Availableonline atwww.sciencedirect.com AdvancesinSpaceResearch51(2013)297–300 www.elsevier.com/locate/asr Status of the GAMMA-400 project A.M. Galpera,b, O. Adrianic, R.L. Aptekard, I.V. Arkhangelskajab, A.I. Arkhangelskiyb, M. Boezioe, V. Bonvicinie, K.A. Boyarchukf, Yu.V. Gusakova, M.O. Farberb, M.I. Fradkina, V.A. Kachanovg, V.A. Kaplinb, M.D. Kheymitsb, A.A. Leonovb, F. Longoe, P. Maestroh, P. Marrocchesih, E.P. Mazetsd, E. Mocchiuttie, A.A. Moiseevi, N. Moric, I. Moskalenkoj, P.Yu. Naumovb, P. Papinic, P. Picozzak, V.G. Rodinl M.F. Runtsob, R. Sparvolik, P. Spillantinic, S.I. Suchkova, M. Tavanim, N.P. Topchieva,⇑, A. Vacchie, E. Vannuccinic, Yu.T. Yurkinb, N. Zampae, V.G. Zverevb aLebedevPhysicalInstitute,RussianAcademyofSciences–Leninskiipr.53,RU-119991Moscow,Russia bNationalResearchNuclearUniversityMEPhI–Kashirskoesh.31,RU-115409Moscow,Russia cIstitutoNazionalediFisicaNucleare,SezionediFirenzeandPhysicsDepartmentofUniversityofFlorence,ViaSansone1, I-50019SestoFiorentino(Firenze),Italy dIoffePhysicalTechnicalInstitute,RussianAcademyofSciences–ul.Polytekhnicheskaya26,RU-194021St.Petersburg,Russia eIstitutoNazionalediFisicaNucleare,SezionediTrieste–Padriciano99,I-34012Trieste,Italy fOpenJointStockCompany“ResearchInstituteforElectromechanics”–ul.Panfilova11,RU-143502Istra,Moscowregion,Russia gInstituteforHighEnergyPhysics–ul.Pobedy1,RU-142281Protvino,Moscowregion,Russia hIstitutoNazionalediFisicaNucleare,SezionediPisaandPhysicsDepartmentofUniversityosSiena,ViaRoma56,I-53100Siena,Italy iNASAGoddardSpaceFlightCenterandCRESST/UniversityofMaryland,Greenbelt,Maryland20771,USA jHansenExperimentalPhysicsLaboratoryandKavliInstituteforParticleAstrophysicsandCosmology,StanfordUniversity,Stanford,CA94305,USA kIstitutoNazionalediFisicaNucleare,SezionediRoma2andPhysicsDepartmentofUniversityofRome“TorVergata”–ViadellaRicercaScientifica1, I-00133Rome,Italy lSpaceResearchInstitute,RussianAcademyofSciences–ul.Profsoyuznaya84/32,RU-117997Moscow,Russia mIstitutoNazionalediAstrofisica–IASFandPhysicsDepartmentofUniversityofRome“TorVergata”,ViadellaRicercaScientifica1,I-00133Rome,Italy Availableonline8February2012 Abstract Thepreliminarydesignofthenewspacegamma-raytelescopeGAMMA-400fortheenergyrange100MeV–3TeVispresented.The angularresolutionoftheinstrument,1–2(cid:2)atEc(cid:2)100MeVand(cid:2)0.01(cid:2)atEc>100GeV,itsenergyresolution(cid:2)1%atEc>100GeV, andtheprotonrejectionfactor(cid:2)106areoptimizedtoaddressabroadrangeofsciencetopics,suchassearchforsignaturesofdarkmat- ter,studiesofGalacticandextragalacticgamma-raysources,Galacticandextragalacticdiffuseemission,gamma-raybursts,aswellas high-precision measurementsofspectraofcosmic-ray electrons, positrons,and nuclei. (cid:3)2012COSPAR. PublishedbyElsevier Ltd.Allrights reserved. Keywords: Cosmicrays;Gammarays;Electrons;Positrons;Nuclei 1. Introduction cosmic rays (CRs), their acceleration, and propagation in the Galaxy and intergalactic space remain open. Energetic OnehundredyearsafterHess’discoveryoftheradiation CR particles when interacting with matter and radiation comingfromspace,themainquestionsabouttheoriginof fields produce gamma-ray emission and, therefore, studies ofgamma-raysources and diffuse emission provideimpor- ⇑ Correspondingauthor. tant