ebook img

NASA Technical Reports Server (NTRS) 20120013693: Thermal Infrared Radiometric Calibration of the Entire Landsat 4, 5, and 7 Archive (1982-2010) PDF

0.62 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20120013693: Thermal Infrared Radiometric Calibration of the Entire Landsat 4, 5, and 7 Archive (1982-2010)

RSE-08186;NoofPages9 RemoteSensingofEnvironmentxxx(2012)xxx–xxx ContentslistsavailableatSciVerseScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010) John R. Schott a,⁎, Simon J. Hook b, Julia A. Barsi c, Brian L. Markham d, Jonathan Miller e, Francis P. Padula f, Nina G. Raqueno a aRochesterInstituteofTechnology,UnitedStates bJetPropulsionLab,CaliforniaInstituteofTechnology,NASA,UnitedStates cScienceSystemsandApplications,Inc.,NASA,UnitedStates dGFSC,NASA,UnitedStates eUSAF,UnitedStates fScienceApplicationsInternationalCorporation,UnitedStates a r t i c l e i n f o a b s t r a c t Articlehistory: Landsat'scontinuingrecordofthethermalstateoftheearth'ssurfacerepresentstheonlylongterm(1982 Received11March2011 tothepresent)globalrecordwithspatialscalesappropriateforhumanscalestudies(i.e.,tensofmeters). Receivedinrevisedform20June2011 Temperaturedrivesmanyofthephysicalandbiologicalprocessesthatimpacttheglobalandlocalenviron- Accepted18July2011 ment.Asourknowledgeof,andinterestin,theroleoftemperatureontheseprocesseshavegrown,the Availableonlinexxxx valueofLandsatdatatomonitortrendsandprocesshasalsogrown.ThevalueoftheLandsatthermaldata archivewillcontinuetogrowaswedevelopmoreeffectivewaystostudythelongtermprocessesandtrends Keywords: affectingtheplanet.However,inordertotakeproperadvantageofthethermaldata,weneedtobeable Infrared Radiometriccalibration to convert the data to surface temperatures. A critical step in this process is to have the entire archive Landsat completelyandconsistentlycalibratedintoabsoluteradiancesothatitcanbeatmosphericallycompensated Residualuncertainty tosurfaceleavingradianceandthentosurfaceradiometrictemperature.Thispaperaddressesthemethods andproceduresthathavebeenusedtoperformtheradiometriccalibrationoftheearliestsizablethermal datasetinthearchive(Landsat4data).Thecompletionofthiseffortalongwiththeupdatedcalibrationof theearlier(1985–1999)Landsat5data,alsoreportedhere,concludesacomprehensivecalibrationofthe Landsatthermalarchiveofdatafrom1982tothepresent. ©2012ElsevierInc.Allrightsreserved. 1.Introductionandsummary thermaldataarchivewillcontinuetogrowaswedevelopmoreeffec- tivewaystostudythelongtermprocessesandtrendsaffectingthe Landsat'scontinuingrecordofthethermalstateoftheearth'ssur- planet. However, in order to take proper advantage of the thermal facerepresentstheonlylongterm(1982tothepresent)globalrecord data,weneedtobeabletoconvertthedatatosurfacetemperatures. withspatialscalesappropriateforhumanscalestudies(i.e.,tensof Acriticalstepinthisprocessistohavetheentirearchivecompletely meters). Note, AVHRR data span from 1978 to the present and and consistently calibrated into absolute radiance so that it can be Modisdataspanfrom2000tothepresentwith1kmpixels.Temper- atmospherically compensated to surface leaving radiance and then aturedrivesmanyofthephysicalandbiologicalprocessesthatimpact to temperature. This paper addresses the methods and procedures theglobalandlocalenvironment.Asourknowledgeof,andinterest thathavebeenusedtoperformtheradiometriccalibrationoftheear- in,theroleoftemperatureontheseprocesseshasgrown,thevalue liestsizablethermaldatasetinthearchive(Landsat4data).Thecom- ofLandsatdatatomonitortrendsandprocesshasalsogrown.Areas pletionofthiseffortalongwiththeupdatedcalibrationoftheearlier ofstudythatuseLandsatderivedthermaldataincludelakehydrody- (1985–1999)Landsat5data,alsoreportedhere,concludesacompre- namicprocess(Schott,1986;Schottetal.,2001),monitoringevapo- hensivecalibrationoftheLandsatthermalarchiveofdatafrom1982 transpiration(Allenetal.,2008;Anderson&Kustas,2008),regional tothepresent.Thedifferentmethodologiesusedtoaccomplish the water resources (Thenkabail et al., 2009, 2010), and the impact of entire calibration/validation update are reviewed in Section 2. The localclimatetrends(Schneideretal.,2009).ThevalueoftheLandsat newresultsforLandsat4andearlyLandsat5aswellasthepreviously reportedresultsforLandsats5and7(Barsietal.,2003;Hooketal., 2004)areincludedinSection3.Inparticular,thissectionincludesa ⁎ Correspondingauthor.Tel.:+15854755170;fax:+15854755988. discussionofthesmallresidualuncertaintyinthedataarchiveasso- E-mailaddress:[email protected](J.R.Schott). ciated with each data set. This uncertainty in the collective archive 0034-4257/$–seefrontmatter©2012ElsevierInc.Allrightsreserved. doi:10.1016/j.rse.2011.07.022 Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022 2 J.R.Schottetal./RemoteSensingofEnvironmentxxx(2012)xxx–xxx of approximately 0.6K means that, with good knowledge of the whereDN andDN aretheaveragedigitalnumberfromasampleof BB S atmosphereandemissivity,surfacetemperaturescanberetrievedto imagedatatakenfromtheblackbodyandtheshutterrespectivelyand ^ ^ better than 0.7K (one sigma) using standard analytical approaches. LBBλandLSλarethespectralradianceinthepassbandassociatedwith Theseresultsmeanthatforthefirsttimeuserscanaccessandanalyze ablackbodyatthetemperatureoftheblackbody(BB)andshutter(S) theentire30yearrecordwithconfidenceintheradiometricintegrity respectively,i.e. ofthethermaldata. 