ebook img

NASA Technical Reports Server (NTRS) 20130013631: The Radial Distribution of Star Formation in Galaxies at Z approximately 1 from the 3D-HST Survey PDF

0.54 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20130013631: The Radial Distribution of Star Formation in Galaxies at Z approximately 1 from the 3D-HST Survey

TheAstrophysicalJournalLetters,763:L16(6pp),2013January20 doi:10.1088/2041-8205/763/1/L16 (cid:2)C2013.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedintheU.S.A. THERADIALDISTRIBUTIONOFSTARFORMATIONINGALAXIESATz ∼ 1FROMTHE3D-HSTSURVEY EricaJuneNelson1,PieterG.vanDokkum1,IvelinaMomcheva1,GabrielBrammer2,BrittLundgren3, RosalindE.Skelton1,KatherineE.Whitaker4,ElisabeteDaCunha5,NataschaFo¨rsterSchreiber6, MarijnFranx7,MattiaFumagalli7,MariskaKriek8,IvoLabbe7,JoelLeja1,ShannonPatel7,Hans-WalterRix5, KasperB.Schmidt9,ArjenvanderWel5,andStijnWuyts6 1AstronomyDepartment,YaleUniversity,NewHaven,CT06511,USA 2EuropeanSouthernObservatory,AlonsondeCo´rdova3107,Casilla19001,Vitacura,Santiago,Chile 3DepartmentofAstronomy,UniversityofWisconsin-Madison,Madison,WI53706,USA 4AstrophysicsScienceDivision,GoddardSpaceFlightCenter,Greenbelt,MD20771,USA 5MaxPlanckInstituteforAstronomy(MPIA),Ko¨nigstuhl17,D-69117,Heidelberg,Germany 6Max-Planck-Institutfu¨rextraterrestrischePhysik,Giessenbachstrasse,D-85748Garching,Germany 7LeidenObservatory,LeidenUniversity,Leiden,TheNetherlands 8DepartmentofAstronomy,UniversityofCalifornia,Berkeley,CA94720,USA 9DepartmentofPhysics,UniversityofCalifornia,SantaBarbara,CA93106,USA Received2012October15;accepted2012December18;published2013January4 ABSTRACT Theassemblyofgalaxiescanbedescribedbythedistributionoftheirstarformationasafunctionofcosmictime. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of Hα emission for a sample of 54 strongly star-forming galaxiesatz∼1inthe3D-HSTTreasurysurvey.BystackingtheHαemission,wefindthatstarformationoccurred inapproximatelyexponentialdistributionsatz ∼ 1,withamedianSe´rsicindexofn = 1.0±0.2.Thestacksare elongated with median axis ratios of b/a = 0.58±0.09 in Hα consistent with (possibly thick) disks at random orientationangles.Keckspectraobtainedforasubsetofeightofthegalaxiesshowclearevidenceforrotation,with inclinationcorrectedvelocitiesof90–330kms−1.Themoststraightforwardinterpretationofourresultsisthatstar formationinstronglystar-forminggalaxiesatz∼1generallyoccurredindisks.Thedisksappeartobe“scaled-up” versionsofnearbyspiralgalaxies:theyhaveEW(Hα)∼100Åouttothesolarorbitandtheyhavestarformation surfacedensitiesabovethethresholdfordrivinggalacticscalewinds. Key words: galaxies: evolution – galaxies: formation – galaxies: high-redshift – galaxies: kinematics anddynamics–galaxies:starformation–galaxies:structure Online-onlymaterial:colorfigures of cosmic time. In particular, Epinat et al. (2009) and Kassin 1.INTRODUCTION et al. (2012) suggest that galaxies become cooler and more Galaxyformationisacomplexprocessinvolvingstarbursts, rotation-dominatedwithtime,z∼1–0beingtheepochof“disk mergers,andstronggasflows(e.g.,Hopkinsetal.2006;Brooks settling.” This is interesting because most of the stars in the et al. 2009; Dekel et al. 2009). Furthermore, stellar migration disksofgalaxiesliketheMilkyWaywereformedinthisepoch. andsecularprocessescanchangethestructureofgalaxiesatlate