clues to the origin and propagation of cosmic rays. A E-mailaddress:[email protected](N.P.Topchiev). large number of outstanding problems in physics and 0273-1177/$36.00(cid:3)2012COSPAR.PublishedbyElsevierLtd.Allrightsreserved. doi:10.1016/j.asr.2012.01.019 298 A.M.Galperetal./AdvancesinSpaceResearch51(2013)297–300 astrophysicsareconnectedwithstudiesofCRsandassoci- Beischer et al., 2009). A search for a fine structure in the atedgamma-rayemission. Amongthemostpressingissues spectra of high-energy CR electrons-positrons and nuclei are the nature of the dark matter, particle acceleration in is another important direction to pursue. Galacticandcosmologicalshocks,theoriginofextragalac- ticdiffuseemission,CRsinothergalaxiesandtherolethey 2. The GAMMA-400 gamma-ray telescope play in galactic evolution, studies of the Galactic Center and local Galactic environment, CR propagation in the 2.1. The GAMMA-400 performance heliosphere, as well as many others. The last years were rich in new breakthroughs and dis- GAMMA-400 is designed to address scientific chal- coveries thanks to the combined efforts of many very suc- lenges and will detect gamma rays in the energy range cessful space missions, such as PAMELA (Picozza et al., 100MeV–3TeV with an angular resolution of 1–2(cid:2) at 2007), AGILE (Tavani et al., 2009), and Fermi-LAT Ec(cid:2)100MeVand(cid:2)0.01(cid:2)atEc>100GeV,anenergyres- (Atwood et al., 2009); balloon-borne missions, such as olution of (cid:2)1% at Ec>100GeV, and an effective area of ATIC (Guzik et al., 2004), CREAM (Seo et al., 2004), (cid:2)4000cm2 at Ec=100GeV. The instrument will also be andBESS(Yamamotoetal.,2007);aswellasground-based used to detect electrons (positrons) in the energy range gamma-ray telescopes, such as MILAGRO (Atkins et al., 1–3000GeVwithaprotonrejectionfactor(cid:2)106andnuclei 2004),H.E.S.S.(Aharonianetal.,2004),VERITAS(Weekes in the energy range 250GeV/nucleon to 1015eV/nucleon. et al., 2010), and MAGIC (Aleksic´ et al., 2010). Among The total mass of the instrument is 2600kg with power them are the new measurements of CR electrons-positrons consumption of (cid:2)2000W and a telemetry downlink capa- by PAMELA (Adriani et al., 2009), Fermi-LAT (Abdo bility of 100Gbyte/day. Together with GAMMA-400, the etal.,2009a),H.E.S.S.(Aharonianetal.,2009),andATIC space observatory will include the KONUS-FG gamma- (Chang et al., 2008); antiprotons by BESS (Mitchell et al., ray burst monitor (Aptekar et al., 2009) and a star sensor 2005) and PAMELA (Adriani et al., 2011a); and a discov- for determining the GAMMA-400 axes with accuracy of eryofthebreakinthespectraofCRnucleibyATIC(Panov approximately 500. et al., 2009), CREAM (Yoon et al., 2011), and PAMELA The GAMMA-400 physical scheme is shown in Fig. 1. (Adriani et al., 2011b). In gamma rays – spectra of diffuse The basic idea of the instrument was outlined in earlier Galactic and extragalactic emission by EGRET (Hunter publications (Dogiel et al., 1988; Ginzburg et al., 2007, etal.,1997;Sreekumaretal.,1998)andFermi-LAT(Abdo 2009a,b), but the design is being improved (Galper et al., et al., 2009b); 270 Galactic and extragalactic gamma-ray 2011a,b,c) using the results of the current space missions sources with