2.Background L^BBλ¼∫L∫BBRλðRλðÞλdÞλdλ ð2Þ ThissectionwillintroducetheLandsatsensorsfromthethermal whereLBBλisthespectralradiancefromablackbodyattemperature infrared perspective and then briefly review the approaches that BB [W m−2 sr−1 μm−1] and R(λ) is the relative spectral response have been used over time for vicarious radiometric calibration of ofthesensorwithwavelengthλ. theLandsatthermalinstruments. Theactualsensoroutput(DN)canthenberelatedtotheradiance fromthescene(Lλ)as 2.1.Instruments DN¼gfðgiLλþbiÞþbf ð3Þ Landsat3wasthefirstLandsatsatellitetoincludeathermalsens- ingcapability.However,thethermalsensorfailedquiteearlyinthe wherebiisaninternalbiaslevelrelatedtotheshutterradiance(i.e. missionandnosignificantefforthasyetbeenexpendedtocharacter- shuttertemperature)andgfandbfaregainandbiastermsassociated ize its post launch performance. Therefore,this paper will focus on withmultiplicativeandadditiveeffectsnotcapturedbytheinternal the thermal sensors on the Landsat 4 Thematic Mapper (TM4), the calibrationprocess(e.g.transmissionlossesfromtheopticsforward Landsat5ThematicMapper(TM5)andtheLandsat7EnhancedThe- oftheshutterandadditiveradiancefromtheopticsforwardofthe maticMapperplus(ETM+).Fromthe thermal infraredperspective shutter).Notethattheactualequationsusedinthesoftwareforthe these three instruments were nearly identical with the exception different instruments vary slightly from instrument to instrument being that ETM+ had eight thermal detectors instead of the 4 on butcanbegeneralizedtotheformshowninEq.(3). the TM instruments resulting in a 60m ground instantaneous field Values for the remaining calibration coefficients (i.e. bi, gf and bf of view (GIFOV) instead of 120m for the TM instruments. Each in this representation) were determined from pre-launch laboratory instrumenthadasinglespectralbandnominallycoveringthe10.5– calibrationwithexternalradiancesources.Giventhesecalibrationcoef- 12.5μmspectralwindow(seeFig.1)withtwoeightbitgainsettings. ficients,thesensorreachingradiancecanbecalculatedfromtherecorded Fig.2showsagenericoptomechanicalschematicoftheinstruments DNforeachpixelbyinversionofEq.(3).Someofthesecoefficientsare highlightingtheelementsrelevanttothethermalband.Inparticular, dependent on the operating temperatures of the forward optics. In notethatontheTMinstrument4detectorsaresweptacrossthefield practice,coefficientsappropriatefortheexpectedoperatingtempera- ofview(FOV)forming4120mlinesofdatapersweepofthescan tures were calculated empirically pre-launch, however, no trusted mirror and that on ETM+ 8 detectors sweep 8 60m lines of data. fore-opticcalibrationmodelwasdevelopedwhichwouldallowadjust- Alsonotethatasthescanmirroristurningaround,acalibrationshut- ment of the coefficients based on the recorded temperatures of the terisinsertedintothelineofsight.Theshutterhasahighemissivity opticalelements.Thus,when significantchanges totheinstrument's surface with a monitored temperature and a mirror that reflects a operating temperatures occur (either planned or unplanned), or if cavityblackbodyintothelineofsight.Thus,astheshutterisswept thereisdegradationoftheforwardoptics,newvaluesforthecalibration into the line of sight, the detectors “see” first the known radiance coefficientsmustbedeterminedandappliedtothecalibrationequation fromtheshutterandthentheknownradiancefromtheblackbody. (Eq. 3) to maintain the calibration of the data. Because there is no This provides a two point calibration at the beginning and end of onboardsystemtoadequatelymonitoranyradiometricchangesinthe eachlineofdata.Thesetwopointsareusedtocalculatetheinternal forward optics, vicarious calibration procedures have been regularly gain(g)accordingto usedtoverifythestabilityofthecalibrationafterlaunchandthen(at i leastsince1999)tomonitorthecalibrationonorbit. DN −DN 2.2.Vicariouscalibrationapproaches gi¼ L^BBBλB−L^SλS ð1Þ Fourdifferentvicariouscalibrationtechniqueshavebeenusedto supportthecalibrationoftheLandsatthermalbands.Eachofthese willbeintroducedinthissection.Allofthemethodsusewaterasa target. Water is an ideal target because of its high thermal inertia, highemissivityandasaliquiditishardtomaintainthermalgradi- ents, so large regions of uniform temperature are common (Schott etal.,2004;Tonokaetal.,2005).Allofthemethodsalsousetheradi- ationpropagationcodeMODTRAN(Berketal.,1999)topropagatethe radiationtothesensor.Thegoverningradiometryequationsandthe useofMODTRANwillthereforebeintroducedinSection2.2.1before thediscussionofthedifferentmeasurementtechniques. 2.2.1.Atmosphericpropagation The governing equation for radiation propagation to the sensor canbeexpressedas L^λ¼∫½ðεðλÞLTλþð1−ε∫ðλRðÞλÞLÞddλλÞτðλÞþLuλ(cid:2)RðλÞdλ≅L^obsλτþL^uλ ð4Þ Fig.1.PlotsoftherelativespectralresponseoftheTM4,TM5andETM+instruments. Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022 J.R.Schottetal./RemoteSensingofEnvironmentxxx(2012)xxx–xxx 3 Fig.2.OptomechanicalschematicofTMandETM+instrumentsshowingthethermalfeatures. whereεistheemissivityofthetarget,LTλisthespectralblackbodyra- 2.2.2.Underflightapproach dianceassociatedwithatargetattemperatureT,Ldλisthespectral SchottandVolchok(1985)describethemethodthatwasusedin downwelled radiance, Luλ is thespectral upwelledradiance, τ(λ) is themid1980sinanattempttocalibrateTM4andTM5immediately thetransmissionfromthetargettothesensorandingeneralallthe after they were launched. The method involved flying a well- termsareafunctionofwavelength(λ).Inpracticetheemissivityof calibratedinfraredlinescannerunderneaththespacecraftandimag- waterisessentiallyconstantovertheLandsatbandpassat approxi- ing water targets simultaneously (i.e. ±30min) with the Landsat mately 0.986. In addition, the emissivity is independent of water acquisition(seeFig.3a).Theinfraredlinescannerwasspectrallyfil- condition and surface roughness for the Landsat fields of view tered to match the Landsat spectral response and calibrated such (Schottetal.,2004).NotethatLobsλistheeffectivespectralradiance thattheeffectivespectralradiancecouldbecalculatedforanypixel ^ intheLandsatbandobservedatthegroundorattheaircraftaltitude intheimage.ThisyieldsvaluesforLobsλwhichcanbepropagatedto for the aircraft underflight calibration approach, τ is the effective the spacecraft using MODTRAN and the righthand side of Eq. (4). transmission over the Landsat passband from the observation loca- tiontothesensorandLuλistheeffectivespectralupwelledradiance inthepassbandforthepathbetweentheobservationandthesensor. Theseeffectivepassbandvaluesareusedwhensurfaceoraerialradio- metricmeasurementsorestimatesofthetargetareavailable. MODTRANcanbeusedtosolveforallofthetermsinEq.