Itisnowpossibletoobtainhighspatialresolution((cid:3)1kpc) times (e.g., Rosˇkar et al. 2008; Grand et al. 2012). Therefore, informationonHα emissionatz ∼ 1withahighStrehlratio, evenifwecouldperfectlylocateandagedateeverystarinthe owingtothenear-IRslitlessspectroscopiccapabilitiesprovided MilkyWay,westillcouldnotsaywhereandwithwhatstructural by the WFC3 camera on the Hubble Space Telescope (HST). and kinematic properties those stars formed. The only way to In Nelson et al. (2012), we used data taken as part of the establishwhereagalaxy’sstarsformed,andhencehowitwas 3D-HST survey to build on previous ground-based studies by assembled,istomapthestarformationwhilethosestarswere mappingtheHαandstellarcontinuumwithhighresolutionfor forming. asampleof57galaxiesatz∼1andshowedthatstarformation ObtainingHαandstellarcontinuummapsofz(cid:2)1galaxies, broadlyfollowstherest-frameopticallight,butisslightlymore withthe∼1kpcresolutionnecessarytoputconstraintsonthe extended. Here we stack the Hα maps of these galaxies to spatialdistributionofstarformation,ischallengingandhasso construct high signal-to-noise ratio (S/N) radial profiles and far only been possible using a combination of adaptive optics measure structural parameters of stellar continuum emission andintegralfieldunitson8–10mclasstelescopes.Thesestudies and star formation. These unique, high spatial resolution data paintacomplexpicture:theyfindthatstar-forminggalaxiesat from 3D-HST are combined with kinematics from the Near z ∼ 2 are a mix of “puffy” and often clumpy rotating disks, InfraredSpectrometer(NIRSPEC)ontheW.M.Kecktelescope mergers,andmorecompactdispersion-dominatedobjects(e.g., (McLean et al. 1998). We assume H = 70 km s−1 Mpc−1, 0 Genzeletal.2008;Shapiroetal.2008;Crescietal.2009;Fo¨rster ΩM =0.3,andΩΛ =0.7. Schreiberetal.2009,2011;Lawetal.2009;Jonesetal.2010; Mancinietal.2011). 2.3D-HSTANDSAMPLESELECTION Some studies claim that there are trends in the structural propertiesofHαasafunctionofredshift,implyingthattheway The 3D-HST survey, a 248-orbit Treasury program on the galaxiesassembletheirstarsvariesfundamentallyasafunction HST,suppliesthetwo-dimensionalemissionlinemapsneeded 1 TheAstrophysicalJournalLetters,763:L16(6pp),2013January20 Nelsonetal. thehistogramofFigure1;e.g.,Noeskeetal.2007;Daddietal. 2007; Whitaker et al. 2012). These galaxies were selected in Hα not IR; while this selection may bias the sample, it may possiblyalsohavetheadvantagethatitaddslessuncertaintyto interpretingthespatialdistributionofstarformationduetodust extinction. 3.THESPATIALDISTRIBUTIONOFSTARFORMATION 3.1.StackedHαandStellarContinuumEmission WestackthehighspatialresolutionHα mapsfrom3D-HST tocreateaverageHα maps—increasingtheS/Nandproviding forareliablemeasurementofthestructuralpropertiesofHαto largeradiiforthissampleatz∼1.Wedividethesampleinthree binsbasedontheirHαsize10inordertohomogenizethesample andinvestigatetrendswithsize.11Themedianstellarmassesof the stacks are log(M∗) = 10.0,10.2,10.2. The galaxies are normalized by their F140W flux and centered according to their luminosity-weighted F140W image centers. We masked the [Sii] λλ6716,6731 Å emission in the fit. At our spectral resolution, the FWHM of a line is ∼100 Å, meaning that Hα Figure1.LocationofselectedgalaxiesintheSFR–massplane.Sixsources λ6563 Å and [Nii] λ6583 Å are unresolved but