloa fromclassIItoclassIII,thissuggeststhattheevolutionofbrown d Mamajek(2012).TheonlyexceptionistheM9–L1object2MASSJ ed 1b6as0e8d28o4n7i−tsW2311−51W023,cowlohuicrh,wchleearerlaysLfuulhfimlsanou&r MclaasmsaIjIekcr(i2t0er1i2o)n dstwarasr.fdiscsfollows‘atwotime-scalemodel’,similartolow-mass h from concludethatitisdisklessbasedonitsK−W2colour.Attheselate ttp spectraltypes,however,theintrinsiccoloursofyoungbrowndwarfs ACKNOWLEDGMENTS ://m n increasesignificantly withspectral typeand cover abroad range, TheauthorswouldliketothankIsabelleBaraffeofExeterUniver- ras i.e.itischallengingtounambiguouslydistinguishbetweenclassII .o sityandFranceAllardoftheCentredeRechercheAstrophysique x and class III. Whether this source does or does not have infrared fo deLyonforsupplyingmodeldata.ThisworkwassupportedbySci- rd excessemissionremainstobedetermined,butthisdoesnotaffect enceFoundationIrelandwithintheResearchFrontiersProgramme jou ourresultsinanyway. undergrantno.10/RFP/AST2780.Thispublicationmakesuseof rna Theremainderofoursample(71intotal,amongthem14with ls dataproductsfromtheWISE,whichisajointprojectoftheUni- .o doiusrcws)oirsknienwcreaansdesnothtecsoavmerpeldeboyfbLruohwmnadnw&arfMsaanmaalyjesked(2w0i1th2)m,ii.de-. voerarstoitryy/oCfalCifaolrinfoiarnIinas,tiLtuotseAofnTgeeclehsn,oalongdy,thfeunJdeetdPbroyptuhlesiNonatiLoanba-l at Nrg/ infrareddatasignificantly. A AeronauticsandSpaceAdministration.Thispublicationalsomakes S ThediscfractionderivedbyLuhman&Mamajek(2012)forvery A lowmassandsubstellarmembersofUpScois∼25percent,andthus useofdataproductsfromtheTwoMicronAllSkySurvey,whichis G ajointprojectoftheUniversityofMassachusettsandtheInfrared od agreesverywellwithourownresult.Theyalsofindthatdiscfrac- d ProcessingandAnalysisCenter/CaliforniaInstituteofTechnology, a tionsincreasefromverysmallvaluesforB–Gstars(≤10percent) rd fundedbytheNationalAeronauticsandSpaceAdministrationand S to25percentfor≥M5objects.Thisseemsatoddswithourown p theNationalScienceFoundation.Wewouldalsoliketothankthe ac statement of spectral type-independent disc fractions, but a more UKIDSSTeamfortheexcellentdatabasetheyhavemadeavailable e F detailedexaminationshowsthatthetwostudiesactuallygivecon- tothecommunity. ligh sistentresultsforKandMstars. t C Luhman&Mamajek(2012)reportdiscfractionsof6/67forK0– tr o M0,35/231forM0–M4,97/387forM4–M8and4/23forM8–L2. REFERENCES n A Tocomparewithourownvalues,wecalculatedthebinomialcon- p fifodreKnc0e–Mint4eravnadls2f5or±th3epirerdcisecntfrfaocrtiMon4s–aLn2d.Tobhtiasiins1c4on±sis3tepnetrwceintht ACardlvAileaptJDN,..5,,6DM8’,aAr1tl0ien0s8sEio.,PB.,aHsrairGtm.,a2n0n0L0,.,AWJ,il1n2e0r,D4.7,9WalshA.,SitkoM.,2002, ril 3, 20 1 the numbers quoted in Section 5.1. (19percent for K0–M5 and CarpenterJ.M.,MamajekE.E.,HillenbrandL.A.,MeyerM.R.,2006, 3 23percentforoursampleofbrowndwarfs).Notethattheuncer- ApJ,651,L49 taintiesquotedaboveonlygivethestatisticalconfidenceintervaland ChabrierG.,BaraffeI.,AllardF.,HauschildtP.,2000,ApJ,542,464 donottakeintoaccountpossiblebiases(e.g.agespreadacrossthe CutriR.M.etal.,2012,ExplanatorySupplementtotheWISEAllSkyData region,uncertaintiesinspectraltypes).Thus,basedonthecurrent Release DamjanovI.,JayawardhanaR.,ScholzA.,AhmicM.,NguyenD.C.,Bran- samples,theevidence foramass dependence ofthediscfraction dekerA.,vanKerkwijkM.H.,2007,ApJ,670,1337 forobjectslaterthanK0ismarginalatbest. DawsonP.,ScholzA.,RayT.P.,2011,MNRAS,418,1231 