(4)if theatmospherehasbeencharacterizedandthesurfacetemperature andemissivityaresupplied.Inpractice,fortheRochesterInstitute of Technology (RIT) analysis (Sections 2.2.3 and 2.2.5), the atmo- sphereischaracterizedusingtheclosestavailableradiosondedata typically adjusted in the boundary layer (0 to approximately 0.5km)forobservedsurfaceconditions(temperatureandrelative humidity). This surface correction accounts for variation in the lowest layers of the atmosphere that may exist because of spatial andtemporaloffsetsbetweenthetargetlocationandsampletime andtheradiosonde/upper-air-samplinglocationandtime(Padula, et al., 2011). The Jet Propulsion Laboratory (JPL) analysis uses an atmospheric profile from the nearest atmospheric reanalysis grid point(seeSection2.2.4). In order to take advantage of Eq. (4) to predict the expected sensorreachingradiancewemusteitherknowthetemperatureand emissivityofthetarget(leftformofEq.4)ortheradiancefromthe target (right form of Eq. 4). In the next subsections we will briefly Fig. 3. Illustration of methods used to measure surface temperature/radiance. a. reviewfourmethodsthathavebeenusedtomeasurethetempera- Aircraftapproach—Section2.2.2,b.surfacekinetictemperatureapproach—Section2.2.3, ture or radiance (recall that emissivity is known and constant for c.surfacetemperatureapproachusingradiometers—Section2.2.4andd.NOAAbuoy theLandsatobservationconditionsoverwaterbodies). approach—Section2.2.5. Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022 4 J.R.Schottetal./RemoteSensingofEnvironmentxxx(2012)xxx–xxx Becausetheaircraftwastypicallyflownat3–5kmabovegroundlevel theradiometersarenotfilteredtomatchtheLandsatspectralpass- the observed radiance incorporated the largest and most variable band, the surface temperature corrected for the cool skin effect is effectsduetotheatmosphere,therebyreducinganyerrorsduetoless computedusingacombinationoftheobservedradiometrictemper- thanperfectatmosphericpropagation.MODTRANwasonlyusedtocor- ature, the near surface contact temperature and the downwelled rect for the atmosphere above the aircraft. Any small error in these radiancecomputedfromMODTRAN(Hooketal.,2003;Hooketal., smallcorrectionsresultsinverysmallerrorsinthepredictedsensor 2004). The data are acquired every 2 to 5min and transmitted to reachingradiance. JPLforprocessing.Theoutputfromtheprocessingisanestimateof Inaddition,becausetheaerialsystemhasamuchsmallerground thesurfacekinetictemperaturewhichcanbecombinedwiththesur- sample distance (GSD) than the satellite, many pixels of a uniform faceemissivityandMODTRANgeneratedradiativetransferparameters ^ regionof thewatercanbeaveragedtoestimate Lobsλ.This reduces togeneratethepredictedsensorreachingradiance(seeEq.4).The noise in the estimate by the square root of the number of samples atmospheric profile data used for input to MODTRAN come from ^ (typically25to100)resultinginverypreciseestimatesofLobsλ.The the nearest National Center for Environmental Prediction (NCEP) uncertaintyofthismethodistypicallylimitedonlybythecalibration reanalysispointinterpolatedtotheLandsatacquisitiontime(Hook uncertaintyoftheaerialinstrument(seeSection3.4). etal.,2007). Theobviousdrawbackstothisapproacharethecostandlogistical Regrettablynoneofthemethodsdiscussedsofarcouldbeusedto difficulties associated with acquiring significant amounts of aerial assess temporal gaps in the calibration of the Landsat instruments datacoincidentwiththespacecraftaswellasdifficultiesassociated duringaperiodwhenNASAwasnotfundingLandsatthermalband with maintaining the calibration knowledge of the airborne instru- vicarious calibration programs (1985–1999). Thus, a method was ment. On the positive side, one can often fly over different water neededtofillthislongknowledgegap. regionswithsomerangeoftemperaturesandtherebyobtainseveral calibration points from a single successful flight. Nevertheless, this method is difficult to justify operationally and so other methods 2.2.5.Estimationofsurfacetemperaturefromsubsurfacemeasurements mustbeconsidered. byNOAAbuoys The National Oceanic and Atmospheric Administration (NOAA) 2.2.3.Surfacekinetictemperaturemeasurementapproach operates a fleet of moored buoys in U.S. coastal waters and in the Toaugment,orinlieuoftheaerialapproach,surfacekinetictem- Great Lakes. These buoys record hourly subsurface temperatures peraturemeasurementscanbeemployed.Toavoidnearsurfacegra- (0.6mor1.5m)aswellasweatherdataandarchiveitintheNational dients this approach should be limited to well mixed waters and DataBuoyCenter(NDBC).The archiveincludes buoyrecordsspan- measurements should be taken very close to the surface. RIT uses ningtheentireperiodofinterest(1982–present).Temperaturefrom thermistorsattachedundersmallblocksofStyrofoamthatarefloated buoys has been