Hα and [Sii] withoutIRphotometryarenotshowninthefigure.Thehistogramshowsthe positionoftheselectedgalaxiesrelativetotherestofthegalaxiesbydividing areseparatedby∼3resolutionelements.Werotatedtheimages apower-lawfitoutofthedistribution.Thepurplelineshowsthefit,thelight basedontheirGALFIT-derivedF140Wpositionanglestoalign purpleregiondelineates±1σ.Theselectedgalaxiesappeartolielargelyonthe them along their major axes, summed them, and divided the upperhalfofthe“mainsequence”inSFR(IR+UV). resultingstackbythesummedmasks.Finally,inordertocorrect (Acolorversionofthisfigureisavailableintheonlinejournal.) fortheeffectsofthepoint-spreadfunction(PSF),thestackswere deconvolvedbyaddingtheGALFIT-derivedPSF-deconvolved to measure the spatial distribution of star formation. The modeltotheresidualsofthefit,amethoddevelopedinSzomoru WFC3 G141 grism provides spatially resolved spectra of all etal.(2010). sources in the field. The wavelength range of the G141 grism, Figures 2 and 3 show the stacked, PSF-corrected Hα emis- 1.15μm < λ < 1.65μm, covers the Hα emission line for sion.TheS/Ninthestacksishigh,andtheemissionisclearly galaxies in the redshift range 0.7 < z < 1.5. The survey also spatiallyextended.Furthermore,boththerest-frameRbandand providesbroadbandnear-infraredimagingintheF140Wfilter, Hα maps are clearly elongated. We quantified the structural which samples the rest-frame R band for z ∼ 1. Using the propertiesofthestackswithGALFIT(Pengetal.2002)using same camera under the same conditions to map both Hα and empirical PSFs. For the continuum and Hα, we find weighted continuum emission allows us to compare their distributions mean axis ratios of b/a(R) = 0.55 ± 0.07 and b/a(Hα) = directly, a crucial advantage of this strategy. The maps have 0.58±0.09,respectively,consistentwithexpectationsforran- a spatial sampling of ∼0.5 kpc at z ∼ 1 (0(cid:4).(cid:4)06 pixels). The domly oriented disks with thickness c/a = 0.26, 0.33. This data presented in this Letter are based on the ∼70 pointings, thicknesscouldbeattributedtodisksbeingintrinsicallythickat roughlyhalfofthefulldataset,thatwereobtainedpriorto2011 z ∼ 1,heterogeneouspropertiesofthegalaxiesbeingstacked, June (see Nelson et al. 2012). The survey, data reduction, and theeffectofbulges,andaselectionbiasedtowardface-ongalax- determinationofderivedquantities(e.g.,redshiftsandmasses) ies,ornoise. aredescribedinBrammeretal.(2012)andvanDokkumetal. (2011). 3.2.RadialProfilesareNearlyExponential The 3D-HST grismspectra have high spatialresolution and Figure 3 shows the radial profiles derived from the stacks. lowspectralresolution(R ∼ 130),meaningthatemissionline Radial profiles of the PSF-corrected stacks were created by structurereflectsalmostexclusivelyspatialstructure(morphol- summing the flux in elliptical radii. A 30% correction was ogy) in contrast to data with high spectral resolution where applied to account for [Nii] (see Section 4). All uncertainties structurereflectsvelocity(rotationordispersion).Emissionline werederivedbybootstrapresamplingthestacks. mapsofgalaxiesaremadebysubtractingthecontinuumemis- The Hα emission ranges from exponential to much less sion from the two-dimensional spectrum. The details of the centrallyconcentratedthanexponential.Thestellarcontinuum procedurearedescribedinNelsonetal.