ebook img

NASA Technical Reports Server (NTRS) 20120013339: Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20120013339: Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime

Doing science with eLISA: Astrophysics and cosmology in the millihertz regime PauAmaro-Seoane1,13,SofianeAoudia1,StanislavBabak1,PierreBinétruy2,EmanueleBerti3,4, AlejandroBohé5,ChiaraCaprini6,MonicaColpi7,NeilJ.Cornish8,KarstenDanzmann1, 2 1Jean-FrançoisDufaux2,JonathanGair9,OliverJennrich10,PhilippeJetzer11,AntoineKlein11,8,Ryan 0 N.Lang12,AlbertoLobo13,TysonLittenberg14,15,SeanT.McWilliams16,GijsNelemans17,18,19, 2AntoinePetiteau2,1,EdwardK.Porter2,BernardF.Schutz1,AlbertoSesana1,RobinStebbins20,Tim n Sumner21,MicheleVallisneri22,StefanoVitale23,MartaVolonteri24,25,andHenryWard26 a J 7 1 ] O C . h p - o 1MaxPlanckInstitutfürGravitationsphysik(Albert-Einstein-Institut),Germany r 2APC,Univ.ParisDiderot,CNRS/IN2P3,CEA/Irfu,Obs.deParis,SorbonneParisCité,France st 3DepartmentofPhysicsandAstronomy,TheUniversityofMississippi,University,MS38677,USA a 4DivisionofPhysics,Mathematics,andAstronomy,CaliforniaInstituteofTechnology,PasadenaCA91125,USA [ 5UPMC-CNRS,UMR7095,Institutd’AstrophysiquedeParis,F-75014,Paris,France 6InstitutdePhysiqueThéorique,CEA,IPhT,CNRS,URA2306,F-91191Gif/YvetteCedex,France 1 7UniversityofMilanoBicocca,Milano,I-20100,Italy v 8DepartmentofPhysics,MontanaStateUniversity,Bozeman,MT59717,USA 1 9InstituteofAstronomy,UniversityofCambridge,MadingleyRoad,Cambridge,CB30HA,UK 2 10ESA,Keplerlaan1,2200AGNoordwijk,TheNetherlands 6 11InstituteofTheoreticalPhysicsUniversityofZürich,Winterthurerstr.190,8057ZürichSwitzerland 3 12WashingtonUniversityinSt.Louis,OneBrookingsDrive,St.Louis,MO63130,USA . 13InstitutdeCiènciesdel’Espai(CSIC-IEEC),CampusUAB,TorreC-5,parells,2naplanta,ES-08193,Bellaterra,Barcelona,Spain 1 14MarylandCenterforFundamentalPhysics,DepartmentofPhysics,UniversityofMaryland,CollegePark,MD20742 0 15GravitationalAstrophysicsLaboratory,NASAGoddardSpaceflightCenter,8800GreenbeltRd.,Greenbelt,MD20771,USA 2 16DepartmentofPhysics,PrincetonUniversity,Princeton,NJ08544,USA 1 17DepartmentofAstrophysics,RadboudUniversityNijmegen,TheNetherlands : 18InstituteforAstronomy,KULeuven,Celestijnenlaan200D,3001Leuven,Belgium v 19Nikhef,SciencePark105,1098XGAmsterdam,TheNetherlands i X 20NASALiason,NASAGSFC,USA 21ImperialCollege,UK ar 22JetPropulsionLaboratory,CaliforniaInst.ofTechnology,Pasadena,CA91109,USA 23UniversityofTrento,DepartmentofPhysics,I38050Povo,Trento,Italy 24Institutd’AstrophysiquedeParis,98bisBoulevardArago,75014Paris,France 25AstronomyDepartment,UniversityofMichigan,AnnArbor,MI48109,USA 26InstituteforGravitationalResearch,DepartmentofPhysics&AstronomyKelvinBuilding,UniversityofGlasgow,Glasgow eLISA:Astrophysicsandcosmologyinthemillihertzregime Contents 1 Introduction 5 2 Descriptionofthemission 6 3 Ultra-CompactBinaries 9 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Instrumentverification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 eLISAasaworkhorse:thousandsofnewbinaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 TypeIasupernovaeandsub-luminoussupernovae . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 StudyingtheastrophysicsofcompactbinariesusingeLISA . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 StudiesofgalacticstructurewitheLISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 AstrophysicalBlackHoles 20 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Blackholesintherealmoftheobservations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Galaxymergersandblackholecoalescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 Dual,binaryandrecoilingAGNinthecosmiclandscape . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Seedblackholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Evolvingmassiveblackholespinsviacoalescenceandaccretionevents . . . . . . . . . . . . . . . . . . 29 7 Cosmologicalmassiveblackholemergerrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8 Massiveblackholebinariesasgravitationalwavessources:whatcaneLISAdiscover? . . . . . . . . . . 