used previously to validate atmospheric retrieval onthesurfaceonthewindwardsideoftheboat(seeFig.3b).Thetar- algorithms and instrument calibration for the Advanced Very High getshaveusuallybeenthewatersofLakeErieorLakeOntariowhich Resolution Radiometer (AVHRR) (Emery et al., 2001; Walton et al., haveverylongfetch(i.e.alongstretchofopenwaterintheupwind 1998). Padula and Schott (2010) describe an improved technique direction) and are rarely still. This method has been extensively for estimation of surface temperature from the subsurface buoy used by RIT since 2001 to support calibration of ETM+ and TM5 temperatures.Themethodutilizesthe24hoftemperaturemeasure- (Barsietal.,2003).Thetemperaturesobtainedbythismethodalong mentsbeforethesatelliteoverpassalongwithsurfacemeteorological with the emissivity of water and the radiative transfer values from datatocomputesurfacetemperaturefromthesubsurfacevalues.The MODTRAN allow the use of Eq. (4) to predict the sensor reaching method accounts for the diurnal temperature cycle, the temporal radiance. While this method has a slightly higher error associated phase shift in the diurnal cycle with depth, thermal gradients with witheachindividualmeasurement(seeSection3.4)thantheaerial depththatareafunctionofwindspeedandfinallythecoolskineffect. approach,thelargernumberofpointsthatcanbeacquiredtendsto Thederivedsurfacetemperaturewasthenusedalongwithemissivity compensateintheoverallinstrumentcalibrationuncertainty. values,localweatherdataandradiosondedataasinputtoMODTRAN A limitation of the surface temperature approach is that the topredictsensorreachingradianceasdescribedinEq.(4).Bycompar- temperaturemeasuredisveryslightlybelowthesurfaceandthein- ison to well-calibrated ETM+ and TM5 data post 1999, the sensor frared sensors measure the true surface temperature i.e., the skin reachingradiancevaluespredictedbythismethodwereshowntobe temperature.Undermostcircumstancewhencalibrationdatawould ingoodagreement(meanbiasdifferenceslessthan0.2K)withthepre- be acquired (clear skies), radiational surface (top microns) cooling dictions made using the JPL and RIT surface temperature/radiance lowersthesurfacetemperatureslightly(uptoafewtenthsKelvin) methodsdescribedabove.Therefore,thistechniquewasthesourceof whencomparedtothetemperatureimmediatelybelowthesurface datafortheperiod1982–1999andisthebasisfortheTM4andearly (fewmm).Generallyskintemperatureiscoolerforwellmixedwa- TM5calibrationresults. ters,however,ifthewaterisstillthentheskintemperaturecanbe warmerthanthetemperatureimmediatelybelowthesurface.Surface radiometerscanbeusedtoavoidthislimitation. 3.Results 2.2.4.Surfacetemperaturemeasurementapproachusingfieldradiometers Thissectionreviewshowthemethodsdescribedintheprevious Since 1999, NASA's Jet Propulsion Lab (JPL) has operated four sectionhavebeenusedtocalibratethecompletearchiveofTMand instrumentedbuoysinLakeTahoeCA/NV,andsince2008asimilarly ETM+thermaldata.Theformationofthecalibrationteam,thatled instrumentedplatformintheSaltonSeaCA.Note,theSaltonSeasite to the effort to assess and update the calibration of the archive, wasaddedtoallowacquisitionofhighertemperature/radiancetar- beganwiththelaunchofLandsat7.Therefore,wehadthediscussion getstoallowbetterassessmentofsmallgainerrorsinthesatellites beginthereandworkbackintimethroughtheinstruments. being calibrated. The instrumentation on each platform includes Because Padula and Schott (2010) and Barsi et al. (2003) show nearsurfacecontactthermistors,nearnadirviewingcalibratedradi- thatallthemethodsintroducedintheprevioussectionpredictsensor ometers and weather stations. The JPL suite of field sensors has reaching radiance values that are in agreement with each other to been used to perform thermal calibration assessment of a number within the errors in the methodology (see Section 3.4), all of the ofsensorsincludingMODISandASTERandthereforeusesradiome- methods will be considered as trusted unbiased sources of sensor terswithawidepassband(Hooketal.,2003,2005,2007).Because reachingradiance. Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022 J.R.Schottetal./RemoteSensingofEnvironmentxxx(2012)xxx–xxx 5 3.1.Landsat7—ETM+ 3.2.LandsatTM5results AtlaunchRITandJPLwereindependentlychargedwithassessing SchottandVolchok(1985)andSchottetal.(1987),usingtheRIT thethermalcalibrationofLandsat7.RITusedaerialunderflightsand aerialtechnique,obtainedasmallnumberofTM5calibrationpoints surfacetemperaturemeasurementsontheGreatLakes,andJPLused shortly after launch in 1985. They reported a small bias of 0.58K, the automated sites at Lake Tahoe and later at the Salton Sea. whichwaswithintheapproximately1Kuncertaintyofthevicarious Bothteamsquicklyidentifiedasignificantconstantbiasinthedata instrumentationavailableintheearly1980s,andnoadjustmentwas of 3.1 (W m−2 sr−1 μm−1) or 0.31K at 300K, where bias will be recommended. There was no significant effort to evaluate the TM5 expressedasradianceobservedbytheinstrumentminusatsensorra- calibrationfrom1985untiltheRITandJPLteamsweretaskedtoin- diancepredictedfromthegroundtruthmeasurements.Thebiaswas vestigateitinapproximately2001. calculatedastheweightedaverageofalloftheindividualestimates Byusingitsautomatedsites,theJPLteamwasabletogobackto availableatthetime.Theweightswereproportionaltooneoverthe 1999whentheywereinitialized.In2006,basedonceagainonthecom- standard error about the mean bias estimate obtained by each of binedJPLautomatedsitedataandRITsurfacetemperaturedata,itwas the teams. The bias correction was implemented by USGS EROS on determinedthatasmallbiaserrorof−0.092[W m−2sr−1 μm−1]or 