TheAstrophysicalJournal,762:48(13pp),2013January1 doi:10.1088/0004-637X/762/1/48 (cid:2)C2013.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedintheU.S.A. SPIRALARMSINTHEASYMMETRICALLYILLUMINATEDDISKOFMWC758 ANDCONSTRAINTSONGIANTPLANETS C.A.Grady1,2,3,T.Muto4,J.Hashimoto5,M.Fukagawa6,T.Currie7,8,B.Biller10,C.Thalmann10,M.L.Sitko11,12,41, R.Russell13,41,J.Wisniewski14,R.Dong15,J.Kwon5,16,S.Sai6,J.Hornbeck17,G.Schneider18,D.Hines19, A.MoroMart´ın20,M.Feldt9,Th.Henning9,J.-U.Pott9,M.Bonnefoy9,J.Bouwman9,S.Lacour21,A.Mueller9, A.Juha´sz22,A.Crida23,G.Chauvin24,S.Andrews25,D.Wilner25,A.Kraus26,42,S.Dahm27,T.Robitaille25, H.Jang-Condell28,L.Abe29,E.Akiyama5,W.Brandner9,T.Brandt15,J.Carson30,S.Egner31,K.B.Follette18, M.Goto32,O.Guyon33,Y.Hayano31,M.Hayashi5,S.Hayashi31,K.Hodapp33,M.Ishii31,M.Iye5,M.Janson15, R.Kandori5,G.Knapp15,T.Kudo31,N.Kusakabe5,M.Kuzuhara5,34,S.Mayama35,M.McElwain7,T.Matsuo5, S.Miyama36,J.-I.Morino5,T.Nishimura31,T.-S.Pyo31,G.Serabyn37,H.Suto5,R.Suzuki5,M.Takami38,N.Takato32, H.Terada31,D.Tomono32,E.Turner14,33,M.Watanabe39,T.Yamada40,H.Takami5,T.Usuda31,andM.Tamura5,16 1EurekaScientific,2452Delmer,Suite100,OaklandCA96002,USA 2ExoPlanetsandStellarAstrophysicsLaboratory,Code667,GoddardSpaceFlightCenter,Greenbelt,MD20771,USA;[email protected] 3GoddardCenterforAstrobiology,GoddardSpaceFlightCenter,Greenbelt,MD20771,USA 4DivisionofLiberalArts,KogakuinUniversity,1-24-2,Nishi-Shinjuku,Shinjuku-ku,Tokyo,163-8677,Japan 5NationalAstronomicalObservatoryofJapan,2-21-1Osawa,Mitaka,Tokyo181-8588,Japan 6DepartmentofEarthandSpaceScience,GraduateSchoolofScience,OsakaUniversity,1-1,Machikaneyama,Toyonaka,Osaka560-0043,Japan 7ExoPlanetsandStellarAstrophysicsLaboratory,Code667,NASA’sGoddardSpaceFlightCenter,Greenbelt,MD20771,USA 8UniversityofToronto,DepartmentofAstronomyandAstrophysics 9MaxPlanckInstitutefu¨rAstronomie,Ko¨nigstuhl17,D-69117Heidelberg,Germany 10AstronomicalInstitute“AntonPannekoek,”UniversityofAmsterdam,SciencePark904,1098XHAmsterdam,TheNetherlands 11SpaceScienceInstitute,4750WalnutSt.,Suite205,Boulder,CO80301,USA 12DepartmentofPhysics,UniversityofCincinnati,Cincinnati,OH45221-0011,USA 13TheAerospaceCorporation,LosAngeles,CA90009,USA 14HomerL.DodgeDepartmentofPhysicsandAstronomy,TheUniversityofOklahoma,Norman,OK73019,USA 15DepartmentofAstrophysicalSciences,PrincetonUniversity,NJ08544,USA 16DepartmentofAstronomicalScience,TheGraduateUniversityforAdvancedStudies(SOKENDAI),2-21-1Osawa,Mitaka,Tokyo181-8588,Japan 17DepartmentofPhysicsandAstronomy,UniversityofLouisville,Louisville,KY40292,USA 18StewardObservatory,TheUniversityofArizona,Tucson,AZ85721-0065,USA 19SpaceTelescopeScienceInstitute,3700SanMartinDrive,Baltimore,MD21218,USA 20DepartamentodeAstrofisica,CAB(INTA-CSIC),InstitutoNacionaldeTcnicaAeroespacial,TorrejndeArdoz,E-28850Madrid,Spain 21LESIA-ObservatoiredeParis,CNRS,UPMCUniv.Paris06,Univ.Paris-Diderot,F-92195,Meudon,France 22LeidenObservatory,LeidenUniversity,P.O.Box9513,NL-2300RALeiden,TheNetherlands 23LaboratoireLagrange,UMR7293,Universite´deNiceSophia-Antipolis,CNRS,ObservatoiredelaCoˆted’Azur, Boulevarddel’Observatoire,F-06304NiceCedex4,France 24Laboratoired’Astrophysiquedel’ObservatoiredeGrenoble,414,RuedelaPiscine,DomaineUniversitaire,BP53,F-38041GrenobleCedex09,France 25Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA 26InstituteforAstronomy,UniversityofHawaii,2680WoodlawnDrive,Honolulu,HI96822,USA 27W.M.KeckObservatory,65-1120MamalahoaHwy,Kamuela,HI96743,USA 28DepartmentofPhysics&Astronomy,UniversityofWyoming,Laramie,WY82071,USA 29LaboratoireLagrange,UMR7293,UniversitLedeNice-SophiaAntipolis,CNRS,ObservatoiredelaCted’fAzur,F-06300Nice,France 30DepartmentofPhysics&Astronomy,TheCollegeofCharleston,Charleston,SC29424,USA 31SubaruTelescope,650NorthA’ohokuPlace,Hilo,HI96720,USA 32Universita¨ts-SternwarteMu¨nchenScheinerstr.1,D-81679Munich,Germany 33TheKavliInstituteforthePhysicsandMathematicsoftheUniverse,TheUniversityofTokyo,Kashiwa227-8568,Japan 34InstituteforAstronomy,640N.A’ohokuPlace,Hilo,HI96720,USA 35TheGraduateUniversityforAdvancedStudies(SOKENDAI),ShonanInternationalVillage,Hayama-cho,Miura-gun,Kanagawa240-0193,Japan 36OfficeofthePresident,HiroshimaUniversity,1-3-2Kagamiyama,Higashi-Hiroshima739-8511,Japan 37JetPropulsionLaboratory,M/S171-113,4800OakGroveDrive,Pasadena,CA91109,USA 38InstituteofAstronomyandAstrophysics,AcademiaSinica,P.O.Box23-141,Taipei10617,Taiwan,RepublicofChina 39DepartmentofCosmosciences,HokkaidoUniversity,Sapporo060-0810,Japan 40AstronomicalInstitute,TohokuUniversity,Aoba,Sendai980-8578,Japan Received2012September13;accepted2012October30;published2012December14 ABSTRACT We present the first near-IR scattered light detection of the transitional disk associated with the Herbig Ae star MWC 758 using data obtained as part of the Strategic Exploration of Exoplanets and Disks with Subaru, and 1.1μm Hubble Space Telescope/NICMOS data. While submillimeter studies suggested there is a dust-depleted cavitywithr=0(cid:3).(cid:3)35,wefindscatteredlightascloseas0(cid:3).(cid:3)1(20–28AU)fromthestar,withnovisiblecavityatH, K(cid:3),orK .Wefindtwosmall-scaledspiralstructuresthatasymmetricallyshadowtheouterdisk.Wemodeloneof s thespiralsusingspiraldensitywavetheory,andderiveadiskaspectratioofh ∼ 0.18,indicatingadynamically warm disk. If the spiral pattern is excited by a perturber, we estimate its mass to be 5+3 M , in the range where −4 J planetfiltrationmodelspredictaccretioncontinuingontothestar.Usingacombinationofnon-redundantaperture maskingdataatL(cid:3)andangulardifferentialimagingwithLocallyOptimizedCombinationofImagesatK(cid:3)andK , s weexcludestellarormassivebrowndwarfcompanionswithin300masoftheHerbigAestar,andallbutplanetary masscompanionsexteriorto0(cid:3).(cid:3)5.Wereach5σ contrastslimitingcompanionstoplanetarymasses,3–4M at1(cid:3).(cid:3)0 J 1 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. and2M at1(cid:3).