de Bruijne J. H. J., Hoogerwerf R., Brown A. G. A., Aguilar L. A., de Zeeuw P. T., 1997, in Perryman M. A. C., Bernacca P. L., Battrick 6 CONCLUSIONS B.,eds,ESASP-402:Hipparcos–Venice’97ImprovedMethodsfor IdentifyingMovingGroups.ESA,Noordwijk,p.575 We have carried out a survey for discs around a homogeneous DullemondC.P.,DominikC.,2004,A&A,421,1075 sampleof119browndwarfs,themajorityofwhichhavenotbeen DullemondC.P.,HollenbachD.,KampI.,D’AlessioP.,2007,Protostars previouslydiscussedintheliterature,inthe5MyroldUpScostar- andPlanetsV.Univ.ArizonaPress,Tucson,p.555 forming region using photometry from WISE. Contamination in ErcolanoB.,ClarkeC.J.,RobitailleT.P.,2009,MNRAS,394L,141 thesampleappearstobenegligibleandthemethodofselectionis EspaillatC.,CalvetN.,LuhmanK.L.,MuzerolleJ.,D’AlessioP.,2008, unbiasedwithrespecttothepresenceofdiscs. ApJ,682L,125 912 P.Dawsonetal. EspaillatC.etal.,2012,ApJ,747,103 performs photometric and astrometric calibrations. The resulting HaischK.E.,Jr,LadaE.A.,LadaC.J.,2001,ApJ,553,L153 reducedimageframesandcataloguesarethenplacedintheWF- HernandezJ.etal.,2007,ApJ,662,1067 CAMScienceArchive(WSA).TheWSAcanbeinterrogatedusing JayawardhanaR.,CoffeyJ.,ScholzA.,BrandekerA.,vanKerkwijkM.H., StructuredQueryLanguage(SQL). 2006,ApJ,648,1206 AsshowninFig.A1,thenewareainUpScoinvestigatedhere LadaC.J.etal.,2006,AJ,131,1574 andsurveyedfortheNinthDataReleasecovers24deg2.Thedata LawrenceA.etal.,2007,MNRAS,379,1599 LodieuN.,HamblyN.C.,JamesonR.F.,2006,MNRAS,373,95 forobjectsinthetargetareawereobtainedviaanSQLquerytothe UKIDSSGCSdatabase.Allquerieswerestructuredtoincludeonly LodieuN.,HamblyN.C.,JamesonR.F.,HodgkinS.T.,CarraroG.,Kendall T.R.,2007,MNRAS,374,372 pointsourceobjectsinordertoavoidcontamination byextended LodieuN.,HamblyN.C.,JamesonR.F.,HodgkinS.T.,2008,MNRAS, sources(e.g.relativelynearbygalaxies).Aseveryobjectwithpho- 383,1385 tometriccharacteristicsconsistentwithabrowndwarfhaditsproper LodieuN.,DobbieP.D.,HamblyN.C.,2011,A&A,527A,24 motionassessed,inordertocheckwhetheritislikelyamemberof LuhmanK.L.,2004,ApJ,602,816 UpSco, each query submitted also correlated all objects found in LuhmanK.L.,2007,ApJS,173,104 theUKIRTGCSdatabaseswiththosefoundin2MASSdatabases. LuhmanK.L.,MamajekE.E.,2012,ApJ,758,31 The2MASSdataareusedasafirstepochforthepurposesofproper Luhman K. L., Stauffer J. R., Muench A. A., Rieke G. H., Lada E. A., motioncalculation. BouvierJ.,LadaC.J.,2003,ApJ,593,1093 D o LuhmanK.L.etal.,2005,ApJ,631,L69 w n MartinE.L.,DelfosseX.,GuieuS.,2004,AJ,127,449 A1 Photometry loa MayneN.J.,NaylorT.,LittlefairS.P.,SaundersE.S.,JeffriesR.D.,2007, de d MNRAS,375,1220 AquerysimilartothatshowninDawsonetal.(2011)wassubmitted fro MerinB.etal.,2010,ApJ,718,1200 totheWSA.Thequeryreturned1438887objects. m MMuuzzAeeprrooJll,ll7ee0JJ8..,,eA1t1lal0le.7n,2L0.,0M6,eAgpeaJ,th64S3.,T1.,0H0e3rnandezJ.,GutermuthR.A.,2010, Jse,aZTr)chhceo,olabojnueerc–wtmsqwaugeenrreiytuawdsseaesdsssiaeugdbrmoanmitttehadesbstohaostihwsenoWfintShFeAiigre.plAioms2ii.tniToaontinroegnfiaanle(lZothb−e- http://mn NattaA.,TestiL.,2001,A&A,376L,22 jectstotheleftofalineinthe(Z−J,Z)colour–magnitudediagram ras NattSa.,A2.0,T0e2s,tAiL&.,AC,o3m93e,r5n9F7.,D’AntonaF.,BaffaC.,ComorettoG.,Gennari from (Z − J, Z) = (1.0, 14.0) through (1.4, 16.6) to (3.0, 21.55) .oxfo (dashedlineinFig.A2).Thisqueryleft4398objects.Reddening