12/20/2000,andlikeallothercorrectionsdiscussedhereitwasap- −0.68Kat300Kwaspresentin alloftheavailabledatafrom1999 pliedtoallimpacteddatasuchthatanydataprocessedafter12/20/ on.On4/1/2007USGS,basedontherecommendationoftheLandsat 2000 should be unbiased, including all data acquired before that calibrationteam,implementedacorrectiontothedataprocessingto date.Notethisbiaswaseventuallydeterminedtobetheresultofan removethebiasfromalldataprocessedafterthatdateapplicableto error in coefficients in the processing system and not due to any imageryacquiredafter 4/1/1999. Because noRITorJPLcalibration changestotheinstrumentonlaunch. datawereavailablefortheperiod1985–1999itwasnotclearhow, The calibration team continued to monitor the ETM+ thermal orif,tocorrectdatapriortoApril1999sonochangewasmadeto performanceaddingmoredataeachyearwithanemphasisonhigh theearlierdataatthattime. andlowtemperaturevaluesasthelargeamountofdatabegantoindi- O'Donnelletal.(2002)describeanefforttoevaluatethe(1985–1999) catethataslighterroringainhadbeenpresentsincelaunch.Because calibrationgapusingcoldwatertemperatures,fromthecenterofthe theerrorwassmallitcouldonlybeidentifiedwithconfidencewhen GreatLakesinwinter,asgroundtruth.Theassessmentindicatedthat significantamountsofwarmandcolddatawereaddedtothedataset. therewasnodiscernablecalibrationerroroverthe1985–1999period. In 2009 with data ranging from 6.3 to 9.6 [W m−2 sr−1 μm−1] or However,thiswaslimitedbyuncertaintyintheknowledgeofthelake 275to305Kitwasdeterminedthata5.8%erroringainexisted.The temperatures to 1 to 2K uncertainty in apparent temperature at the gainerrorisexpressedas sensor. Intheearly2000sRIThadbeguntoinvestigatewhetherdatafrom ! theNOAAbuoyscouldbeusedtoaccuratelydeterminesurfacetem- Sg¼ 1−ΔΔL^L^Saλtλ ⋅100 ð5Þ upseirnagtudrea.taPafdroumla aandfewSchboutoty(s20(1G0re)adteLsacrkiebseaanpdaiorffoftheexpDeerlimmaernvtas Peninsula) propagated to sensor reaching radiance. They first com- paredthepredictedradiancetothecalibratedradianceobservedby whereΔL^Sat=ΔL^λistheslopeofthesatelliteobservedspectralradiance theETM+sensorfor32pointsfrom2000to2007.Thegainandbias versus thepredictedradiance values for all ofthe calibration points. valuesestimatedfromthebuoydata(nearunityandzero,respectively, Fig.4showsthecalibrationdataforthetwoteamsthatindicatedthe asexpected)wereshowntobestatisticallythesameasthevaluesesti- need for a small gain correction. Note that for most of the radiance matedusingthe acceptedRITand JPL measurementtechniques.The rangethecorrectioncausesonlysmallchangesintemperature.Howev- second experiment compared the buoy-based calibration results for er,forhottargets(300K)thechangecouldbeaslargeas0.8K.Thegain TM5totheresultsobtainedbythesurfacetemperatureapproachfor correction wasimplemented in the USGS processing system on 1/1/ thetimeperiodafterfieldcampaignshadresumed(1999).Theresults 2010. weresimilarto theETM+results leading to theconclusion thatthe BasedontheearlysuccessoftheETM+vicariouscalibrationcam- NOAA buoy archive could be used to provide a source of “ground paigns, NASA tasked the calibration team to assess the radiometric truth”forcalibrationofthedataduringthe1985–1999gap. calibrationoftheTM5instrument. PadulaandSchott(2010)reportthatusing7buoys,198calibra- tionpointswereobtainedspanningtheperiod1984–2007.Thesere- sultssuggestedthatasmallbutstatisticallysignificantgainerrorhad been present in the data since launch and a bias shift of approxi- mately −0.69K occurred sometime in the late nineties (consistent withtheresultsreportedaboveforthe1999+data).Byaddingaddi- tionalbuoys,moredatawereaddedinanattempttobetterestimate the date when the bias change occurred (see Fig. 5). In addition, significant amounts of new TM5 data from all the methodologies werecombinedtoestimatethecalibrationerrorfortheentireTM5 dataset.Usingthecompositedatasetitwasdeterminedthatabias shift of −0.11 [W m−2 sr−1 μm−1] occurred in the early part of 1997(nosourcefortheshiftinbiashasbeendetermined)andthat a small gain error of 5.0% was present in all of the TM5 data. This smalldeviationfromaunityslopeinthepredictedtoobservedradi- anceplotshadbeensuggestedbytheearlierdata,however,theaddi- tion of a larger volume and range of data increased the statistical confidencetoapointwherecorrectionwaswarranted.Basedonthe recommendationofthecalibrationteam,USGSimplementedchanges totheTM5dataprocessingtoimplementthesecalibrationupdates Fig.4.PlotofpredictedversusobservedatsensorradianceforETM+showingtheneed forasmallgaincorrection. fordataprocessedafter4/1/2010. Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022 6 J.R.Schottetal./RemoteSensingofEnvironmentxxx(2012)xxx–xxx Fig.5.TM5temporalplotshowingbiasestimatesbydateaswellasthemeanbiaslinefortheperiodspreandpost1/1/1997. 3.3.LandsatTM4results corrector(SLC)).Thisdiscussionleadsustoanassessmentoftheun- certaintyremaininginthecalibrationofthedatanowcomingfrom TheTM4instrumentwaslaunchedin1982andoperatedfornearly theUSGSarchive. ayearbeforebeingputinon-orbitstoragebecauseofsolararrayand direct downlink failures. It was returned to operation three years 3.4.Residualuncertaintyinthecalibrateddatabase later, using the Tracking and Data Relay Satellite System (TDRSS) to downlinkdata,andsuccessfullyoperatedforanother6years.During Byimplementingthecalibrationadjustmentsdescribedabove,all itsshortearlylifenorigorousvalidationofthecalibrationwasaccom- knownsystematicerrorsassociatedwiththeLandsatthermalbands plishednorwasavalidationattemptedwhenitwasreturnedtoopera- shouldbereducedtoinsignificantlevelscomparedtotheprecision tion. Based on the successful use of