32 9 ReconstructingthemassiveblackholecosmichistorythrougheLISAobservations . . . . . . . . . . . . 37 5 Extrememassratioinspiralsandastrophysicsofdensestellarsystems 40 1 TheGalacticCentre:auniquelaboratory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 ExtremeMassRatioInspiralsingalacticnuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Aprobeofgalacticdynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4 Aprobeofthemassesofstellarandmassiveblackholes . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 DetectingextrememassratioinspiralswitheLISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6 EstimatingtheeventratesofextrememassratioinspiralsforeLISA . . . . . . . . . . . . . . . . . . . . 45 7 Blackholecoalescenceeventsinstarclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 ConfrontingGeneralRelativitywithPrecisionMeasurements ofStrongGravity 46 1 Settingthestage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2of81 eLISA:Astrophysicsandcosmologyinthemillihertzregime 2 Testingstrong-fieldgravity:Theinspiral,merger,andringdownofmassiveblackholebinaries . . . . . . 48 3 Extrememassratioinspirals:precisionprobesofKerrspacetime . . . . . . . . . . . . . . . . . . . . . . 50 4 Intermediatemassratiobinaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5 Themassofthegraviton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7 Cosmology 54 1 NewphysicsandtheearlyUniverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2 CosmologicalmeasurementswitheLISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 8 Conclusions:scienceandobservationalrequirements 60 3of81 eLISA:Astrophysicsandcosmologyinthemillihertzregime Abstract ThisdocumentintroducestheexcitingandfundamentallynewscienceandastronomythattheEuropeanNewGravitational WaveObservatory(NGO)mission(derivedfromthepreviousLISAproposal)willdeliver. Themission(whichwewill refer to by its informal name “eLISA”) will survey for the first time the low-frequency gravitational wave band (about 0.1 mHz to 1 Hz), with sufficient sensitivity to detect interesting individual astrophysical sources out to z = 15. The measurementsdescribedherewilladdressthebasicscientificgoalsthathavebeencapturedinESA’s“NewGravitational Wave Observatory Science Requirements Document”; they are presented here so that the wider scientific community can have access to them. The eLISA mission will discover and study a variety of cosmic events and systems with high sensitivity: coalescences of massive black holes binaries, brought together by galaxy mergers; mergers of earlier, less-massive black holes during the epoch of hierarchical galaxy and black-hole growth; stellar-mass black holes and compactstarsinorbitsjustskimmingthehorizonsofmassiveblackholesingalacticnucleiofthepresentera;extremely compactwhitedwarfbinariesinourGalaxy,arichsourceofinformationaboutbinaryevolutionandaboutfutureType Iasupernovae;andpossiblymostinterestingofall,theuncertainandunpredictedsources,forexamplerelicsofinflation andofthesymmetry-breakingepochdirectlyaftertheBigBang. eLISA’smeasurementswillallowdetailedstudiesof these signals with high signal-to-noise ratio, addressing most of the key scientific questions raised by ESA’s Cosmic Visionprogrammeintheareasofastrophysicsandcosmology. Theywillalsoprovidestringenttestsofgeneralrelativity inthestrong-fielddynamicalregime, whichcannotbeprobedinanyotherway. Thisdocumentnotonlydescribesthe sciencebutalsogivesanoverviewonthemissiondesignandorbits. LISA’sheritageintheeLISAdesignwillbeclearto thosefamiliarwiththepreviousproposal,aswillitsincorporationofkeyelementsofhardwarefromtheLISAPathfinder mission, scheduled for launch by ESA in 2014. But eLISA is fundamentally a new mission, one that will pioneer the completelynewscienceoflow-frequencygravitationalwaveastronomy. 