(2012),Lundgrenetal. emissioninallthestacksisnearlyexponential. (2012),andK.B.Schmidtetal.(2013,submitted). Theradialequivalentwidthprofiles(rightpanelsofFigure3) We selected galaxies with redshifts 0.8 < z < 1.3, total are flat to within a factor of two and EW(Hα) > 100 Å F140W AB magnitude <21.9, and rest-frame EW(Hα) > for all stacks within 1.5r . This suggests that the high global 100Å.Wealsolimitedthesampletogalaxieswitheffectively EW(Hα)s seen in these gealaxies are not driven primarily by nocontaminatingfluxfromthespectraofothernearbyobjects. centralstarburstsbutbystrongstarformationatallradii. Thepositionofthesampleinthe0.8<z <1.3starformation rate(SFR)–stellarmassplaneisshowninFigure1.SFRswere 10 ThesizesaremeasuredusinggrowthcurvesasdescribedinNelsonetal. derivedfromtheIR+UVluminositiesasdescribedinWhitaker (2012). et al. (2012). The selected galaxies lie predominantly on the 11 TheresultsaresimilarwhenthebinsaredefinedaccordingtotheF140W upper half of the “star-forming main sequence” (as shown in sizes. 2 TheAstrophysicalJournalLetters,763:L16(6pp),2013January20 Nelsonetal. Hα Line Emission N =10 N =35 N = 9 s stack stack stack ck r(Hα)=1.2±0.1 r(Hα)=3.7±0.2 r(Hα)=6.3±1.8 a e e e t S d e v ol s e R - y all ti a Sp b/a=0.50±0.05 n(Hα)=1.2±0.6 b/a=0.60±0.06 n(Hα)=0.9±0.1 b/a=0.61±0.13 n(Hα) < 1.0 ] 2 c p k 1.00 / r y / M [ 0.10 ) R F S ( Σ 0.01 −10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10 r [kpc] r [kpc] r [kpc] Figure2.Stacksofthehighspatialresolution,PSF-correctedmapsofHαemission(top).StackingwasdonebasedonHαsize;thenumberofgalaxiesincluded ineachsizebinislisted(Nstack)asisthemajoraxiseffectiveradius(inkpc)ofeachstackmeasuredbygalfit(re).ThestackshaveaweightedmeanSe´rsicindex n(Hα)∼1andaxisratioofb/a(Hα)=0.58±0.09,consistentwithdisksatrandomorientationangles.Bottompanelsshowcorrespondingradialprofileswithdark purple—small,mediumpurple—mid-sized,andlightpurple—large(Figure3,Section3.2).ThestackedHαemissionalwayshasSe´rsicindexn(cid:2)1. (Acolorversionofthisfigureisavailableintheonlinejournal.) Figure3.StacksofHα (left)andrest-frameR-band(middle)emissionhavenearlyexponential(orshallower)radialprofiles.TheEW(Hα)profile(discussedin Section3.2)isshownintherightpanel.Thebottompanelsshowtheprofilesnormalizedbytheireffectiveradius.ThehorizontallineistheSFRsurfacedensity criterionfordrivinglarge-scaleoutflows(Heckman2002).AsinFigure2,thedark,medium,andlightcolorscorrespondtothesmall,medium,andlargestacks, respectively,asshownatthetop.ThespatialdistributionofHαemissionisexponentialorshallower. (Acolorversionofthisfigureisavailableintheonlinejournal.) 3 TheAstrophysicalJournalLetters,763:L16(6pp),2013January20 Nelsonetal. 2.5 2] 10.00 c p 2.0 /k yr or / Col 1.5 [M 1.00 V y U- sit n d e e 1.0 D v Deri ace 0.10 urf 0.5 S R F S 0.01 0.0 0 2 4 6 8 10 12 0 2 4 6 8 10 12 r[kpc] r[kpc] Figure4.Leftpanelshowstheradialcolorprofilesforeachofthestackswithblackforthesmallstack,darkgrayforthemediumstack,andlightgrayforthelarge stack.TherightpanelshowstheimplieddustcorrectedradialprofilesofstarformationsurfacedensitywiththecolorsasinFigures2and3.Errorbarontheright paneldenotesatypicaluncertainty.Dust-correctedradialprofilesofstarformationremainnearlyexponential. (Acolorversionofthisfigureisavailableintheonlinejournal.) The derived Se´rsic indices (Figure 2) of the Hα and stellar corrections: continuumprofilesaren(Hα)=1.2±0.6,0.9±0.1, n(Hα)< 1andn(F140W)=1.8±0.4,1.4±0.1,1.1±0.2withweighted log(SFR(IR+Hα))−log(SFR(Hα))∼0.3×(U −V). (1) means of n(Hα) = 1.0±0.4 and n(F140W) = 1.4±0.2. As Thedust-correctedradialprofilesareshownintherightpanel showninvanDokkumetal.