(cid:3)55,usingtheCONDmodels.Collectively,thesedatastrengthenthecaseforMWC758alreadybeing J ayoungplanetarysystem. Keywords: circumstellarmatter–instrumentation:highangularresolution–polarization–protoplanetarydisks– stars:individual(MWC758)–waves Online-onlymaterial:colorfigures system.MWC758hasarelativelysmalldepletionofmillimeter- 1.INTRODUCTION sizeddustgrainsintheinnerportionsofitsdisk(Andrewsetal. Weliveinaplanetarysystemwithfourgiantplanets,andover 2011), and also has not been previously reported to host the the past 15 years a wealth of other massive planets have been distinctive mid-IR dip in the IR spectral energy distribution identifiedfromradialvelocity,transit,andmicrolensingstudies, (SED; Isella et al. 2010). Millimeter interferometry traces gas aswellasfromdirectimagingofnearbystars.Thesestudieshave upto2(cid:3).(cid:3)6fromthestar(Chapillonetal.2008),whilemillimeter toldusagreatdealaboutthefrequencyofgiantplanetsaround dustemissioncanbetraced∼1(cid:3)(cid:3) fromthestar.Thescaleofthe older,main-sequencestars,butdonotprovideinsightintowhen, disk,thegapsize,andtheinclinationoftheouterdiskallmake where,andhowfrequentlytheyformintheirnatalcircumstellar this a suitable system to test the hypothesis that SAO 206462 disks,beyondthetrivialconstraintthattheymusthaveformed isnotuniqueinhostingspiralarmspotentiallyassociatedwith whilethedisksretainedabundantgas.Acensusofsignaturesof Jovian-massplanets. giantplanetpresenceinyoungdiskscanbeusedtoboundboth We report the first successful imaging of the disk of MWC the time required to form such bodies, and the portions of the 758inscatteredlight,thediscoveryofspiralarms,thedetection diskoccupiedbygiantplanets.Suchdataareneededtoconstrain of a mid-IR dip in the IR SED as well as apparent mid-IR mechanismsfortheirformationandmigration.Interferometric photometricvariability,andconstrainthemassofcompanions detectionofyoung,Jovian-massexoplanetsandbrowndwarfs inandimmediatelyexteriortothediskusingamixtureofNIR within their disks is a challenging, but emerging field (Kraus high-contrastimagery,sparse-aperturemaskinginterferometry & Ireland 2012; Hue´lamo et al. 2011), however only a small atL(cid:3),andthemeasuredpropertiesofthespiralarms. portion of the disk is sampled. Search techniques focusing on the macroscopic, albeit indirect, signatures that such planets 2.OBSERVATIONSANDDATAREDUCTION induceintheirhostdisksofferanalternatewayofcarryingout In this section we discuss observations and data reduction suchagiantplanetcensus. for high-contrast imaging carried out using two instruments Recent,high-contrastpolarimetricdifferentialimageryofthe at the Subaru Telescope, a reanalysis of Hubble Space Tele- HerbigFstarSAO206462hasdemonstratedonesuchindirect scope (HST) coronagraphic imagery, aperture polarimetry and signature: the presence of spiral arms interpreted as being photometry, and assembly of IR SED data, and Very Large excited by spiral density waves (Muto et al. 2012). For SAO Telescope (VLT) sparse aperture masking interferometry. The 206462,twoarmswereclearlyresolvedfromthedisk,andhave high-contrastSubaruimageryisprocessedbothforoptimaldisk amplitudes consistent with perturbers that are ∼Saturn-mass detectionandforgiantplanetsearches. objects.SAO206462isestimatedtohaveanageof9±2Myr (Mu¨lleretal.2011),olderthanageestimatesfortheformation 2.1.Subaru/HiCIAOPolarimetricDifferentialImagery ofSaturn(Castillo-Rogezetal.2009)andpotentiallyJupiterin oursolarsystem.Whiletantalizing,thesedata,bythemselves, MWC758wasobservedintheH-band(λ=1.635+−00..115455μm) do not provide insight into how common spiral features are in using the high-contrast imaging instrument HiCIAO (Tamura the disks of young stars, or at what point in the evolution of a et al. 2006; Hodapp et al. 2008; Suzuki et al. 2010) on the disktheybecomedetectable. Subaru Telescope on 2011 December 24 UT as part of the TheHerbigAestarMWC758(HD36112,A8Ve;V=8.27, Strategic Exploration of Exoplanets and Disks with Subaru B−V=0.3;H=6.56;Beskrovnayaetal.1999;A5IVe;Meeus (SEEDS)program(Tamura2009).TheAO188adaptiveoptics etal.2012)hasalsobeenidentifiedashostingapartiallycleared system (Minowa et al. 2010) provided a stable stellar point- cavitydetectedinthesubmillimeterwithin0(cid:3).(cid:3)2ofthestar(Isella spread function (PSF; FWHM = 0(cid:3).(cid:3)07). We observed with a etal.2010;Andrewsetal.2011).Thestarhasbeendatedto3.5± combinedangulardifferentialimaging(ADI;Maroisetal.2006) 2Myr(Meeusetal.2012),comparabletotheeraofgiantplanet and polarization differential imaging (PDI) mode with a field formationinoursolarsystem.Thediskstillcontainsmolecular of view of 10(cid:3)(cid:3) by 20(cid:3)(cid:3) and pixel scale of 9.5 mas pixel−1. A andatomicgas(Isellaetal.2010;Salyketal.2011;Meeusetal. 0(cid:3).(cid:3)3diametercircularoccultingmaskwasusedtosuppressthe 2012), while accretion continues onto the star (Beskrovnaya brightstellarhalo.Half-waveplateswereplacedatfourangular etal.1999).TherevisedHipparcosparallaxdataplacethestar positions from 0◦, 45◦, 22◦.5, and 67◦.5 in sequence with one at279+94 pc(vanLeeuwen2007),butmuchoftheliteratureuses 30 s exposure per wave plate position for a total of 15 data −58 theolderHipparcosmeasurementof200+60 pc(vandenAncker sets,andatotalintegrationtimeforthepolarizedintensity(PI) −40 imageof1440s,afterremovingthreelow-qualityimageswith etal.1998).Toensurecompatibilitywiththeolderliterature,we FWHM > 0(cid:3).(cid:3)1, by careful inspections of the stellar PSF. The usebothdistanceestimatesinthispaper.LikeSAO206462,the diskhasalowinclinationfrompole-on(i=21±2◦;Isellaetal. field rotation in this data set was 9◦ on the sky, too small for ADI reduction of the data. While a PSF star was observed 2010),facilitatingdetectionofstructureintheinnerpartsofthe immediately following the PDI+ADI image set, the PSF had changedsignificantlyfromthatobservedduringtheobservation 41VisitingAstronomer,NASAInfraredTelescopeFacility,operatedbythe UniversityofHawaiiundercontracttoNASA. ofMWC758,precludingconventionalPSFsubtraction.H-band 42HubbleFellow. photometryforMWC758,takenwiththetelescopeimmediately 2 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. beforethePDI+ADIdatasetyieldedH=6.48±0.01magin 1. ClassicalPSFSubtraction.Here,wesubtractthemedian- the MKO filter system. The polarimetric data were reduced combinedHD242067imagefromeachMWC758image. usingtheproceduredescribedinHashimotoetal.(2011)using We choose a weighting that minimizes the residuals be- IRAF.43 tween separations of 50 pixels and 150 pixels (∼1(cid:3)(cid:3)–3(cid:3)(cid:3)), thoughweightingsoverslightlydifferentrangesinangular 2.2.Subaru/HiCIAOK ADIobservations separations(i.e.,0(cid:3).