4of81 eLISA:Astrophysicsandcosmologyinthemillihertzregime 1 Introduction OurviewoftheUniversehaschangeddramaticallyoverthepastcentury.LessthanahundredyearsagoourownGalaxy, theMilkyWay,wasbelievedtobeourownisland-Universe. Thediscoveryofhundredsofbilliongalaxieslikeourown, andofbillionluminoussourcessuchasQuasiStellarObjects(QSOs),changedourperceptionofthecosmiclandscape. NewastronomicalobjectswerediscoveredwiththeadventofradioandX-rayAstronomy.Relativisticbinariescomposed ofcompactstars(suchaswhitedwarfsorneutronstars)andstellar-massblackholesareamongthesesourcesofelectro- magneticradiation. Accordingtotheaccretionparadigm, supermassiveblackholesatgalacticcentresarethesimplest explanationforthepoweremittedbydistant,luminousQSOs,butaconclusivetestofthishypothesisisstilllacking. The remarkable discovery of the recession of galaxies and of the fossil microwave background radiation, almost contemporarytothediscoveryofX-raysources, hasfurtherledtotheemergenceofacosmologicalparadigm, theBig Bang,thathasrevolutionizedourdescriptionoftheUniverse. WenowknowthatourUniversehadabeginningandthat itsluminouscomponents(inparticular,galaxiesandQSOs)evolvejointlyandinconcordancewiththeevolutionofthe underlyingdarkmatterpermeatingtheUniverse. AccordingtoGeneralRelativity,blackholesandcompactbinariesareexpectedtobepowerfulsourcesofgravitational waves. Ratherthan“seeing”electromagneticradiation,asallofastronomyhasdoneuntilpresent,eLISAwill“hear”the vibrationsofthefabricofspacetimeitself,emittedcoherentlybymacroscopicbodies.Studyingthesesignalswillconvey richnewinformationaboutthebehaviour,thestructureandthehistoryoftheUniverse,anditwillclarifyseveralissues infundamentalphysics. Gravitationalwavestravelundisturbedthroughspacetime,andwhenobservedtheyofferanewanduniquelypowerful waytoprobetheverydistantUniverse,fromtheextremelyearlyBigBangtotheearlyepochofgalaxyandblackhole seedformation. Thismayallowustoaddressdeepquestions. WhatpoweredtheBigBang? Howdidgalaxiesandtheir blackholesformandevolve?Whatisthestructureofspacetimearoundthemassiveobjectswebelievetobeblackholes? WhatisthenatureofthemysteriousdarkmatteranddarkenergyacceleratingtheexpansionoftheUniverse? eLISAisaspace-basedmissiondesignedtomeasuregravitationalradiationoverabroadbandatfrequenciesranging between f ∼ 0.1 mHz and f ∼ 1 Hz. In this frequency band the Universe is richly populated by strong sources of gravitationalwaves. Forbinarysystemsthecharacteristicgravitational-wavefrequency f istwicetheKeplerianorbital frequency,whichinturnisproportionalto(M/a3)1/2,whereMisthetotalmassofthebinaryandaitssemi-majoraxis.In theeLISAfrequencyband,gravitationalwavesareproducedbyclosebinariesofstellar-massobjectswithorbitalperiods ofafewtoseveralminutes. MassiveblackholebinarieswithM ∼104M(cid:3)−107M(cid:3)andmassratio0.01(cid:2)q(cid:2)1onthe vergeofcoalescinghaveorbitalfrequenciessweepingtohigherandhighervalues,untilthebinaryseparationabecomesas smallasthescaleoftheeventhorizonGM/c2.Finally,eLISAcouldobservebinariescomprisingamassiveblackholeand astellar-masscompactobject(e.g.,astellar-massblackhole)skimmingthehorizonofthelargerblackholebeforebeing captured: these systems are commonly referred to as extreme mass ratio inspirals (EMRIs). Furthermore, a stochastic backgroundintheeLISAfrequencybandcanbegeneratedbylessconventionalsources,suchasphasetransitionsinthe veryearlyUniverseand/orcosmicstrings. ThisnoteisacomprehensivesurveyoftheeLISAsciencecase.Weconsideralltherelevantastrophysicalandcosmo- logicalgravitationalwavesourcesandexploreeLISAdetectionperformancesintermsofsensitivity,SNRdistributions, andparameterestimation. InSection2wewillbrieflydescribethemissionconceptandthebasicdesignoftheinstrument,introducingtheeLISA sensitivitycurvethatwillbeusedthroughoutthestudy. OursurveyoftheeLISAsciencecasewillstartinSection3byexploringthenearestobservablesourcesofgravitational waves, i.e. compact stellar-mass binaries in the Milky Way. eLISA will study the gravitational wave signals from thousands of stellar-mass close binaries in the Galaxy and will give information on the extreme endpoints of stellar evolution. eLISAwillprovidedistancesanddetailedorbitalandmassparametersforhundredsofthesebinaries. This