energies up to 20GeV by EGRET (Hartman Fermi-LAT andAGILE. Gamma-400 consists of scintilla- et al., 1999), approximately 50 sources up to 50GeV by tion anticoincidence top and lateral detectors (AC), con- AGILE (Pittori et al., 2009), and nearly 1850 sources up verter-tracker (C) with approximately 25 layers of double to100GeVbyFermi-LAT(Abdoetal.,2011);aboutahun- (x,y) silicon strip coordinate detectors (pitch 0.1mm) dred sources of TeV photons by H.E.S.S. (Tibolla et al., 2009), VERITAS (Holder et al., 2011), MAGIC (Cortina et al., 2011), and MILAGRO (Smith et al., 2010).These exciting recent developments show that we have just touched the tip of the iceberg and even more exciting dis- coveriesare still awaiting us. Furtherobservationswithimprovedangularandenergy resolutions in high-energy gamma-ray range are necessary to address the following issues: study unidentified sources which are one third of discovered gamma-ray sources (Abdo et al., 2011), including detailed investigation of the Galactic center, study sources for the energies more than several tens GeV, where the energy ranges of Fermi and ground-basedgamma-raytelescopesdonotoverlap(Abdo et al., 2009c), study variability of many sources, study dif- fuse gamma-ray emission for energies more than several tens GeV, search for high-energy emission from gamma- ray bursts and transient gamma-ray sources. The largely unexplored energy range of several tens MeV – few hun- dred MeV with only handful of observed sources has an enormous discovery potential. The diffuse gamma-ray emission above 100GeV remainsunexploredandmayprovidesomecluestotheori- gin of the dark matter (Abazajian and Harding, 2011; Fig.1. TheGAMMA-400physicalscheme. A.M.Galperetal./AdvancesinSpaceResearch51(2013)297–300 299 interleaved with tungsten conversion foils, scintillation In the latter case, we use the four lateral detectors. Silicon detectors (S1 and S2) of time-of-flight system (TOF), sili- arrays(atthetopandatthemiddle)areusedtodetermine constripcoordinatedetectorCD1(pitch0.1mm),scintilla- the particle charge. tion detectors S3 and S4, silicon arrays (silicon pad Using thick calorimeter ((cid:2)25X ) allows us to extend 0 detectors with 1(cid:3)1cm2 pixels), lateral detectors (LD) the energy range up to several TeV and to reach the from the same Si arrays andtungsten planes, and calorim- energy resolution up to (cid:2)1% above 100GeV. The eterfrom twoparts(CC1 andCC2).Theimagingcalorim- improvement in the angular resolution is achieved by eter CC1 consists of 4 layers of double (x,y) silicon strip using CC1, which allows us to reconstruct the axis of coordinate detectors (pitch 0.5mm) interleaved with tung- the cascade, together with the coordinates of the conver- sten planes, and the electromagnetic calorimeter CC2 con- sion point in multilayer converter. This method allows sistsofBGOcrystals.Thetotalconverter-trackerthickness us to reach the superior angular resolution of (cid:2)0.01(cid:2) is (cid:2)1X (X is the radiation length). The thickness of CC1 above 100GeV. 0 0 and CC2 is 3X and 22X , respectively. The total calorim- The calorimeter scheme together with additional data 0 0 eter thickness is 25X and 1.2k (k is nuclear interaction from other detectors