(cid:3)75–2(cid:3).(cid:3)5)achievesimilarresults.Wealso s performed a second subtraction weighting the reference A second HiCIAO data set was obtained as part of the PSFbyanadditional10%abovethevaluethatminimized SEEDS program at K (λ = 2.150 ± 0.160μm) on 2011 s theresidualsforeachMWC758image.Wethenderotated December 26 UT, with 17 minutes of integration time in ADI and median-combined each PSF-subtracted MWC 758 mode.Thefieldofviewforthisdatasetwas20(cid:3)(cid:3)×20(cid:3)(cid:3).Thedata image. were obtained in direct imaging mode, with no coronagraph, 2. A-LOCI. Here, we treat all HD 242067 images separately butwithshort1.5sframetimestominimizeimagesaturation. as a “reference PSF library.” Instead of subtracting each Only the peak of the PSF of MWC 758 was saturated in the reference image from the MWC 758 image at once, we K data. The 1.5 s integrations were co-added into frames of s follow the (A)-LOCI approach, subdividing each science typically20integrations,butafterculling,some10-integration image and reference image into annular sections (see frameswerealsoincluded.Aftercullingofbadframes,640sof Currieetal.2012;Lafrenie`reetal.2007)anddetermining integrationtimewereavailable.Thedatawereprocessedusing coefficients for each reference PSF section that minimize variantsofLocallyOptimizedCombinationofImages(LOCI) the subtraction residuals within that section for a given in two ways: using aggressive LOCI (na = 300, nfwhm = science image. To better ensure that any “disk” signal is 0.5) for a companion search and conservative LOCI (na = not instead due to PSF mismatch, we compute the cross- 10,000, nfwhm = 1.5) to search for structure in the disk. A correlationfunction,r ,foreachpairofscience-reference corr discussion of these approaches is in Thalmann et al. (2010). imagesandremovepoorlycorrelatedimagepairs(wefind EitherLOCIvariantsuppressesazimuthallysymmetricorlarge the best results for r > 0.85). We set the optimization corr anglestructure,resultinginvoidscomparedtoeitherthePIdata area(inunitsoftheimageFWHM)overwhichwedefine orPSF-subtractedimagery. thecoefficientstoN =3000andadoptaradialwidthfor A thesubtractionannulusofdr =140,equalroughlytothe 2.3.Subaru/IRCSK(cid:3)Data angularextentofthediskasseeninthesubmillimeter(e.g., Andrewsetal.2011).44 MWC 758 and a PSF reference star (HD 242067) were imagedon2011November10withtheSubaruTelescopeusing A-LOCI Limits on Planetary Companions. To search for the Infrared Camera and Spectrograph (IRCS; Tokunaga et al. companionstoMWC758,weemployedmuchmoreaggressive 1998)andAO188innaturalguidestarmodeaspartofprogram PSFsubtractionsettingsusingA-LOCIonthefullsetofimages S11B-012.ThedatawereobtainedintheMaunaKeaK(cid:3) filter (150 images; 37.5 minutes). We adopted A-LOCI settings (λ=2.12μm).Thenativepixelscaleis20.57maspixel−1;we of δ = 0.70, N = 250, dr = 5, and r = 0.95 (see A corr usedthe0(cid:3).(cid:3)15diametercoronagraphicmasktoreducelightfrom Currie et al. 2012; Lafrenie`re et al. 2007). Additionally, we the PSF core spilling out to angular separations of interest for employedamoving-pixelmaskoverthesubtractionzone,using disk detection. Despite variable weather conditions, AO-188 only the pixels outside of this zone to determine the LOCI delivered corrected images with a full-width half-maximum coefficients to reconstruct a reference PSF annular region. of0(cid:3).(cid:3)07. We then quantify and correct for self-subtraction inherent in Our data consist of co-added 15 s exposures taken in ADI A-LOCI by comparing the flux of fake point sources prior to mode(Maroisetal.2006)throughtransitHA=(−0.6,0.9)with andafterprocessing.Weusethemeasuredbrightnessofthestar a total field rotation of 127◦. Our cumulative integration time visible at 2(cid:3)(cid:3) (K(cid:3) ∼ 16.93) and assume a brightness for MWC for MWC 758 and HD 242067 is 38 minutes and 10 minutes, 758ofm(K(cid:3))=5.804forfluxcalibrationandthustodetermine respectively. Basic image processing follows steps outlined theplanet-to-starcontrast. in Currie et al. (2011a, 2011b) for IRCS, including dark subtraction, flat-fielding, and distortion correction (corrected 2.4.ArchivalHSTCoronagraphicImagery pixelscale=20.53maspixel−1).WeconsideredallHD202067 MWC 758 was observed in the broadband optical twice framestoconstructareferencePSF. by HST/STIS on 2000 January 16 and January 19 as part DiskImaging.ToextractadetectionoftheMWC758disk,we of HST-GO-8474, with the star placed at a point along the explored twoapproaches: oneusingPSFsubtractionofMWC STIS coronagraphic wedge structure (wedgeA1.0) where the 758framesbyamedianHD242067frameandoneleveraging wedgeoccultedtheinner0(cid:3).(cid:3)5.TheSTISdata(observationIDs uponan“adaptive”LOCIapproach(A-LOCI;Currieetal.2012) =O5KQ3010-20andO5KQ0410-20)wereapoorcolormatch forthissubtraction.Inbothcases,wefirstidentifiedthehighest- totheavailablelibraryofPSFtemplatedata(Gradyetal.2005), quality images of MWC 758. Specifically, we monitored the brightnessofabackgroundstar2(cid:3)(cid:3) fromMWC758(∼15mag) yieldingdisknon-detectionswithlargecolormismatcherrors. Whenroll-differenced(Lowranceetal.2005),anulldetection andselectedonlytheframeswherethestar’sbrightnessiswithin wasalsoseen,indicatingeithernebulositythatwasazimuthally 20%ofthepeakbrightnessofanyframe.Thisselectioncriterion symmetricover15◦,orconcentratedwithin0(cid:3).(cid:3)5ofthestar.The identified50MWC758frames(750stotal)tofocusonforPSF STIS data indicate only three point sources in the 25(cid:3)(cid:3) × 50(cid:3)(cid:3) subtraction.Furtherreductionstepsareasfollows. field other than MWC 758, with the nearest at a separation of 2(cid:3).(cid:3)1atPA=309◦. 43 IRAFisdistributedbytheNationalOpticalAstronomyObservatory,which isoperatedbytheAssociationofUniversitiesforResearchinAstronomy,Inc., 44 Wedetecttheinnerdiskspiralsaslongaswesetdrtobelargerthanthe undercooperativeagreementwiththeNationalScienceFoundation. submillimeter-resolveddiskgap(dr>25). 