isarichtroveofinformationformappingandreconstructingthehistoryofstarsintheGalaxy,anditcanrevealdetails ofthetidalandnon-gravitationalinfluencesonthebinaryevolutionassociatedwiththeinternalphysicsofthecompact remnantsthemselves. Thenwewillsummarizethescienceobjectivesthatarerelevantfortheastrophysicsofblackholes(Section4).Current electromagneticobservationsareprobingonlythetipoftheblackholemassdistributionintheUniverse,targetingblack holeswithlargemasses,between107M(cid:3) and109M(cid:3). Conversely,eLISAwillbeabletodetectthegravitationalwaves 5of81 eLISA:Astrophysicsandcosmologyinthemillihertzregime emittedbyblackholebinarieswithtotalmass(inthesourcerestframe)assmallas104M(cid:3) andupto107M(cid:3),outtoa redshiftaslargeasz∼20. eLISAwilldetectfiducialsourcesouttoredshiftz∼10,andsoitwillexplorealmostallthe mass-redshiftparameterspacerelevantforaddressingscientificquestionsontheevolutionoftheblackholepopulation. Redshiftedmasseswillbemeasuredtoanunprecedentedaccuracy,uptothe0.1–1%level,whereasabsoluteerrorsinthe spindeterminationareexpectedtobeintherange0.01to0.1,allowingustoreconstructthecosmicevolutionofmassive blackholes.BlackholesareexpectedtotransitintothemassintervaltowhicheLISAissensitivealongthecourseoftheir cosmicevolution. Thus,eLISAwillmapandmarkthelociwheregalaxiesformandcluster,usingblackholesasclean tracersoftheirassembly. eLISAwillalsobringanewrevolutionaryperspectivetothestudyofgalacticnuclei,asshowninSection5. Orbits ofstellarobjectscapturedbythemassiveblackholeatthegalacticcentreevolvebygravitationalradiation. Bycapturing theirsignal, eLISAwillofferthedeepestviewofnearbygalacticnuclei, exploringregionsthatareinvisibletoelectro- magnetictechniques.eLISAwillprobethedynamicsofcompactobjectsinthespace-timeofaKerrblackhole,providing informationonthespacedensityofthoseobjects. In Section 6 we address key questions concerning the nature of spacetime and gravity. GR has been extensively testedintheweakfieldregime,bothinthesolarsystemandviabinarypulsarobservations. eLISAwillprovideaunique opportunity to probe GR in the strong field limit. eLISA will observe the coalescence of massive black hole binaries movingatspeedsclosetothespeedoflight,andenableustotestthedynamicsofcurvedspacetimewhengravitational fieldsarestrong. Byobservingalargenumberoforbitalcyclesduringthelastfewyearsoftheinspiralofastellarmass objectintoamassiveblackhole,eLISAwillallowustomeasurepreciselytheparametersofthecentralobject(including its quadrupole moment) in the near Universe. Any deviations in the orbital motion from GR predictions will leave an imprint in the gravitational wave phase. Thus, measurements of the mass, spin and quadrupole moment of the central object will allow us to check the Kerr nature of the central massive object, and to test for the first time the black hole hypothesis. Lastly,aswedescribeinSection7,eLISAwillprobenewphysicsandcosmologywithgravitationalwaves,andsearch forunforeseensourcesofgravitationalwaves. TheeLISAfrequencybandintherelativisticearlyUniversecorresponds to horizon scales where phase transitions or extra dimensions may have caused catastrophic, explosive bubble growth andefficientgravitationalwaveproduction.eLISAwillbecapableofdetectingastochasticbackgroundfromsuchevents fromabout100GeVtoabout1000TeV,ifgravitationalwavesintheeLISAbandwereproducedwithsufficientefficiency. Inclosingthenote, wewillpresentasummaryofthescienceobjectivesoftheeLISAmission. Wesummarizethe keytheoreticalandobservationalgoalsoftheeLISAsciencecaseinSection8. There,inaschematicbullet-pointform, weenumeratethescientificgoalsrelatedtoeachclassofgravitationalwavesourcesandtheobservationalperformance ofeLISAinachievingsuchgoals.ThiscouldserveasacompactsummaryofeLISAscience,aswellasareferencepoint forotherspace-basedgravitationalwavedetectorproposals. 