(2010),structuralparametersmea- ofFigure4.Thesmallestgalaxiesappeartohavestarformation suredfromstacksareclosetothemeanvaluesfortheindividual galaxies going into the stacks. The upper limit of n(Hα) < 1 that is marginally steeper than exponential. The large galaxies forthelargestHα stackreflectsthefactthatthederivedn(Hα) havethelargestradialgradientsbuttheirimpliedstarformation isstilllesssteepthanexponential.Althoughthisanalysisassigns depends somewhat on the details of the fit (treatment of sky, fittingregion)butalwaysn(Hα)<1. the entire observed color gradient to extinction, the centers of WefindthatthestackedspatialdistributionofHαforgalaxies the radial color profiles could be red because of dust or age. inthissampleisexponentialorshallower.Allstackshaven<2, Importantly, the Se´rsic indices of the star formation in these stacks based on the implied dust correction remain close to implyingabulgefractionoflessthan20%(vanDokkumetal. 1998). The radial Hα profiles (Figure 3, left), seem to show a one:n=1.4,1.1,0.6foreachofthestacks,weightedmean= trend toward lower n(Hα) with increasing size. However, this 1.0 ± 0.4. So, even when accounting for dust, the averaged starformationinthesegalaxieshasanearlyexponentialspatial trendisnotstatisticallysignificantgiventheerrorsinthederived distribution. Se´rsic indices. Additionally, note that the median galaxy with EW(Hα) > 100 Å has a high enough star formation surface densitytodrivewindsoutto∼1re (Heckman2002). 4.KINEMATICS The flattening of the stacks and the exponential Hα profiles 3.3.EffectsofDust suggestthatthestarformationoccursinrotatingdisks.Totest this,wemeasuredkinematicsforasubsetofthissampleusing A major uncertainty in the interpretation of the radial Hα NIRSPEC on the Keck II telescope on 2012 April 9–10. The profileistheeffectofdifferentialdustextinction:ifsomeparts sample comprises eight galaxies chosen from the small (1), ofthegalaxiesaremoreobscuredthanothers(seee.g.,Wuyts middle(5),andlarge(2)stack,whichhavesizes,masses,Se´rsic et al. 2012), the derived radial profile of Hα would not reflect indices, SFRs, and axis ratios representative of the sample as theradialprofileofstarformation.Toassesstheimportanceof awhole. this effect, we estimate the extinction as a function of radius. We used the low dispersion mode of NIRSPEC with 0(cid:4).(cid:4)5 Wedeterminetheextinctionfromtheradialcolorprofile. seeing and a slit width of 0(cid:4).(cid:4)7, giving a spectral resolution of Thecolorprofileisdeterminedfromthecombinationofthe σ ∼80kms−1intheJband(comparedto∼500kms−1inthe F140WstackswithACSF814Wstacks,whichcanbeconverted grismspectra).Theslitwasalignedalongthemajoraxisofeach intorest-frameU−Vcolorprofiles.Asshownintheleftpanel galaxyandobservationswereconductedinaseriesoffour900s ofFigure4,formostoftheradialextentofthestacksthecolor exposures,ditheringalongtheslit.Thedatareductionfollowed isfairlyconstant,butitbecomesredderinsidearadiusof2kpc standard procedures for long-slit spectroscopy (see, e.g., van (seealsoSzomoruetal.2012).Toestimateroughlyhowcolor