3 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. MWC 758 was also observed by HST/NICMOS as part of et al. 2001; Beskrovnaya et al. 1999), 2MASS, Midcourse HST-GO-10177on2005January7.Theobservationsconsisted SpaceExperiment,IRAS,andInfraredSpaceObservatorySWS of two independent target acquisitions, short direct images in data, two epochs of Broadband Array Spectrograph System F171M, the coronagraphic observations at F110W (λ = spectrophotometry (Hackwell et al. 1990), Spitzer IRS data cent 1.1 ± 0.3μm) with the region at r (cid:2) 0(cid:3).(cid:3)3 occulted, and short originally published by Juha´sz et al. (2010), AKARI, and the direct-light F110W imagery with the star unocculted before Wide-fieldInfraredSurveydata(exceptingband2,4.5μm).We rolling HST by 29◦.9 and repeating the sequence. The direct- also include the HST/NICMOS F110W photometry as well lightimageryyieldedF110Wmagnitudesof7.314±0.014mag. as the photometry obtained in tandem with the HiCIAO PDI The observations obtained at a given spacecraft orientation observation and the SIRPOL data. The data, color-coded by constitutea“visit.”Thecoronagraphicdataforeachvisitwere source, are shown in Figure 1, together with a Kurucz T = reducedasdescribedinSchneideretal.(2006),andthenasuite 8250Kphotosphericmodel,reddenedbyanR=3.1extinction of PSF template data from the same HST cycle were scaled, curve with E(B − V) = 0.13. A similarly good fit at short registered, and subtracted from the MWC 758 imagery. For wavelengthscanbeachievedwithoutforegroundreddeningand thefirstvisitforMWC758(visit31),PSFtemplatedatafrom withT =7580K,asusedbyAndrewsetal.(2011).Thismodel eff visits3D(HD15745,visit2),visit62and61(HD83870),visit requiresacontributionfromUVexcessemission(e.g.,accretion 53 (HD 35841 visit 1), visit 41 (HD 22128, visit 1), and 6B luminosity) to match the observed FUV flux (Martin-Za¨ıdi (HD 204366, visit 1) provided good color and HST residual et al. 2008), but is consistent with low line-of-sight extinction matches to MWC 758. For the second visit (visit 32), data (E(B−V)(cid:2)0.1)forthesourcetobedetectedbyFUSE. from visit 48 (HD 38207 visit 1), 4C (HD 30447, visit 1),4D and 4E (HD 72390, visit 1and 2), 42 (HD 22128 visit 2), 62 2.7.VLT/NACOSparseApertureMaskingInterferometry (HD 83870 visit 2), 65 and 66 (HD 164249, visits 1 and 2), MWC 758 was observed on 2012 March 11 with and 6B (HD 204366, visit 1) provided the best matches. The VLT/NACO Sparse-Aperture Masking45. Observations were useofindependenttargetacquisitionsandlargelyindependent takenintheL(cid:3)band(λL(cid:3) =3.80±0.31μm)usingthe“7holes” suitesofPSFtemplatedatameanthatmediansofthenetimages aperture mask and the IR wavefront sensor (WFS). A total of for each visit provide two essentially independent observation 24datacubes,eachonemadeof330framesof0.12sintegra- sneetbsufloorsiMtyWfoCr 7r58(cid:3).B0o(cid:3).(cid:3)8th, fiwnitahlitmheagbeuslkproofvitdheendoetiencdtiecdatisoignnoafl tion time were obtained for MWC 758 in L(cid:3) on the night of within0(cid:3).(cid:3)5ofMWC758. 2012-03-12(UT).Observationsoftwocalibratorstars,HR1921 andHD246369,wereobtainedforatotalofeightdatacubes, Theangularscaleofthenebulosityistoosmallcomparedwith interleavedeveryeightMWC758datacubes.TheMWC758ob- the NICMOS F110W resolution element to assess azimuthal servationswereprocessedwiththeObservatoiredeParisSAMP symmetry. We have carried out aperture photometry between 0(cid:3).(cid:3)3 < r < 0(cid:3).(cid:3)5foreachofthefinalnetvisitimages.Thetotal pipelines(Lacouretal.2011a,2011b). brightnessinthoseannuliininstrumentalcountss−1pixel−1are Theuseofthe“7holes”(C7-892,Tuthilletal.2010)aperture masktransformsthetelescopeintoaFizeauinterferometer.The 5183forvisit31and5419forvisit32,yieldingonlya±2%peak topeakdifferenceaboutameanof5301countss−1pixel−1.Us- point spread function is a complex superposition of fringes ingtheNICMOSphotometriccalibrationof1countss−1pixel−1 at given spatial frequencies. In specific cases, pupil-masking =1.26×10−6Jy,thetotalF110Wfluxdensityinthemeasure- can outperform more traditional differential imaging for a number of reasons (Tuthill et al. 2006; Lacour et al. 2011b). ment annulus is 6.7 mJy. The Two Micron All Sky Survey First, the masks are designed to have non-redundant array (2MASS) J magnitude for MWC 758 is 7.22 (2.07Jy), so the configurationsthatpermitphasedeconvolution;slowlymoving total1.1μmlightscatteredbythisportionofthediskis0.32%. optical aberrations not corrected by the AO can be accurately Thenearbypointsourcenotedinthe2000STISimageryisre- covered at r = 2(cid:3).(cid:3)215, PA = 310◦.86. It is not comoving with calibrated.Second,themaskprimarilyrejectsbaselineswithlow spatialfrequencyandpassesproportionatelyfarmorebaselines MWC758,andthusisabackgroundobject. with higher λ/B (where B is baseline length) resolution than doesanorthodoxfullyfilledpupil.Third,high-fidelityrecovery 2.5.InfraredSurveyFacility/SimultaneousIRPolarimeter ofphaseinformationallows“superresolution,”withamarginal (SIRPOL)AperturePolarimetryandPhotometry loss of dynamic range up to λ/2D (where D is the mirror NIRaperturephotometryandpolarimetrywascarriedoutfor diameter). The principal drawback is a loss in throughput MWC758on2012March8usingSIRPOL(Kandorietal.2006) so that photon and detector noise can affect the signal-to- at the IRSF. The SIRPOL observations were not accompanied noise ratio even where targets are reasonably bright for the by observation of a polarimetric standard star, so the 2MASS AO system. The effective field-of-view of sparse aperature systemwasusedtocalibratetheNIRmagnitudesofMWC758 masking (SAM) is determined by the shortest baseline so usingfieldstars.WemeasuredJ=7.193mag,H=6.560mag, that the technique is not competitive at separations that are Ks =5.804magwithpolarizationsof1.63%atJ,1.60%atH greaterthanseveraltimestheformaldiffractionlimit.Formore and 0.81% at Ks. The polarization levels are typical of low- detailsontheSAMmode,see,e.g.,Lacouretal.2011a;Tuthill inclinationyoungstellarobjects(Pereyraetal.2009). etal.2010. 2.6.TheIRSpectralEnergyDistributionofMWC758 3.RESULTS MWC 758 is a well-studied Herbig Ae star with data from In this section we discuss the disk detection, compare it the far-UV through the millimeter. We have assembled a with synthetic imagery for a model fitting the submillimeter composite SED including International Ultraviolet Explorer continuumdataandtheIRSED,reportthediscoveryofspiral spectra SWP 53939 and LWP 30023, optical through M-band photometry (Malfait et al. 1998; Bogaert 1994; de Winter 45 ProgramID:088.C-0691(A). 