rd OliveiraJ.M.,JeffriesR.D.,KenyonM.J.,ThompsonS.A.,NaylorT., jo 2002,A&A,382L,22 causedbyextinctionshiftsobjectstotherightanddownoncolour– urn PecautM.J.,MamajekE.E.,BubarE.J.,2012,ApJ,746,154 magnitudediagrams.Toassessifreddeningwascontaminatingthe als PreibischT.,ZinneckerH.,1999,AJ,117,2381 results,the4398objectshadtheirlocationplottedasshowninthe .org PreibischT.,BrownA.G.A.,BridgesT.,GuentherE.,ZinneckerH.,2002, right-handpanelofFig.A1.Thereisanobviousclusteringofobjects a/ AJ,124,404 in a large area which coincides with the heavily extincted region t N Riaz B., Lodieu N., Goodwin S., Stamatellos D., Thompson M., 2012, aroundρOph.Therefore,theanalysiswasconfinedto706638ob- AS MNRAS,420,2497 jectsintheNinthDataReleasethatwereoutsidethatregion(dashed A G ScholzA.,JayawardhanaR.,WoodK.,MeeusG.,StelzerB.,WalkerC., linesinFig.A1).Thisleftonly200ofthe4398objectsselectedin od SchOol’zSAul.l,ivXaunXM.,.,J2ay0a0w7,aArdphJa,n6a6R0,.,1W51o7odK.,Eislo¨ffelJ.,QuinnC.,2009, theinitial(Z−J,Z)cut.These200objectswereexaminedagain dard inthe(Z−J,Z)colour–magnitudediagram.86oftheobjectsto S MNRAS,398,873 p SherryW.H.,WalterF.M.,WolkS.J.,2004,AJ,128,2316 theleftoftheline(Z−J,Z)=(1.1,14.0)through(1.1,14.3),(1.2, ace SkrutskieM.F.etal.,2006,AJ,131,1163 14.9),(1.3,15.2),(1.6,17.0)to(3.0,21.0)wererejectedforbeing Flig SlesnickC.L.,CarpenterJ.M.,HillenbrandL.A.,2006,AJ,131,3016 toofarfromtheisochroneontheblueside,leaving114photometric h SlesnickC.L.,HillenbrandL.A.,CarpenterJ.M.,2008,ApJ,688,377 candidates. t C WrightE.L.etal.,2010,AJ,140,1868 tr o n ZapateroOsorioM.R.,BejarV.J.S.,PavlenkoYa.,ReboloR.,Allende A PrietoC.,MartnE.L.,GarcaLpezR.J.,2002,A&A,384,937 A2 Propermotion pril 3 The114photometriccandidateswerethenexaminedtofindtheir , 2 0 proper motion. The resulting vector point diagram is shown in 1 3 Fig. A3. The known proper motions of UpSco in right ascension APPENDIX A: NEW OBJECTS FROM UKIDSS anddeclinationareabout−11masyr−1and−25masyr−1,respec- NINTH DATA RELEASE tively (de Bruijne et al. 1997; Preibisch et al. 2002). Of the 114 Thissectionoutlinesthemethodusedtoidentifynewbrowndwarfs candidates,4weretoofainttoberecordedin2MASSleaving110 in UpSco using the UKIDSS Ninth Data Release. It is the same candidateswithpropermotiondatacalculated.Theremaining110 methodasusedbyDawsonetal.(2011)toanalysetheEighthData candidatesincluded14withpropermotionsgreaterthantherange Release.Forthesakeofbrevity,someofthedetailsdescribedby ofFig.A3. Dawsonetal.(2011)arenotrepeatedhere. All96candidates showninFig.A3arepredominantlycentred UKIDSSismadeupofseveralcomponentsincludingtheGalactic aroundthe(−11,−25)position.A2σ selectioncircleascalculated ClusterSurvey(GCS).DescribedindetailinLawrenceetal.(2007), inDawsonetal.(2011)isshowncentredonthatposition.Thereis theGCSisasurveyof10largeopenstarclustersandstar-forming nosignificantclusteringofobjectsaroundthe(0,0)positionindi- regions,includingUpSco. catingthatthesampleisnotcontaminatedbymoredistantobjects, TheinstrumentusedtotaketheGCSimagesistheWideField e.g.AGBstarswhichhavesimilarsurfacetemperaturesandcolours Camera (WFCAM). Data collected by the WFCAM is subject to to brown dwarfs, but much greater intrinsic luminosities. The 76 an automated process that detects and parameterizes objects and candidates within the 2σ selection circle were then classified as