provides proton rejection factor up 0 0 0 length) in the vertical direction and 70X and 3.5k in the to(cid:2)106.Toincreasetheinstrumentefficiencyathighener- 0 0 lateral direction. giesandtoreducethedeadtimeofthetelescopeduetothe Table1showsacomparisonofbasicparametersofspace- backsplashparticlesweusethetemporalandsegmentation basedandground-basedinstruments:EGRET(Thompson methods. et al., 1993), AGILE (Tavani et al., 2009), Fermi (Atwood etal.,2009),CALET(Toriietal.,2008),H.E.S.S.(Aharonian 3. Spacecraft et al., 2007), MAGIC (Aleksic´ et al., 2010), VERITAS (Weekes et al., 2010), and CTA (The CTA Consortium, The GAMMA-400 space observatory will be installed 2010).Asseenfromthetable,GAMMA-400willhavesupe- on the Navigator space service platform produced by riorangularandenergyresolutions. Lavochkin Research and Production Association. Two variants of orbit are possible: Lagrange point L and 2 2.2. Particle detection high-elliptical orbit. The initial high-elliptical orbital parameters are: an apogee of 300 000km, a perigee of The gamma rays are detected through the conversion 500km, and an inclination of 51.8(cid:2). The orbit period will into the electron-positron pairs in the converter-tracker. be 7days. After approximately 230days GAMMA-400 The time-of-flight system, where detectors S1 and S2 are will leave the Earth’s radiation belts and the orbit will separated by approximately 500mm, determines the direc- changefromhighlyellipticaltoapproximatelycircularwith tion of the arriving particle. Silicon strip coordinate detec- median altitude of (cid:2)150000km. tor together with the anticoincidence detectors located at front and sides of the converter-tracker helps to identify (cid:4) We are planning to use three basic modes of gamma rays. The electromagnetic cascade initiated by the observations: electron-positron pair develops in CC1 and CC2 parts of (cid:4) All-sky gamma-ray monitoring in order to search for the calorimeter. Additional scintillation detectors S3 and new sources and to monitor the discovered variable S4 can detect cascade particles. sources; When measuring from the top-down direction, we use (cid:4) Long-term monitoring of selected point sources; thetwomaintriggeringsystems:(i)forgammaraysifthere (cid:4) Observations of the GeV emission from gamma-ray is no AC signal, (ii) for electrons (positrons) and nuclei bursts and solar flares using a trigger from the when the AC signal is present. KONUS-FG gamma-ray burst monitor. A specific Electrons (positrons) and nuclei are also detected in the pointingcanalsobetriggeredbyotherspacecraftaswell calorimeter when coming from the four lateral directions. as by ground-based telescopes. Table1 Acomparisonofbasicparametersofspace-basedandground-basedinstruments. Spaced-based Ground-based EGRET AGILE Fermi CALET GAMMA- H.E.S.S. MAGIC VERITAS CTA 400 Energyrange,GeV 0.03–30 0.03–50 0.1– 10– 0.1–3000 >100 >50 >100 >10 300 10000 Angularresolution,deg 0.2 0.1 0.1 0.1 (cid:2)0.01 0.1 0.1 0.1 0.1 (Ec>100GeV) Ec(cid:2)0.5GeV Ec(cid:2)1GeV Energyresolution,%(Ec>100GeV) 15 50 10 2 (cid:2)1 15 20 15 15 Ec(cid:2)0.5GeV Ec(cid:2)1GeV 300 A.M.Galperetal./AdvancesinSpaceResearch51(2013)297–300 4. Conclusion Dogiel, V.A., Fradkin, M.I., Kurnosova, L.V., et