4 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. Figure1.CompositeSEDofMWC758.ThestarhaslimitedUVdata,opticaldataindicatingminorphotometricvariability,consistentwithalowinclination,NIR datashowingalargerrange,andmid-IRdatafromavarietyofsourcesindicatingafactorof2–3fluxvariationfrom5to30μm.Themid-IRdata,particularlythe SpitzerIRSspectrumpreviouslypresentedbyJuha´szetal.(2010),clearlydemonstratethedipintheSEDcharacteristicofpre-transitional,orgappeddisks. arms in the disk, and following Muto et al. (2012) discuss the Figures2(a)and(b)).ThediskisalsodetectedatK (Figure2(c)) s implications for a giant planet capable of exciting the more towithin0(cid:3).(cid:3)1ofthestar,andinK(cid:3)(Figure2(d))towithin0(cid:3).(cid:3)25, completelyimagedspiralarm.Wenextdiscusslimitsonstellar, and at 1.1μm (Figure 2(e)). A false-color composite of the H browndwarf,andgiantplanetarymasscompanionsprovidedby PI(blue)andK(cid:3) (red)isshowninFigure2(f).Thiscomposite thesparseaperturemaskingdataandtheSubaruobservations. imagealsoallowsustoidentifyaregionofreducedpolarization intensityalongPA=155◦ ±5◦ andPA=330◦ ±5◦,aligned 3.1.MWC758asaGappedDisk with the projection of the disk semiminor axis. To the east of the star, the H PI surface brightness ∝R−5.7±0.1 (Figure 3). To Previous studies of MWC 758 had identified this system as thewestofthestar,itdropsas∝R−2.8±0.1,consistentwiththe hostingacavityvisibleinsubmillimetercontinuuminterferom- diskexhibitingsomeflaring. etry, but lacking a very conspicuous dip in the IR SED near Unlikeotherprotoplanetary(Kusakabeetal.2012)ortransi- 10μm (Isella et al. 2010; Andrews et al. 2011). In contrast, tionaldisks(Mutoetal.2012)imagedwithHiCIAOinHPI,the ourcompositeSEDbasedonanassemblyofarchivalphotome- reflectionnebulosityisnotalignedwiththedisksemimajoraxis tryandspectrophotometryclearlyshowsadip(Figure1),with (PA=65±7◦).Moreover,wedetectscatteredlightwithinthe indications of mid-IR variability, providing the first indepen- regionofpartialclearingreportedinthesubmillimetercontin- dent confirmation that MWC 758 is what has been termed a uum(Isellaetal.2010),ratherthantheexpectedcavity.ThePI gapped or “pre-transitional” disk with an inner disk structure forr (cid:3)0(cid:3).(cid:3)2is6.095±0.085mJy,or0.09%relativetothestar. (Isella et al. 2008), a wide gap, and an outer disk seen in mil- Between0(cid:3).(cid:3)3and0(cid:3).(cid:3)5thePIis2.72mJy,or0.0425%relativeto limeterdata(Isellaetal.2010),andthermalemission(Marin˜as thestar,indicatingthattheregionofthearmsisprovidinghalf et al. 2011). When compared with other transitional disks, the of the observed polarized intensity. If we assume neutral scat- depth of the 10μm dip is smaller, consistent with the lack of tering,thePIinthearmregion0(cid:3).(cid:3)3(cid:2)r (cid:2)0(cid:3).(cid:3)5canbecompared a cavity in our F110W, H, K(cid:3), and K imagery. Modeling of s withtheF110Wtotalintensityof0.32%,indicatingapolarized otherdiskswithHiCIAOobservationshavesuggestedthatthe light fraction of ∼13.3% which is in the range of polarization absence of a cavity at H is not atypical of transitional disks, fractionsobservedforotherHerbigAestars. andcanbeaccountedforbygrainfiltration(Riceetal.2006), withlargemm-sizedgrainsdeeplydepletedinthecavityregion, 3.3.ComparisonwithMonteCarloRadiative whilesmallergrains,whicharemoretightlycoupledtothegas, TransferModelsfortheDisk arelessdepleted(Dongetal.2012;Zhuetal.2012). GiventhestructureseenintheH-bandPIimagery,itisnatural to explore what we would have expected to have seen based 3.2.TheStructuredDiskofMWC758 on combined modeling of the submillimeter data and the IR The disk of MWC 758 is detected in polarized, scattered SED.Toaddressthisgoal,wecarriedoutMonteCarloradiative light from 0(cid:3).(cid:3)2 to 0(cid:3).(cid:3)8 (223 AU assuming d = 279 pc or transfer modeling using the code developed by Whitney et al. 160 AU assuming d = 200 pc) in polarized intensity at (2003a, 2003b; B. A. Whitney et al. 2013, in preparation), H-band(Figure2).Thediskdetectiondidnotrequireunusually with modifications as described in Dong et al. (2012). In favorable conditions (e.g., MWC 480; Kusakabe et al. 2012): particular, we adopt a disk outer radius of 200 AU, viewed H-band photometry was in the range of previous NIR data for ati=23◦,andassumeanaccretionrateofM˙ =10−8M(cid:7)yr−1 thestar(Figure1).Thedetectednebulosityishighlyasymmetric (Andrews et al. 2011). We model the entire disk with two about the star, with the greatest extent seen to the west of the components: a thick disk with small grains (∼μm-sized and staratH,whiletotheeast,nebulosityisnotdetectedexteriorto smaller),whichrepresentsthepristinedustgrainsfromthestar 0(cid:3).(cid:3)5.Tothewestofthestar,thescatteredlightdiskextendsasfar forming environment, and a thin disk with large grains (up to asthesubmillimetercontinuumcanbetraced(Isellaetal.2010; ∼mm-sized), which is the result of dust growth and settling 5 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. (af) ) N (a) N 0.5” E 0.5” (b) 0.5 -2.00000 1.39274 log scale (e) (d) (c) 0.5” 0.5” 0.5” -50.0000 70.0000 Figure2.DiskofMWC758:(a)the880μmcontinuumafterIsellaetal.(2010),thedashedlineindicatesthedisksemimajoraxis,(b)H-bandpolarizedintensity, (c)KsdatawithconservativeLOCIprocessing,(d)K(cid:3)intensitywithconservativeLOCIprocessing,(e)HST/NICMOStotalintensitydatafollowingPSFsubtraction, (f)colorcompositeofHPIandK(cid:3)data.Theimagesareall2(cid:3).(cid:3)4onaside,andorientedwithnorthupandeasttotheleft.TheHiCIAOHPIdatausea0(cid:3).(cid:3)3diameter coronagraphicspot,theNICMOSdatausesa0(cid:3).(cid:3)6spot.TheIRCSdatausean0(cid:3).(cid:3)15diameteroccultingspot,andtheKsdatahaveaninnerworkingangleof0(cid:3).(cid:3)1. toward the disk mid plane. We adopt the interstellar medium where Σ is the normalization factor, R is radius, and α is the 0 dustmodelinKimetal.(1994)foroursmall-graindust,andthe powerlawindex.Intheverticaldirection,weassume dustmodel2fromWoodetal.