Dokkumetal.2004).Weextractedkinematicinformationfrom translates into missed star formation, we assume that the star thetwo-dimensionalspectrabyfittingaGaussiantotheHαand formationthatisnotcapturedbyHαwillbecapturedbytheIR [Nii] emission simultaneously at each spatial position along (Kennicutt et al. 2009). Using photometry from R. E. Skelton the slit. The median [Nii]/Hα is 0.3. Assuming the velocity et al. (2013, in preparation), in addition to rest-frame U−V shearinthetwo-dimensionalspectraisduetorotation,wetake colorsandIR-basedSFRsfromtheNEWFIRMMediumBand therotationalvelocitytobethevelocitydifferencebetweenthe Survey(Whitakeretal.2012),empiricalrelationswerederived geometrical center of the galaxy and the maximum velocity. forthetranslationofrest-frameU−Vcolorsintostarformation We correct the rotation velocities for inclination angle using 4 TheAstrophysicalJournalLetters,763:L16(6pp),2013January20 Nelsonetal. Figure5.Shownherearetherotationcurves(middlerow)derivedfromtheNIRSPECspectra(insetsincorners),oneexamplefromeachstackwiththeimplied rotationvelocities(vcorr—correctedandvuncorr—uncorrectedforinclination)andvelocitydispersion(σ)listedinkms−1.Thetoprowshowsthecorresponding rest-frameR-bandimagesandthebottomrowshowsafalsecolorimagewiththeHαemissioninredandstellarcontinuuminblue.Intheserows,ellipsesmarkthe R-bandandHαeffectiveradii(re(R),re(Hα)),respectively,andgrayarrowshaveascaledlengthcorrespondingtotheprojectedspecificangularmomentum. (Acolorversionofthisfigureisavailableintheonlinejournal.) the3D-HSTaxisratios.Wecalculateone-dimensionalvelocity appeartoberotating.(e.g.,Wisnioskietal.2011;Epinatetal. dispersions by fitting a Gaussian to the Hα emission in the 2012;Swinbanketal.2012). central row of each spectrum. We calculate the instrumental σ to be ∼80 km s−1 by fitting a Gaussian to the sky lines. 5.DISCUSSION The intrinsic velocity dispersion is calculated by subtracting the instrumental dispersion from the measured dispersion in ThecentralresultofthisLetteristhattheradialdistributionof quadrature. stackedHαemissioninz∼1galaxiesisclosetoexponentialout We find that all galaxies show velocity shear in their to∼10kpc.Combinedwiththeaxisratiosofthestacksandthe two-dimensional spectra, with derived rotation velocities of kinematicsofasubsetofthesample,themoststraightforward 90–235kms−1 uncorrectedand110–330kms−1 correctedfor interpretationisthatstarformationseemstypicallytooccurin inclination.12 Figure5showstherotationcurvesforoneexam- disks at z ∼ 1 at least for galaxies with high EW(Hα). The plegalaxyforeachstack.Thesespectraareofthebestquality factor of ∼10 increase in the SFRs of galaxies from z = 0 butappeartoberepresentativeoftheeight.Thevelocityprofile to z = 1 (e.g., Damen et al. 2009; Fumagalli et al. 2012) is of the smallest galaxy in Figure 3 does not show evidence for apparently driven by increased star formation activity in disks a turnover, which means the measured maximum velocity is a ratherthanamuchgreaterprevalenceofmerger-drivencentral lowerlimitontherotationvelocityatlargeradii.Weconclude starbursts—consistentwithotherstudies(e.g.,Rodighieroetal. thatthekinematicsareconsistentwiththediskinterpretationof 2011;Wuytsetal.2011,2012). thestructuralpropertiesoftheHαemission.Althoughdifferent Thisresultraisesanumberofquestions.First,itisnotclear