the NOAA buoys in filling the errorsassociatedwiththecalibrationproceduresandtheinstrument calibrationgapintheTM5calibrationhistory,asimilareffortwasun- noise.Thus,intheorytheoveralluncertaintyintheradiancevalues dertaken for TM4. The problem with the TM4 database was that it generatedfromthedatainthearchivecanbeexpressedas wasmoresparselypopulatedbecauseoftheshortperiodofinitialuse (cid:2) andsomewhatlimiteduseovertheU.S.afterthestorageperiod. S ¼ S2þS2(cid:2)12 ð6Þ Todealwiththisissue,asignificantlylargersetofbuoysandcor- L p i responding radiosonde sites were used to find simultaneous buoy, radiosonde and clear TM4 image dates. In all, 17 buoy sites were whereS istheuncertaintyinthe“calibrated”data,S istheuncer- L p used in the TM4 calibration resulting in 9 calibration points from taintyintheradiancepredictedatthesensorthroughthevariouscal- 1982to1983and19pointsfrom1987to1992.Theresultsshowed ibration procedures (assumed to be unbiased (i.e. accurate) at this that there was no significant bias error apparent in the early TM4 point)andS isthenoiseintheinstrumentmeasurements(note:allun- i databutthatalargeconsistentbiasof−0.43[W m−2 sr−1 μm−1] certaintiesareexpressedas1standarddeviationvalues).Assumingall or−3.3Kat300Kwaspresentpoststorage(seeFig.6). Thepoststoragedatashowednosignificantgainerror(lessthan 0.5%) so all the error was attributed to and corrected with a bias adjustmenttobeimplementedin2011andappliedtoallTM4post storage data processed after that date. In analyzing the TM4 data thevariabilityofthebiasestimatesprestoragewasobservedtobe significantlylarger(factoroftwo)thanpoststorageandalsosignifi- cantly larger than the variability in the bias estimates observed for TM5orETM+.Inanefforttounderstand/explainthesourceofthis variabilityandthebiaschangepoststorage,theinstrumentoperating temperatures were analyzed by plotting some telemetry records of the forward optical element temperatures available from the NASA LandsatImageAssessmentSystem(IAS)(seeFig.6).Thesedataindi- catetwothings.Thefirstisthedramaticchangeinoperatingtemper- aturepoststoragewhichisalikelysourceofthebiasshift(recallthat noacceptedforeopticsradiationmodelexistssonomodel-basedtest canberuntoassessthisassumption)andthesecondistherelatively largevariationinoperatingtemperaturesearlyinthelifetime(i.e.pre storage)whichisalikelysourceofthelargerthanexpectedbiasvar- iation pre storage (note: this large variation in temperature is only Fig.6.AtimeseriesofTM4biasestimatesandcorrespondingtemperaturesofthescan partiallycapturedinthesmallsampleshownhereforthescanline linecorrector(SLC)duringthesameperiodfromtheIAS. Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022 J.R.Schottetal./RemoteSensingofEnvironmentxxx(2012)xxx–xxx 7 theradianceuncertaintiesareshowninequivalentapparenttemper- ature(typicallyat300Ktomakethemmoreintuitive). TheS valuesinTable1aremeasuredvaluesforeachinstrument i andinallcasestheyshownosignificantchangeoverthelifetimeof theinstruments.However,thevaluesforTM4and5dochangewithin anoutgassingcyclebecausetheinternalgaindecaysasicebuildsup onthefiltersresultinginworseerrorduetoelectronic/quantization noise as the transmission decreases. The uncertainties in the pre- dicted radiances (S ) for the NOAA buoy and surface temperature p methods(RIT)aredrawnfromtheresultsofanextensiveerrorprop- agation study that cascades the uncertainties in the temperature measurementswiththeuncertaintiesintemperaturepropagationto the surface skin temperature, uncertainties in the meteorological and radiosonde measurements and uncertainties in the radiation propagation models (Padula et al., 2011). The uncertainties in the predictedradiancesfortheaerialtechniquearedrawnfromasimilar Fig.7.Plotofradiancepredictedatthesensorversusradiancemeasuredatthesensor analysis reported in Schott et al. (2004). Finally the errors in pre- forTM5dataforthetwotimeperiods(preandpost1/1/1997).TheRMSdeviation aboutthebestfitlinesprovidesanestimateoftheresidualuncertaintyaboutthe dicted radiance for the surface radiometer/near surface thermistor datainthearchive. technique(JPL)areestimatedfromsurfacetemperatureuncertainty estimatesdrawnfromHooketal.(2007)andestimatesoftheradia- tionpropagationuncertaintiesbasedontheautomateduseofunfil- systematic variation in the instrument signals is accounted for teredNCEPdata.Note,allthedataleadingtotheestimatesofS in L through the onboard calibration processes, S should just be the Table1areassumingsinglepixelmeasurements.Ifmultipleuniform i standarddeviationofthesignalaboutthemeanwhenobservinga points are averaged, the instrument noise can be significantly re- constantflux(e.g.fromtheonboardblackbody).Theoveralluncer- ducedsuchthatS shouldapproachS . L p tainty(S)canalsobemeasuredempiricallybycalculatingtheroot AnalysisofTable1indicatesthattheS andS valuesareingen- L L RMS meansquareerror(S )intheobservedradiancevaluesfromthe eralagreementwiththeexceptionoftheearlyTM4results.Solving RMS bestfitorfinalcalibrationlinegeneratedfromthecalibrationdata for the magnitude of the uncertainty unaccounted for by the error (see for example, Fig. 7). This empirical measurement is the best modelas estimateoftheresidualuncertaintyinthedatafromthearchive.Fur- (cid:3) (cid:4) thermoreanydifferencebetween themodeleduncertainty(Eq. 6) S ¼ S2 −S2 12 ð7Þ andtheobserveduncertainty(S )suggeststhatourestimatesof u RMS L RMS S orS areinerrororthatthereareunaccountedsourcesofvariabil- p i ityintheprocess. yieldsavalueof0.86K.Asindicated,abovewebelievethatmuchof Table1includesestimatesoftheexpecteduncertainty:insensor