(2002)forourlarge-graindust, whichhasapowerlawsizedistributionupto1mm(withpower ρ(R,z)= √Σ(R) e−z2/2H2, (2) law index 3.5). The large-to-small-dust mass ratio is assumed 2πH tobe0.85/0.15asinDongetal.(2012).Thepropertiesofthe grainscanbefoundinWoodetal.(2002). where ρ(R,z) is the local volume density, z is the vertical With these assumptions, the total dust mass of the disk is dimension, and H is the scale height (input parameters in the 0.067M . The radial surface density distribution of both dust code).Radially,bothscaleheightsforthesmallandlargedust J grainpopulationsisassumedtohavethefollowingprofile varywithradiusas H ∝Rβ, (3) (cid:2) (cid:3) where β is a constant power law index, assumed to be 1.08 in α 1AU Σ(R)=Σ , (1) thiswork.Thescaleheight,h,ofthesmalldustisassumedtobe 0 R 15AUat100AU,whilethatforthelargedustisassumedtobe 6 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. Figure3.RadialsurfacebrightnessprofilesatPA=270◦(black)andPA=90◦(gray)togetherwithpower-lawfits. Figure4.RadiativetransfermodelingresultsforMWC758,showingtheSED(left),therawmodelH-bandpolarizedlightimage(middle)withacavityvisibleinthe innerdisk,andtheconvolvedH-bandpolarizedlightimage(right).TheimagesareinunitofmJyarcsec−2. (Acolorversionofthisfigureisavailableintheonlinejournal.) 1/5ofthehforthesmalldust,toreflectthefactthatbiggrains theSEDseenintransitionaldisks,butasmoothNIRscattered tendtosettletothediskmid-plane,whilesmallgrainstendto light image with no breaks or discontinuities of the surface be well coupled with the gas and have a much larger vertical brightness radial profile at the inner edge of the outer disk. extension(Dullemond&Dominik2004,2005;D’Alessioetal. MWC 758 has an NIR excess (Figure 1), and VLTI/AMBER 2006). data(Isellaetal.2008)indicatingasmallamountofhot,small Our disk model has a gap structure located from 0.5 AU to dustgrainsattheinnermostradii.Toreproducethesefeatures, 73AU.Insidethegaptherearenolargedustgrains,assuggested weputainnerrimlocatedat0.33–0.5AU.Thesurfacedensity by the spatially resolved submillimeter array observations, oftherimis∼0.002gcm−2. which revealed a clear cavity 73 AU in radius at 880μm Figure 4 shows the model SED and H-band polarized light (Andrewsetal.2011).However,theH-bandPIdatademonstrate imagefromthemodeling,withthediskmajoraxishorizontal, that there is a significant amount of scattered light within this and the near side of the disk in the bottom half of the image. radius,indicatingthepresenceofstarlight-scatteringsmalldust The model images show both the PI as modeled, and after grains.Wesetα =1forbothdustpopulationsintheouterdisk, convolutionwithanobservedHiCIAOPSF(seeDongetal.2012 andα =−3forthesmalldustinsidethegap,withacontinuous for details). The model reproduces the extent of the polarized surface density distribution across the gap edge. As discussed intensity to the west of the star, but, as expected, predicts a in detail in Dong et al. (2012), this kind of surface density similarextentofthescattered-lightdisktotheeastofthestar, distributionofthesmalldustresultsinaheavydepletionatthe beyond 0(cid:3).(cid:3)5. The model predicts a bright arc on the near-side innerdisk,producingtheIRexcessdepressionaround10μmon of the image, which is not seen in the data. The raw model 7 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. imagerypredictsacavityvisibleatHintheimmediatevicinity 1 11 ofthestar,whichisnotconspicuousafterconvolutionwiththe PSF,andwhichisintheregionoccultedbythecoronagraphin c] 0.5 00..55 e ourH-banddata.HigherStrehlratioandsmallerinnerworking s a angleimagery,suchascanbeprovidedbyextremeAOsystems, et [ 0 00 willberequiredtotestthesepredictionsofthemodel. Offs -0.5 --00..55 3.4.SpiralArms -1 --11 ThemostdistinctivefeaturesintheNIRimagesthatarenot -1 -0.5 0 0.5 1 --11 --00..55 00 00..55 11 captured in the model imagery are a spiral feature on the east 111 OOffffsseett [[aasseecc]] sideofthestar,wrappingtowardthesouth,whichwetermthe 40 southeast(SE)arm,andasimilarfeatureoriginatingintheNW c]c]c] 000...555 35 eee andwrappingtothenorth,whichwetermthenorthwest(NW) sss 30 arm. The spiral arms are most clearly detected interior to 0(cid:3).(cid:3)5 et [aet [aet [a 000 25 unit M(10W0CAU75f8orthde=ref2o0re0dpecm,oorn1s4tr0aAteUthfaotrSdA=O227096p4c6)2.O(Murudtoateatfaolr. OffsOffsOffs ---000...555 1250 arb. 2012)isnotuniqueinhostingspiralarmsstraddlingtheregion ---111 10 of the partially cleared millimeter cavity. Moreover, like SAO 5 ---111 ---000...555 000 000...555 111 206462,andunlikeHD142527(Casassusetal.2012;Rameau et al. 2012) there is no indication of a cleared zone at H-band OOOffffffssseeettt [[[aaassseeeccc]]] forr (cid:3)0(cid:3).(cid:3)2(40AUford=200pc,56AUford=279AU). Figure5.Topleft:thesurfacebrightnessofthescatteredlightnormalizedby The spiral arms in the disk of MWC 758 are detected as a r2,whereristhedistancefromthecentralstar.Theshapeofthespiralismore contrast in surface brightness. The drop in polarized surface enhanced,andthisdataisusedfortheanalysisforthespiralfitting.Topright: thepointsthatrepresentthespiralshapeareshownbyredpoints,whichare brightnessimmediatelyexteriortotheSEarmisconsistentwith usedasdatapointsforthefitting.Bottomleft:theshapeofthespiralgivenby thatarmfullyshadowingtheouterdisk.ShadowingbytheNW Equation(4)withthebest-fitparameters(Table1)isshownbygreencurves. arm is less complete: Some signal is seen beyond the arm in Theredpointsarethesamewiththoseinthetoprightpanel. our2011data.WemeasuretheSBcontrastofthearmfeatures (Acolorversionofthisfigureisavailableintheonlinejournal.) bymeasuringtheamplitudeattheSEarmatPA=90◦ andthe corresponding surface brightness the same distance from the The brightest portion of the disk as seen at 1.1μm is the star at PA = 270◦. For the SE arm we find a ratio of 50% ± region occupied by the spiral arms, between 0(cid:3).(cid:3)3 and 0(cid:3).(cid:3)5. 