classification methods make it difficult to perform a quantita- how these galaxies are related to z ∼ 0 galaxies. An average tivecomparison,ourresultsarequalitativelyconsistentwiththe galaxy in this sample has a distribution of stars with a Se´rsic finding that a large fraction of star-forming galaxies at z ∼ 1 indexofn=1.4.Ifthisaveragegalaxyformsstarswithn=1.0, it will have a lower Se´rsic index at later times. Either we are 12 Measuredvelocitydispersionsarealsorelativelyhigh,butaredifficultto witnessing the build-up of only the latest of late-type galaxies interpretgiventhelowspatialresolutionoftheKeckspectra. (thesegalaxiessubstantiallychangewheretheirstarformationis 5 TheAstrophysicalJournalLetters,763:L16(6pp),2013January20 Nelsonetal. occurringbetweenz∼1andz∼0)ortheirstars,onceformed, REFERENCES must migrate into a different configuration. In other words, if these are the ancestors of typical z ∼ 0 spiral galaxies, their Bournaud,F.,Elmegreen,B.G.,&Martig,M.2009,ApJL,707,1 bulgesneedtobebuiltinsomewaybesidesthestarformation Bovy,J.,Hogg,D.W.,&Rix,H.-W.2009,ApJ,704,1704 Brammer,G.B.,vanDokkum,P.G.,Franx,M.,etal.2012,ApJS,200,13 weareseeing.Thiscouldbeaccomplishedbymergersorsecular Brooks,A.M.,Governato,F.,Quinn,T.,Brook,C.B.,&Wadsley,J.2009,ApJ, evolution(e.g.,Bournaudetal.2009;Ellisonetal.2011).These 694,396 observationscouldbeunderstoodinthecontextofthefollowing Cresci,G.,Hicks,E.K.S.,Genzel,R.,etal.2009,ApJ,697,115 picture: at z > 1, disks are gas-rich and turbulent. As redshift Daddi,E.,Dickinson,M.,Morrison,G.,etal.2007,ApJ,670,156 Damen,M.,Labbe´,I.,Franx,M.,etal.2009,ApJ,690,937 decreases,thegasfractiondecreases,andabarinstabilitygrows, DeBuhr,J.,Ma,C.-P.,&White,S.D.M.2012,MNRAS,426,938 increasingthecentralconcentrationandcentralverticalvelocity Dekel,A.,Sari,R.,&Ceverino,D.2009,ApJ,703,785 dispersion. (e.g., van den Bosch 2001; DeBuhr et al. 2012; Drimmel,R.,&Spergel,D.N.2001,ApJ,556,181 Forbesetal.2012). Ellison,S.L.,Patton,D.R.,Nair,P.,etal.2011,inIAUSymp.277,Tracing Wealsonotethesomewhatsurprisingpresenceofapopula- theAncestryofGalaxies,ed.C.Carignan,F.Combes,&K.C.Freeman (Cambridge:CambridgeUniv.Press),178 tion of large, rapidly rotating disks with relatively low stellar Epinat,B.,Contini,T.,LeFe`vre,O.,etal.2009,A&A,504,789 massesatz ∼ 1.Thesegalaxieshavemeanre(Hα)=7.3kpc, Epinat,B.,Tasca,L.,Amram,P.,etal.2012,A&A,539,A92 v = 240 km s−1, σ = 89 km s−1, and M∗ = 2.2×1010 M(cid:6), Forbes,J.,Krumholz,M.,&Burkert,A.2012,ApJ,754,48 meaningtheyaredisks8Gyrago,largerinsizethantheMilky Fo¨rsterSchreiber,N.M.,Genzel,R.,Bouche´,N.,etal.2009,ApJ,706,1364 Fo¨rsterSchreiber,N.M.,Shapley,A.E.,Erb,D.K.,etal.2011,ApJ,731,65 Way (Drimmel & Spergel 2001), and thicker (Freeman 1987), with∼1/3ofthestellarmass(McMillan2011)andsimilaror Freeman,K.C.1987,ARA&A,25,603 Fumagalli,M.,Patel,S.G.,Franx,M.,etal.2012,ApJL,757,22 higher maximum rotation velocities (Bovy et al. 2009). Both Genzel,R.,Burkert,A.,Bouche´,N.,etal.2008,ApJ,687,59 whatthesegalaxiesbecomeinthelocaluniverseandhowsuch Genzel,R.,Newman,S.,Jones,T.,etal.2011,ApJ,733,101 extended star-forming disks were made in an epoch of high Grand,R.J.J.,Kawata,D.,&Cropper,M.2012,MNRAS,421,1529 Heckman,T.M.2002,inASPConf.Ser.254,ExtragalacticGasatLowRedshift, diskturbulenceareopenquestions.Thesmalldisksontheother ed.J.S.Mulchaey&J.Stocke(SanFrancisco,CA:ASP),292 end of the size distribution are also of interest. With median Hopkins,P.F.,Hernquist,L.,Cox,T.J.,etal.2006,ApJS,163,1 re(Hα) = 1.9 kpc, re(R) = 2.1 kpc, M∗ = 8.9×109M(cid:6), and Jones, T. A., Swinbank, A. M., Ellis, R. S., Richard, J., & Stark, D. P. stackedn(Hα)=1.2,theymorecloselyresemblecompactver- 2010,MNRAS,404,1247 Kassin,S.A.,Weiner,B.,Faber,S.M.,etal.2012,ApJ,758,106 sionsofdiskystarformersthanmerger-drivenstarformationin Kennicutt,R.C.,Hao,C.