thisunaccountedvariabilityisduetothelargevariationsininstru- reachingradianceforeachmethodology(S ),duetonoiseineachin- mentoperatingtemperaturesduringitsfirst yearofoperation.It is p strument(S),aswellasthemodeled(S)andmeasured(S )esti- alsopossiblethatthemuchsmallervariabilityinoperatingtempera- i L RMS mates of the overall uncertainty. In some cases where significantly turesforTM4afterstorageandfortheotherinstrumentsisstillasig- differentmethodswereusedforcalibrationordifferentuncertainties nificant contributor to the smaller unaccounted uncertainties from measured,multiple results are shown per instrument. Note that all theseinstruments. Table1 ResidualuncertaintiesinthedatafromtheUSGSLandsatarchiveexpressedinapparenttemperature[K].Valuesinparenthesisarethenumberofpointsincludedintheanalysis. Uncertainlyinpredicted Instrument Modeleduncertainty Observedvariabilityabout Observedvariability radianceSp noiseSi insensedradianceSL bestfitcalibrationlineSRMS unaccounteduncertaintySu Aerial(A) 0.31 Surfacetemperature(RIT) 0.34 Surfaceradiometersand 0.35 thermistors(JPL) Subsurfacetemperature 0.41 (NOAAbuoys) Landsat7(composite)(324) 0.21a 0.41 0.48b 0.25 RIT(51) 0.40 0.32 JPL(234) 0.41 0.48 NOAAbuoys(39) 0.46 0.59 Landsat5 0.17–0.3 1984–1998NOAAbuoy 0.44–0.51 0.53b 0.24 (102) 1997–2010composite(285) 0.41–0.48 0.66b 0.49 RIT(29) 0.38–0.45 0.48 JPL(149) 0.39–0.46 0.73 NOAAbuoy(107) 0.44–0.51 0.60 Landsat4 0.22–0.32 1982–2983NOAAbuoy(9) 0.47–0.52 0.98b 0.86 1987–1992NOAAbuoy(19) 0.47–0.52 0.43b a NEΔΤforthelowgainis(0.26K). b Thesearethebestvaluestousefortheexpecteduncertaintyintheradiancevalues(i.e.theyarebasedontheaverageofallavailablepointsfortherespectivedataera). Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022 8 J.R.Schottetal./RemoteSensingofEnvironmentxxx(2012)xxx–xxx 4.Impactonusercommunity could provide ongoing monitoring of Landsats5 and 7. In addition, the use of many NOAA buoys augmented with the JPL buoy data With the implementation by USGS of the Landsat 4 results couldquicklyprovidemanydatapointsforcalibrationofLDCMim- reported here, all of the Landsat 4, 5 and 7 thermal data produced mediately after launch. To take advantage of the opportunity, RIT fromthearchiveafterApril1,2011shouldbefreeoffirstordersys- plans to develop tools to use the NOAA buoys in an operational tematic errors. This, for the first time, will allow users to process mode. anyofthesedatawithconfidenceintheirintegrity.Thesedatanow Finally with the demonstration reported here, that the Landsat represent one of the longest well-calibrated records of the thermal thermal archive is calibrated in radiance to acceptable levels, the historyoftheearth'ssurface.Thiswillallowthesciencecommunity opportunityexiststoconsiderdevelopmentoflandsurfacetempera- tostudythetemporaltrendsinthermalbehaviorofrelativelysmall ture(LST)mapsfromtheLandsatradiancedata.USGSNASAGoddard, landscapefeatures(Schneideretal.,2009).Coupledwiththeparallel JPL,andRITareinitiatingaproofofconceptefforttodemonstratethat work to radiometrically calibrate the reflective data in the Landsat LST maps can be operationally produced from the Landsat thermal archive(Markham&Helder,2012),thiscalibrationeffortallowsthe archive. Landsatarchivetotrulyliveuptoitsgoaltoserveasthelong-term recordoftheplanetathumanscales. References From a quantitative standpoint, the residual uncertainty in the thermal data is approximately 0.6K when theradiance uncertainty Allen,R.G.,Hendricks,J.M.H.,Toll,D.,Anderson,M.,Kustas,W.,&Kleissl,J.(2008). is expressed as a change in apparent temperature at 300K (see Fromhighoverhead-ETmeasurementviaremotesensing.SouthwestHydrology, Table1foradetailedbreakdownbyinstrumentandtimeperiod).If 7,30–32. Anderson,M.C.,&Kustas,W.P.(2008).Thermalremotesensingofdroughtandevapo- a userweretoconverttheradiancevaluestosurfacetemperatures transpiration.EOSTransactions,89(26),233. using similar procedures (MODTRAN, clear atmospheric conditions Barsi,J.A.,Schott,J.R.,Palluconi,F.D.,Helder,D.L.,Markham,B.L.,&Chander,G. and known emissivities) to those used in the calibration process, (2003).LandsatTMandETM+thermalbandcalibration.CanadianJournalofRemote Sensing,29(2),141–153. thisshouldresultinonlyslightlylargeruncertaintiesintheestimated Berk,A.,Anderson,G.P.,Bernstein,L.S.,Acharya,P.K.,Dothe,H.,Mathew,M.W.,etal. temperaturesofapproximately0.7K(Padula,2008). (1999).MODTRAN4radiativetransfermodelingforatmosphericcorrection.Optical Finally,whiletheresultsreportedhereindicatethattheLandsat spectroscopictechniquesandinstrumentationforatmosphericandspaceresearchIII archiveiswellcalibratedwithquitesmallresidualuncertainty,they (pp.348–353).:SPIE. Emery,W.J.,Baldwin,D.,Schlussel,P.,&Reynolds,R.(2001).Accuracyofinsitusea alsosuggestthattherearesmallsourcesofuncertaintythatarenot surfacetemperaturesusedtocalibrateinfraredsatellitemeasurements.Journalof accountedforbytheerrormodels.Ifthesesourcescanbeidentified GeophysicalResearch,106,2387–2405. andaresystematicratherthanrandomitmaybepossibletodrive Hook,S.J.,Chander,G.,Barsi,J.A.,Alley,R.E.,Abtahi,A.,Palluconi,B.L.,etal.(2004).In- flightvalidationandrecoveryofwatersurfacetemperaturewithLandsat-5thermal theerrorsdownevenfurther(tolessthan0.5K).Atpresentseveral infrareddatausinganautomatedhigh-altitudelakevalidationsiteatLakeTahoe. possiblesourcesforthisunaccountedvariabilityareunderevalua- TransactionsonGeoscienceandRemoteSensing,42(12),2767–2776. tion.Themostintriguingsystematicsourceisvariationinobserved Hook,S.J.,Clodius,W.B.,Balick,L.,Alley,R.E.,Abtahi,A.,Richards,R.C.,etal.