20%.TheangularextentoftheNWarmissufficientlysmallthat TheHST/NICMOSdatafrom2005providenoindicationofthe toconfidentlymeasuretheamplitudeandfitthepatternwewill asymmetricilluminationseeninthe2011data:Thismayeither requiredataobtainedwithacombinationofhigherStrehlratio, beduetochangesinilluminationovertime,ortocontrastlimits and a coronagraph with smaller inner working angle, such as oftheHST/NICMOSdata.However,wenotethatasymmetric maybeprovidedbySCExAOintandemwithAO188+HiCIAO illumination of the disk was not seen in the HST/STIS data onSubaru(Martinacheetal.2011,2012).Wethereforerestrict from2000.Additionalobservationswillberequiredtoestablish allbutqualitativediscussionofthearmstotheSEarm. whethertheilluminationoftheouterdiskchangeswithtime.The Both of the arms have the same rotation sense. If they are locationsofthearmscoincidewiththebrightest12μmsignal trailing structures, as expected for spiral density waves, the fromtheMWC758disk(Marin˜asetal.2011).Thecoincidence rotation of the disk, and any companions associated with the ofstructuralfeaturesinscatteredlight,polarizedscatteredlight, arms,isclockwise.Comparisonwiththemillimeterdata(Isella andinthermalemissionindicatethatthespiralarmsaredensity etal.2010),thenindicatesthatthenorthwestsideofthediskis features, and not merely distortions of the disk surface. The thenearsideofthedisk.OurPIimageisfullyconsistentwith rapiddropinsurfacebrightnessseenintheH-bandPIdatatothe thediskbeingviewedatalowinclinationfromface-on,sinceit eastofthespiralarms(Figure3)furtherindicatesthatthearmis lacksthecompressionofthePItowardthedisksemimajoraxis, opticallythickandextendssufficientlyfarabovetheundistorted whichisconspicuousati (cid:3)38◦ (Kusakabeetal.2012).Given disksurfacetocastalongshadow.TheregionoftheNWarm theasymmetricilluminationofthedisk,weadoptthemillimeter nearPA=340◦coincideswiththeclumpincontinuumemission diskinclinationi=21±2◦(Isellaetal.2010). notedbyIsellaetal.(2010),althoughwithasynthesizedbeam size of 0(cid:3).(cid:3)76 × 0(cid:3).(cid:3)56, the available submillimeter continuum 3.5.TheDiskatOtherWavelengths interferometrylackstheangularresolutiontodirectlydetectthe arms.Astheangularresolutionofsubmillimeterinterferometry Tobecorrectlyinterpretedasspiraldensitywaves,thespiral improves,weexpectthatthesefeaturesshouldbedetectablein arms should be recovered in observations made at different continuumandgasobservations,suchascanbeprovidedonce wavelengthsandwithdifferentinstruments.TheIRCSK(cid:3) data ALMAreachesitsfullextent. detectthediskinscatteredlighttoatleast0(cid:3).(cid:3)5fromthestar,and recoverbothspiralarmsusingeitherclassicalPSFsubtraction 3.6.FittingtheSpiralArms and using A-LOCI as long as we set dr to be larger than the size of the disk gap (dr > 25). The K data sample the disk WefollowtheapproachgiveninMutoetal.(2012)tofitthe s lesscompletely,duetotheveryshortintegrationtimesforeach spiralarms.OurinitialfitshavebeenrestrictedtotheH-bandPI individual exposure. However, they recover the inner portions data.Giventhenearlyface-onsysteminclination,wehavenot ofthearms,intheconservativeLOCIprocessingofthedata,to de-projectedthedatatocompensateforthenon-zeroinclination, aninnerworkingangleof0(cid:3).(cid:3)1butsuppresstheminaggressive buthavecompensatedforther−2dropinilluminationofthedisk LOCIprocessing. (Figure5).Fromthedata,wehavelookedforthelocalmaxima 8 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. δχ2 100 102 104 δδ 1111....5555 00..66 1111 c]c]c]c] 00..44 eeee 0000....5555 ssss aaaa et [et [et [et [ 0000 00..22 OffsOffsOffsOffs ----0000....5555 ----1111 00 ----1111....5555 ----1111....5555----1111----0000....5555 0000 0000....5555 1111 1111....5555 00..0055 00..11 00..1155 00..22 00..2255 OOOOffffffffsssseeeetttt [[[[aaaasssseeeecccc]]]] hh cc Figure6.Left:thedegeneracyof(rc,θ0)parametersplottedinthe2Dsphericalcoordinate.Thecolorshowsthevaluesofδχ2withrespecttothebest-fitvalues,which areshownbytheredcross.Thecontourof99%confidencelevelisshownbythegreenline,andtheblackcircleistheradiusofr=1(cid:3).(cid:3)55,whichistheupperlimitof theparametersthataresearched.Right:thedegeneracyof(hc,δ)parameters.Asintheleftpanel,thecontourof99%confidencelevelisshownbygreencurvesand thebest-fitparameterisindicatedbytheredcross. (Acolorversionofthisfigureisavailableintheonlinejournal.) ofthesurfacebrightness×r2profileforeachradialprofileboth Table1 SpiralArmFitting fortheSEspiralandtheNWspiral.Ifthefeaturesareapartofa ring,thepointswouldliehorizontallyinapolarcoordinateplot Parameter SearchRange Best-fitExternalPerturber oftheintensity.TheSEspiralisclearlynon-axisymmetric,but onlyasmallangularextentoftheNWarmisnon-axisymmetric, rc 0(cid:3).(cid:3)05(cid:2)rc(cid:2)1(cid:3).(cid:3)55 rc=1(cid:3).(cid:3)55 θ 0(cid:2)θ0(cid:2)2π θ0=1.72[rad]a giventheinnerworkingangleofourdata.Fortheremainderof hc 0.05(cid:2)hc(cid:2)0.25 hc=0.182 thisstudywerestrictourattentiontotheSEspiral. δ −0.1(cid:2)δ(cid:2)0.6 δ=0.6 Assumingi=21◦ andPA=65◦ forthediskmajoraxis,the fittingfunctionforthespiralis Note.aMeasuredfromPA=90◦. sgn(r −r ) θ(r)=θ0+ h c spacein128×128cellsand(hc,δ)spacein100×100cellswith (cid:4)(cid:2) (cid:3)c (cid:5) (cid:2) (cid:3) (cid:6) equalspacinginthelinearscale.Theparameterspaceexplored, r 1+δ 1 1 r −γ andbest-fitparameters,areshowninTable1.Ourvalueforh × − c r 1+δ 1−γ +δ r issimilartothatderivedbyAndrewsetal.(2011).Theexternal (cid:2) c (cid:3)(cid:7) c perturberfitresultedinareducedχ2of0.68. − 1 − 1 . (4) Nowweconsiderthedegeneracyoftheparameterspace.The 1+δ 1−γ +δ degeneracyofparametersofthespiralposition(rc,θ0)andthose ofthediskparameter(hc,δ)areinvestigatedseparately.Theleft Here, as in SAO 206462 paper, The corotation point panelofFigure6showsthedegeneracyof(rc,θ0).Thebestfit (∼launching point of the spiral) is at (rc,θ0). The disk rota- to the SE spiral arm places the launching point of the spiral tion profile is Ω(r) ∝ r−γ and the disk sound speed profile outsideofbothwherewedetectthespiralarm,andataradius is c(r) ∝ r−δ. The disk aspect ratio (H/R) at the corotation exterior to the dust disk as seen in the submillimeter. It might radius is hc. Note that assuming H = c/Ω, β that appears in worth pointing out that there is a range of parameters where Equation(3)isrelatedtoγ andδbyβ =γ−δ.Wealsonotethat thecorotationradiusr isinsidethespiralarmsandwherethe c ifthedisktemperaturevariesasT ∝r−q,qandδarerelatedby values of δχ2 becomes small, although these parameters are δ = q/2sincetemperatureisproportionaltothesquareofthe outsidetherangeof99%confidence. soundspeedandthedisksoundspeedprofileisc(r)∝r−δ. In the right panel of Figure 6, we show the degeneracy in Note that the sign after the first θ0 in the right hand side of the (hc,δ) parameter space. For each fixed values of (hc,δ), Equation(4)isdifferentfromthatinMutoetal.