-N.,Calzetti,D.,etal.2009,ApJ,703,1672 spheroids(seealsovanderWeletal.2011). Law,D.R.,Steidel,C.C.,Erb,D.K.,etal.2009,ApJ,697,2057 There are several caveats. First, our sample is not complete Lundgren,B.F.,Siana,B.,Henry,A.L.,etal.2012,ApJL,760,49 in mass or in SFR(UV+IR). In future papers (using the full Mancini,C.,Fo¨rsterSchreiber,N.M.,Renzini,A.,etal.2011,ApJ,743,86 3D-HSTsurvey)wewillstudythedistributionofstarformation McLean, I. S., Becklin, E. E., Bendiksen, O., et al. 1998, Proc. SPIE, 3354,566 as a function of these parameters. Second, the distribution of McMillan,P.J.2011,MNRAS,414,2446 starformationinthestacksisnotnecessarilyrepresentativeof Nelson,E.J.,vanDokkum,P.G.,Brammer,G.,etal.2012,ApJL,747,28 individual galaxies. In individual galaxies the star formation Noeske,K.G.,Weiner,B.J.,Faber,S.M.,etal.2007,ApJL,660,43 is clumpy (e.g., Genzel et al. 2008, 2011; Fo¨rster Schreiber Peng,C.Y.,Ho,L.C.,Impey,C.D.,&Rix,H.-W.2002,AJ,124,266 Rodighiero,G.,Daddi,E.,Baronchelli,I.,etal.2011,ApJL,739,40 et al. 2009; Nelson et al. 2012; Figure 1) and it is difficult Rosˇkar, R., Debattista, V. P., Quinn, T. R., Stinson, G. S., & Wadsley, J. to quantify the structure. Stacking these clumpy objects could 2008,ApJL,684,79 be hazardous, but it may also provide more insight than can Shapiro, K. L., Genzel, R., Fo¨rster Schreiber, N. M., et al. 2008, ApJ, begleanedfromindividualgalaxies:assumingthattheclumps 682,231 are transient and “light up” a part of the underlying gas disk Swinbank,M.,Smail,I.,Sobral,D.,etal.2012,arXiv:1209.1395 Szomoru,D.,Franx,M.,vanDokkum,P.G.,etal.2010,ApJL,714,244 for a short time (as in, e.g., Wuyts et al. 2012), our stacking Szomoru,D.,Franx,M.,vanDokkum,P.G.,etal.2012,arXiv:1208.4363 techniqueeffectivelyproducesatime-averagedmapofthestar vandenBosch,F.C.2001,MNRAS,327,1334 formationinthegalaxies.Finally,dustattenuationremainsakey vanderWel,A.,Straughn,A.N.,Rix,H.-W.,etal.2011,ApJ,742,111 uncertainty,bothintheselectionandintheinterpretationofthe vanDokkum,P.G.,Brammer,G.,Fumagalli,M.,etal.2011,ApJL,743,15 van Dokkum, P. G., Franx, M., Fo¨rster Schreiber, N. M., et al. 2004, ApJ, profiles.ThiscanbeaddressedwithmapsoftheIRemissionat 611,703 thefullALMAresolution,orbymeasuring(spatiallyresolved) vanDokkum,P.G.,Franx,M.,Kelson,D.D.,etal.1998,ApJ,500,714 Balmerdecrements. vanDokkum,P.G.,Whitaker,K.E.,Brammer,G.,etal.2010,ApJ,709,1018 Whitaker,K.E.,vanDokkum,P.G.,Brammer,G.,&Franx,M.2012,ApJL, 754,29 We thank the referee for a thorough report which improved Wisnioski,E.,Glazebrook,K.,Blake,C.,etal.2011,MNRAS,417,2601 the Letter. Support from grant HST GO-12177 is gratefully Wuyts,S.,Fo¨rsterSchreiber,N.M.,Genzel,R.,etal.2012,ApJ,753,114 acknowledged. Wuyts,S.,Fo¨rsterSchreiber,N.M.,vanderWel,A.,etal.2011,ApJ,742,96 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.