(2005). In-flightvalidationofmidandthermalinfrareddatafromtheMultispectralThermal radianceduetochangesintheoperatingtemperatureoftheinstru- Imager(MTI)usinganautomatedhighaltitudevalidationsiteatLakeTahoeCA/NV, ment.Asatisfactorymodelforthissystematicprocessmightserve USA.IEEEonTransactionsGeoscienceandRemoteSensing,43,1991–1999. toreducetherelativelysmallerrorreportedhereevenfurther. Hook,S.J.,Prata,A.J.,Alley,R.E.,Abtahi,A.,Richards,R.C.,Schladow,S.G.,etal.(2003). RetrievaloflakebulkandskintemperaturesusingAlong-TrackScanningRadiometer (ATSR-2)data:AcasestudyusingLakeTahoe,California.JournalofAtmosphericand 5.Lessonslearnedandfuturedirections OceanicTechnology,20(4),534–548. Hook,S.J.,Vaughan,R.G.,Tonooka,H.,&Schladow,S.G.(2007).Absoluteradiometric in-flightvalidationofmidinfraredandthermalinfrareddatafromASTERand Having summarized here the calibration/validation of three de- MODISontheterraspacecraftusingtheLakeTahoe,CA/NV,USA.Transactionson cadesofLandsatthermalinstrumentdata,itseemsappropriatetore- GeoscienceandRemoteSensing,45(6),1798–1807. viewsomelessonslearned.First,havingtwoindependentteamswas Markham, B., & Helder, D. (2012). Forty-year calibrated record of earth-surface invaluable for quickly identifying issues and confirming problems reflectedradiancefromLandsat:Areview.RemoteSensingofEnvironment,Landsat specialedition. withthespacecraft.Whentheteam'sresultsweren'tinagreement, O'Donnell,E.M.,Schott,J.R.,&Raqueño,N.G.(2002June).CalibrationhistoryofLandsat it prompted a thorough review of procedures that could identify a thermaldata.ProceedingsatIGARSS,IEEE,Vol.1.(pp.27–29)Toronto,Canada. processingissue.Moreimportantly,whenbothteamswereinagree- Padula,F.P.,Schott,J.R.,Barsi,J.A.,Raqueno,N.G.,&Hook,S.J.(2011).Calibrationof Landsat5thermalinfraredchannel:Updatedcalibrationhistoryandassessmentof mentthatthedatawereoutofcalibrationbythesameamount,then theerrorsassociatedwiththemethodology.CanadianJournalofRemoteSensing, aquickfixcouldbeimplemented.Second,itisimportanttomain- 36(No.5). tainacontinuousmonitoringofthecalibrationoftheinstruments. Padula,F.P.,&Schott,J.R.(2010).Historiccalibrationofthethermalinfraredband of Landsat-5 TM. Photogrammetric Engineering and Remote Sensing, 76(11), IntheLandsatcase,Landsats4and5appearednominalatlaunch, 1225–1238. but7neededanimmediatecalibrationupdate.However,thecali- Padula,F.P.HistoricThermalCalibrationofLandsat-5TMthroughanImprovedPhysics bration of 4 and 5, which would have appeared stable, changed BasedApproach.Master'sthesis,RochesterInstituteofTechnology,2008. abruptly during their lifetimes. Furthermore, it took a significant Schneider,P.,Hook,S.J.,Radocinski,R.G.,Corlett,G.K.,Hulley,G.C.,Schladow,S.G., etal.(2009).Satelliteobservationsindicaterapidwarmingtrendforlakesin amount of data over a wide temperature range to establish with CaliforniaandNevada.GeophysicalResearchLetters,36. confidencethatsmallbutsignificantgaincorrectionswereneeded Schott,J.R.(1986).Theroleofremotelysenseddatainstudiesofthethermalbar.Remote SensingReviews,2,341–358. in Landsats 5 and 7. Third, at the permanent monitoring sites, it Schott,J.R.,Barsi,J.A.,Nordgren,B.L.,Raqueño,N.G.,&deAlwis,D.(2001).Calibration wasfoundthatacquiringdayandnightdatawasusefulasthenight- ofLandsatthermaldataandapplicationtowaterresourcestudies.RemoteSensing timedatashowedreduceduncertainty.Thisismostlikelyduetothe ofEnvironment,78,108–117. greaterthermalstabilityofthelakesatnight.Finally,operatingthe Schott,J.R.,Brown,S.D.,&Barsi,J.A.(2004).Thermalremotesensinginlandsurface processes:Calibrationofthermalinfrared(TIR)sensors (2ndedition).CRC-Press. instrumentinaconsistentfashionovertime(i.e.,avoidingradical Schott,J.R.,&Volchok,W.J.(1985September).ThematicDapperthermalinfrared changes in duty cycle) could reduce uncertainty in the data and calibration.PhotogrammetricEngineeringandRemoteSensing,51(9),1351–1357. possibly calibration changes (see, in particular, the discussion of Schott,J.R.,Volchok,W.J.,&Biegel,J.D.(1987January).Radiometricanalysisofthe longwaveinfraredchanneloftheThematicMapperonLandsat4and5,prepared Landsat4TM). forNASA/GoddardSpaceFlightCenter,Greenbelt,MD,ReportRIT/DIRS86/87-51- ThesuccessfuluseoftheNOAAbuoydataforcalibrationofearly 112. TM5dataand,particularly,theveryconsistentresultsreportedhere Thenkabail,P.S.,Biradar,C.M.,Noojipady,P.,Dheeravath,V.,Li,Y.,Velpuri,M.,etal. (2009).GlobalIrrigatedAreaMap(GIAM),derivedfromremotesensing,forthe for TM4 when many buoys were employed, suggests that many end of the last millenniums. International Journal of Remote Sensing, 30(14), buoysusedinanoperationalmode(i.e.,inasemi-automatedfashion) 3679–3733. Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022 J.R.Schottetal./RemoteSensingofEnvironmentxxx(2012)xxx–xxx 9 Thenkabail,P.S.,Hanjra,M.,Dheeravath,V.,&Gumma,M.(2010).Aholisticviewof Walton,C.,Pichel,W.,Sapper,J.,&May,D.(1998).Thedevelopmentandoperational globalcroplandsandtheirwateruseforensuringglobalfoodsecurityinthe21st applicationofnonlinearalgorithmsforthemeasurementofseasurfacetemperatures centurythroughadvancedremotesensingandnon-remotesensingapproaches. with the NOAA polar-orbiting environmental satellites. Journal of Geophysical RemoteSensing,2(1),211–261. Research,103,999–1028. Tonoka,H.,Palluconi,F.D.,Hook,S.J.,&Matsunagi,T.(2005).VicariouscalibrationofASTER thermalinfraredbands.TransactionsonGeoscienceandRemoteSensing,2733–2746. Pleasecitethisarticleas:Schott,J.R.,etal.,ThermalinfraredradiometriccalibrationoftheentireLandsat4,5,and7archive(1982–2010), RemoteSensingofEnvironment(2012),doi:10.1016/j.rse.2011.07.022

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.