ebook img

NASA Technical Reports Server (NTRS) 20130003227: Supersonic Pitch Damping Predictions of Blunt Entry Vehicles from Static CFD Solutions PDF

1.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20130003227: Supersonic Pitch Damping Predictions of Blunt Entry Vehicles from Static CFD Solutions

∗ a S B t C t mα φ C C V mα(BS) mα C C X mα(FB) mα C ∂Cm mα˙ ∂qd 2V C C α mo m d α o E γ f ￿ α o I λ yy M ξ BS q ρ ∗ φ ∞ ω ω ˙ o ω ¨ 1 ω 2 ≈ CO 2 V ∞ +C m +α V ∞ Forebody Backshell 1 d 1 I α¨ ρV2SdC α˙ ρV2SdC α=0 yy − 2 ∞ mα˙ 2V − 2 ∞ mα ∞ α¨+2ξα˙ +ω2α=0 o C qSd2 ξ = mα˙ − 4I V yy ∞ C qSd ω2 = mα o − I yy α=eλt λ2+2ξλ+ω2 eλt =0 λ2+2ξλ+ω2 =0 o ⇒ o ￿ ￿ ξ ξ C =C +C mα mα(FB) mα(BS) α¨(t)+ω2α(t t )+ω2α(t)=0 2 − φ 1 C qSd ω2 = mα(BS) 2 − I yy C qSd ω2 = mα(FB) 1 − I yy α(t tφ)=eλ(t−tφ) =eλte−λtφ − λ2+ω22e−λtφ +ω12 eλt =0 ⇒ λ2+ω22e−λtφ +ω12 =0 ￿ ￿ X2 X3 eX =1+X+ + +... 2! 3! λt φ λ2+ω2(1 λt )+ω2 =0 2 − φ 1 ω ω 2 1 λ2 ω2t λ+ω2 =0 − 2 φ o 2ξ = Cmα˙qSd2 = ω2t = Cmα(BS)qSdt − 2I V − 2 φ I φ yy yy ∞ 2C V t C = mα(BS) ∞ φ mα˙ − d λ = ξ iω 1,2 − ± ω ω = ω2 ξ2 = CmαqSd 2Cmα(BS)qSdt 2 o − ￿−￿ Iyy ￿−￿ Iyy φ￿ ￿ C t C mα φ mα(BS) ω C qSd/I ≈ − mα yy ￿ ω f = 2π φ 1 φ t = = φ 2π f ω ￿ ￿ C = 2Cmα(BS)V∞φ = 2Cmα(BS) 2Iyy φ mα˙ − dω − −Cmα ￿ρ∞Sd3 · ￿ M qSd BS damping −Iyy =2ξα˙ =−Cmα(BS)φ￿−CmαIyyα˙ C m(BS) C C mα(BS) m α=α +￿ o α˙ =￿˙ α¨ =￿¨ α ￿ o C C α+C =C ￿+C α +C m(bs) ≈ mα(bs) mo mα(bs) mα(bs) o mo 1 d 1 I ￿¨ ρV2SdC ￿˙ ρV2Sd[(C +C )￿+C α +C ]=0 yy − 2 ∞ mα˙ 2V − 2 ∞ mα(FB) mα(BS) mα o mo ∞ C mα˙ ￿ ￿¨(t) Cmα(bs)qSd￿(t t ) Cmα(FB)qSd￿(t)= CmαqSdα + CmoqSd φ o − I − − I I I yy yy yy yy ￿¨(t)+ω2￿(t)+ω2￿(t t )+ω2α +γ =0 1 2 − φ o o qSd γ = C −I mo yy ω 1 ￿ ￿ ￿=eλt+B+E ￿ ￿(t tφ)=eλte−λtφ +B+E − ￿ λ2 ω2 t λ+ω2 +ω2 B+ω2 E =ω2 α +γ − 2 |αo φ o |αo o |αo o |αo o |αo o B E B = α o − γ C E = = mo ω2 C o mα λ2 ω (α )2t λ+ω (α )2 =0 2 o φ o o − Cmα˙(αo)=−2ω2(αoq)S2Vd∞Iyytφ =−2Cmα(bs)d|αo V∞tφ C (α )= 2Cmα(BS) |αo 2Iyy φ mα˙ o − −Cmα ￿ρ∞Sd3 · ￿ ξ λ2+(2ξ ω2 t )λ+ω =0 − 2 |αo φ o |αo 2C V t C =C mα(BS) |αo ∞ φ mα˙(total) mα˙(Mod.Newtonian) − d 1.000d 0.732d 0.247d 0.217d 62.18° 43.4° 0.365d 40° 0.469d 9.3° 0.566d 0.333d 20° 20° R0.007d R0.025 R0.250d R0.250d 1.000d Viking MER d (m) 0.07 S (m2) 0.00385 I (kg m2) 1.55E 04 yy − − ρ (kg/m3 1.23 ∞ a(m/s) 348 C mα˙ CO 2 α α=0 ◦ α C m(bs) 2 4 6 8 11 12 14 16 18 21 26 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 15 ◦ φ = 15 ◦ ωd St= 2V ∞ St = 0.015 Teramoto St =0.016 St =0.011 MER,M=2 MER,M=3 St = 0.032 Viking,M=3 15 ◦

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.