(2012),dueto we looked for the set of (rc,θ0), which gives the minimum thecounterclockwiserotationoftheSAO206462disk. δχ2 value. Note that δ = 0 is a constant temperature, flared There are five fitting parameters: (rc,θ0,hc,γ,δ). Among diskandδ = 0.5istheconstantopeningangledisk.Although them, three (hc,γ,δ) are determined by the disk structure and thedegeneracyissignificant,wefavoradiskwitharatherflat, the two (rc,θ0) determine the location of the spiral feature. constantopeninganglegeometry.Inthiscase,thespiralcancast Assuming Keplerian rotation, γ = 1.5. In our study of SAO alongshadowovertheouterdiskrathereasily,ifthespiralhas 206462(Mutoetal.2012),thesoundspeedprofileδwasfixed, sufficient amplitude, as is observed in the H-band PI imagery. but we have varied this parameter as well. There is a range of Wealsonotethattheparametersforawarmerdisk(hc (cid:3) 0.1) values related to δ in the literature, ranging between 0.45 (the arefavored. ψ parameterinAndrewsetal.2011),0.19(qinChapillonetal. 2008),and0.05(theζ parameterinIsellaetal.2010).Wenote 3.7.EstimatingthePerturberMassfortheSESpiral thatforδ=0.5,theopeningangleofthediskisalmostconstant, in disagreement with our radial SB profile. We looked for the If we assume that a perturbing body excites the spiral arm, best-fitparametersintheleastχ2 sensebydividingthe(r ,θ ) themassoftheperturberlaunchingthespiraldensitywavescan c 0 9 TheAstrophysicalJournal,762:48(13pp),2013January1 Gradyetal. 250 300 300 -4 200 200 200 -5 100 100 s) s) a a m m C ( 0 C ( 0 E -6 E D D 150 -100 -100 -200 -7 -200 100 -300 -300 -300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300 -8 RA (mas) RA (mas) Figure7.Left:5σcontrastmapfromourSAMNACOobservations.Ourobservationsaresensitivetocompanions4–8magfainterthantheprimarystaratseparation of300masorless.Right:minimumdetectablecompanionmassmap.ContrastswereconvertedtominimumdetectablecompanionmassusingthemodelsofBaraffe etal.(1998,2002),andadoptinganageof3.7Myrandadistanceof279pc.Wearesensitivetocompanionsrightdowntothestar/browndwarfboundary,i.e., ∼80MJup.Fromtheseobservations,weconcludethatMWC758doesnothavealow-massstellarcompanionwithin300masoftheprimarystar. (Acolorversionofthisfigureisavailableintheonlinejournal.) be estimated independent of knowledge of where it might be imagery in our set of observations is the IRCS K(cid:3) data which located,iftherearedataindicatingtherelativediskscaleheight provide5σ contrastsof1.4×10−4 at0(cid:3).(cid:3)25,2.1×10−5 at0(cid:3).(cid:3)5, (h ),themassofthestar,andtheamplitudeofthespiralpattern 3.3×10−6 at1(cid:3)(cid:3),and1.12×10−6 at1(cid:3).(cid:3)55(seeFigure8). c asfollows: Adopting an age of 5 Myr and the COND models (Baraffe etal.2003),thesecontrastscorrespondto5σ detectionlimitsof Mp/M∗ =(PatternAmplitude)(hc)3. 15–20MJ at0(cid:3).(cid:3)25,8–10MJ at0(cid:3).(cid:3)5,and3–4MJ at1(cid:3)(cid:3),andnear2 M at1(cid:3).(cid:3)55fordistancesof200and279pcrespectively.These J Adopting1.8±0.2M(cid:7) forthestellarmass,hc =0.18from dataexcludebrowndwarf-masscompanionsexteriorto0(cid:3).(cid:3)5and thepatternfittingfortheSEspiral,andapatternamplitudeof areingeneralagreementwiththemassestimatesbasedonthe 0.5±0.2fromthesurfacebrightnesscontrastfortheSEarm,we spiralarmfitting.Interiorto0(cid:3).(cid:3)5,ourupperlimitsareconsistent findaperturbermassfortheSEpatternof∼5+3 M ,consistent withatmostlow-massbrowndwarfclosecompanionstoMWC −4 J withtheperturberbeingagiantplanet,butexcludingstellaror 758. Our mass limits are consistent with accretion continuing browndwarfmassobjects.Thismassestimateisalsoconsistent ontothestar,asobserved,andaspredictedfordiskswithJovian- withaccretioncontinuingontothestar. masscompanions(Riceetal.2006;Lubow&D’Angelo2006). 3.8.ContrastLimitsonCompanionsto 4.DISCUSSION MWC758WithinorNeartheDisk Confirmation that MWC 758 is a gapped disk. Historically, The 5σ contrast map from our SAM NACO observations transitional disks have been defined by the weakness of the is presented in Figure 7(a). At L(cid:3) band, SAM is sensitive IR SED near 10μm, compared with the excess at longer to companions at separations (cid:2)300 mas from the primary. wavelengths (and in some systems at shorter wavelengths), in AttainedcontrastsrangefromΔmag(L)=−4toΔmag(L)=−8. addition to the detection of a wide gap or cleared cavity in Contrasts were converted to minimum detectable companion submillimeter continuum aperture synthesis imagery. Figure 1 mass using the models of Baraffe et al. (1998, 2002), and demonstratesthepresenceofadipintheIRSEDnear10μm. adopting an age of 3.7 Myr and a distance of 279 pc. Similar Together with VLTI data indicating an inner dust belt (Isella limits are achieved for 5 Myr and a distance of 200 pc. With et al. 2008), and the central cavity and outer disk seen in theseassumptions,minimumdetectablemassimagesareshown millimeter interferometry (Isella et al. 2010), and thermal inFigure7(b).OurSAMobservationsaresensitivedowntovery emission(Marin˜asetal.2011),theSEDdataindicatethatMWC lowmassstellarcompanions(∼80M ):weconcludethatMWC 758isatransitionaldisk.Whencomparedwithothertransitional J 758isasinglestar.Thus,ourlimitsforcompanionswithinthe disks,thedepthofthe10μmdipissmaller,consistentwithless region occulted in the HiCIAO H-band PI data are at the low complete clearing of the few to 100 AU region. However, the endofthestellar/highendofthebrowndwarfrange. depletion of millimeter-sized grains (Andrews et al. 2011) is Figure 8(a) shows S/N maps for the K and K(cid:3) data sets. similartoSAO206462. s Within 3(cid:3)(cid:3) of the star, the only point-source object is the K = Spiral arms are not unique to SAO 206462. MWC 758 is 16.98 mag background star, which was detected at 37σ at K . the third Herbig Ae star to show spiral arms in the inner parts s K-band5σ contrastlimitsfortheK data(from0(cid:3).(cid:3)1–0(cid:3).(cid:3)25)and of the disk, extending from the region of the submillimeter s the K(cid:3) data (r (cid:3) 0(cid:3).(cid:3)25) are shown in Figure 9. The deepest cavity(Isellaetal.2010)intotheouterdisk.LikeSAO206462 10