al. Some tasks of observationalgamma-rayastronomyintheenergyrange5–400GeV. SpaceScienceRev.49,215–226,1988. At present, we consider a possibility to extend the Galper,A.M.,Aptekar,R.L.,Arkhangelskaya,I.V.,etal.Thepossibilities GAMMA-400 energy range down to approximately of simultaneous detection of gamma rays, cosmic-ray electrons and 30MeV. The launch of the GAMMA-400 space observa- positronson the GAMMA-400 spaceobservatory.Astrophys.Space tory is planned in 2018. The expected mission duration is Sci.Trans.7,75–78,2011a. Galper,A.M.,Aptekar,R.L.,Arkhangelskaya,I.V.,etal.GAMMA-400 longer than 7years. spaceobservatory.NuovoCimento34C,71–75,2011b. Galper,A.M.,Borisov,S.V.,Zverev,V.G.,etal.Methodforreconstructing Acknowledgements thegamma-rayarrivaldirectionintheconverter+calorimetersystem. BulletinoftheLebedevPhysicsInstitute38(7),191–197,2011c. Ginzburg, V., Kaplin, V., Karakash, A., et al. Development of the This work was supported by Space Council of the GAMMA-400 gamma-ray telescope to record cosmic gamma rays RussianAcademyofSciencesandtheRussianSpaceAgency. withenergiesupto1TeV.Cos.Res.45,449–451,2007. Ginzburg, V., Kaplin, V., Runtso, M., et al. Advanced GAMMA-400 Gamma-Ray Telescope for Recording Cosmic Gamma Rays with References Energies upto 3TeV.Bulletinof the RussianAcademyof Sciences: Physics73,664–666,2009a. Abazajian, K.N., Harding, J.P., 2011. Constraints on WIMP and Ginzburg, V.L., Galper, A.M., Fradkin, M.I., et al., 2009b. The Sommerfeld-Enhanced Dark Matter Annihilation from H.E.S.S. GAMMA-400 project. Investigation of Cosmic Gamma-Radiation ObservationsoftheGalacticCenter,arXiv:1110.6151. and Electron-Positron Fluxes in the Energy Range 1–3000 GeV, Abdo, A.A., Ackermann, M., Ajello, M., et al. Measurement of the Preprintno.10,LebedevPhysicalInstitute,Moscow. CosmicRaye++e–Spectrumfrom20GeVto1TeVwiththeFermi Guzik, T.G., Adams, J.H., Ahn, H.S., et al. The ATIC long duration LargeAreaTelescope.Phys.Rev.Lett.102,181101–181106,2009a. balloonproject.Adv.SpaceResearch33,1763–1770,2004. Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.FermiLargeAreaTelescope Hartman, R.C., Bertsch, D.L., Bloom, S.D., et al. The third EGRET Measurements of the Diffuse Gamma-Ray Emission at Intermediate catalogofhigh-energygamma-raysources.ApJS123,79–202,1999. GalacticLatitudes.Phys.Rev.Lett.103,251101–251106,2009b. Holder,J.,2011fortheVERITASCollaboration,VERITAS:Statusand Abdo, A.A., Ackermann, M., Ajello, M., et al. Fermi observations of Highlights,arXiv:1111.1225. TeV-selectedactivegalacticnuclei.ApJ707,1310–1333,2009c. Hunter,S.D.,Bertsch,D.L.,Catelli,J.R.,etal.EGRETobservationsof Abdo,A.A.,Ackermann,M.,Ajello,M.,etal.,2011.FermiLargeArea the diffuse Gamma–Ray emission from the Galactic Plane. AJ 481, TelescopeSecondSourceCatalog,arXiv:1108.1435. 205–240,1997. Adriani,O.,Barbarino,G.C.,Bazilevskaya, G.A., etal.An Anomalous Mitchell,J.W.,Abe,K.,Anraku,K.,etal.PreciseMeasurementsofthe Positron Abundance in Cosmic Rays with Energies 1.5–100 GeV. CosmicRayAntiprotonSpectrumwithBESSIncludingtheEffectsof Nature458,607–609,2009. SolarModulation.Adv.SpaceResearch35,135–141,2005. Adriani,O.,Barbarino,G.C.,Bazilevskaya,G.A.,etal.Thediscoveryof Panov, A.D., Adams Jr., J.H., Ahn, H.S. Energy Spectra of Abundant geomagnetically trapped cosmic-ray antiprotons. ApJL 737, 29–33, NucleiofPrimaryCosmicRaysfromtheDataofATIC-2Experiment: 2011a. FinalResults.BulletinoftheRussianAcademyofSciences:Physics73, Adriani, O., Barbarino, G.C., Bazilevskaya, G.A., et al. PAMELA 564–567,2009. measurements of cosmic-ray proton and helium spectra. Science 332 Picozza, P., Galper, A.M., Castellini, G., et al. PAMELA payload for (6025),69–72,2011b. antimattermatterexplorationandlight-nucleiastrophysics.Astropart. Aharonian, F., Akhperjanian, A.G., Aye, K.-M., et al. Calibration of Phys.27,296–315,2007. CamerasoftheH.E.S.S.Detector.Astropart.Phys.22,109–125,2004. Pittori, C., Verrecchia, F., Chen, A.W. First AGILE catalog of high- Aharonian,F.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.Searchfor confidencegamma-raysources.A&A506(3),1563–1574,2009. PulsedVHEGamma-RayEmissionfromYoungPulsarswithH.E.S.S. Seo,E.S.,Ahn,H.S.,Beatty,J.J.,etal.Cosmic-rayenergeticsandmass A&A466,543–554,2007. (CREAM)balloonproject.Adv.SpaceResearch33,1777–1785,2004. Aharonian,F.,Akhperjanian,A.G.,Anton,G.,etal.ProbingtheATIC Smith, A.J., 2010 for the Milagro Collaboration, A Survey of Fermi peak in the cosmic-ray electron spectrum with H.E.S.S. A&A 508, CatalogSourcesusingdatafromtheMilagroGamma-Ray,Observa- 561–564,2009. tory,arXiv:1001.3695. Aleksic´, J., Antonelli, L.A., Antoranz, P., et al. MAGIC constraints on Sreekumar,P.,Bertsch,D.L.,Dingus,B.L.,etal.EGRETobservationsof gamma-rayemissionfromcygnusX-3.ApJ721,843,2010. theextragalacticgamma-rayemission.AJ494,523–534,1998. Aptekar, R.L., Cline, T.L., Frederiks, D.D., et al. KONUS-WIND Tavani,M.,Barbiellini,G.,Argan,A.,etal.TheAGILEMission.A&A observations of the new soft gamma-ray repeater. ApJL 698, 82–85, 502,995–1013,2009. 2009. The CTA Consortium, 2010. Design Concepts for the Cherenkov Atkins,R.,Benbow,W.,Berley,D.,etal.TeVgamma-raysurveyofthe TelescopeArrayCTA,arXiv:1008.3703. NorthernHemisphereSkyUsingtheMilagroObservatory.ApJ608, Thompson, D.J., Bertsch, D.L., Fichtel, C.E., et al. Calibration of the 680–685,2004. energeticgamma-rayexperimenttelescope(EGRET)fortheCompton Atwood, W.B., Abdo, A.A., Ackermann, M., et al. The large area Gamma–Rayobservatory.ApJS86,629–656,1993. telescopeontheFermigamma-rayspacetelescopemission.ApJ697, Tibolla,O.,Chaves,R.C.G.,Domainko,W.,etal.,2009.Newunidentified 1071–1102,2009. H.E.S.S.galacticsources,arXiv:0912.3811. Beischer, B., von Doetinchem, P., Gast, H., Kirn, T., Schael, S. Torii,S.etal.DarkmattersearchwiththeCALETdetectoron-boardISS. Perspectives for indirect dark matter search with AMS-2 using Adv.SpaceRes.41,2032–2036,2008. cosmic-ray electron and positron. New J. Phys. 11, 105021–105035, Weekes, T.C., Acciari, V.A., Arlen, T., et al. Veritas: status summary 2009. 2010.IJMPD19,1003,2010. Chang,J.,Adams,J.H.,Ahn,H.S.,etal.Anexcessofcosmicrayelectrons Yamamoto,Y.,Abe,K.,Fuke,H.,etal.,2007.TheBESSProgram.Nucl. atenergiesof300–800GeV.Nature456,362–365,2008. Phys.B(Proc.Suppl.)166,62–67. Cortina, J., 2011 for the MAGIC Collaboration, Highlights of the Yoon,Y.S.,Ahn,H.S.,Allison,P.S.,etal.,2011.Cosmic-rayprotonand MAGICTelescopes,arXiv:1110.4747. heliumspectrafromthefirstCREAMflight,arXiv:1102.2575,2011.