2 Description of the mission eLISAisaEuropean-ledvariantofLISAthatcanbelaunchedbefore2022.Thebasicprincipleofgravitationalwavede- tectionforeLISAisthesameasforLISA:itisalaserinterferometerdesignedtodetectthepassageofagravitationalwave bymeasuringthetime-varyingchangesofopticalpathlengthbetweenfree-fallingmasses.Manydesignandtechnological developmentsweremigratedfromLISA,howevertherearesomesubstantialdifferences. ThetwomeasurementarmsaredefinedbythreespacecraftorbitingtheSuninatriangularconfiguration(seefigure1). AkeyfeatureoftheeLISAconceptisasetofthreeorbitsthatmaintainanear-equilateraltriangularformationwithan armlength L = 109m, without the need for station-keeping. Depending on the initial conditions of the spacecraft, the formationcanbekeptinanalmostconstantdistancetotheEarthorbeallowedtoslowlydriftawaytoabout70×109m, theouterlimitforcommunicationpurposes.AveryattractivefeatureoftheeLISAorbitsisthealmostconstantsun-angle of 30 degrees with respect to the normal to the top of the spacecraft, thereby resulting in an extremely stable thermal environment,minimizingthethermaldisturbancesonthespacecraft. Oneofthethreespacecraftservesasthe“centralhub”anddefinestheapexofa“V”.Twoother,simplerspacecraft arepositionedattheendsoftheV-shapedconstellation. Thecentralspacecrafthousestwofree-falling“testmasses”that definetheendpointofthetwointerferometerarms. Theotherspacecraftcontainonetestmasseach,definingtwomore endpoints(seefigure2). Eachspacecraftaccommodatestheinterferometryequipmentformeasuringchangesinthearm 6of81 eLISA:Astrophysicsandcosmologyinthemillihertzregime Earth 1 × 109 m 20° 60° 1 AU Sun Figure1: TheeLISAorbits: TheconstellationisshowntrailingtheEarthbyabout20degrees(or5×1010km)andis inclinedby60degreeswithrespecttotheecliptic. Thetrailinganglewillvaryoverthecourseofthemissionduration from10degreesto25degrees.TheseparationbetweenthespacecraftisL=1×109m. length. For practical reasons, this measurement is broken up into three distinct parts (see figure 3): the measurement betweenthespacecrafts,i.e. betweentheopticalbenchesthatarefixedtoeachspacecraft,andthemeasurementbetween eachofthetestmassesanditsrespectiveopticalbench. Thosemeasurementsarerecombinedinawaythatallowsusto reconstructthedistancebetween thetestmasseswhichisinsensitive tothenoiseinthepositionof thespacecraftwith respecttothetestmasses. AsecondkeyfeatureoftheeLISAconceptisthatthetestmassesareprotectedfromdisturbancesasmuchaspossible byacarefuldesignandthe"drag-free"operation. Toestablishthedrag-freeoperation, ahousingaroundthetestmass sensestherelativepositionoftestmassandspacecraft,andacontrolsystemcommandsthespacecraftthrusterstofollow the free-falling mass. Drag-free operation reduces the time-varying disturbances to the test masses caused by force gradientsarisinginaspacecraftthatismovingwithrespecttothetestmasses. Therequirementsonthepowerspectral densityoftheresidualaccelerationofthetestmassis (cid:2) (cid:3) 10−4Hz Sx,acc(f)=2.13×10−29 1+ m2s−4Hz−1 (1) f or (cid:2) (cid:3) 10−4Hz Hz Sx,acc(f)=1.37×10−32 1+ f f4m2Hz−1, (2) where f isthefrequency. Thethirdkeyfeature,thedistancemeasuringsystem,isacontinuousinterferometriclaserrangingscheme,similarto thatusedforradar-trackingofspacecraft.Thedirectreflectionoflaserlight,suchasinanormalMichelsoninterferometer, isnotfeasibleduetothelargedistancebetweenthespacecrafts. Therefore, lasersattheendsofeacharmoperateina "transponder" mode. A laser beam is sent out from the central spacecraft to an end spacecraft. The laser in the end spacecraftisthenphase-lockedtotheincomingbeamthusreturningahigh-powerphasereplica. Thereturnedbeamis received by the central spacecraft and its phase is in turn compared to the phase of the local laser. A similar scheme isemployedforthesecondarm. Inaddition,thephasesofthetwolasersservingthetwoarmsarecomparedwithinthe centralspacecraft.Thecombinedsetofphasemeasurementstogetherwithsomeauxiliarymodulationallowstodetermine therelativeopticalpathchangeswithsimultaneoussuppressionofthelaserfrequencynoiseandclocknoisebelowthe secondary (acceleration and displacement) noise. The displacement noise has two components: the shot noise, with a requiredpowerspectraldensity 7of81 eLISA:Astrophysicsandcosmologyinthemillihertzregime locallasercomparison PLL endspacecraft1 sciencemeasurement Laser Testmasses cornerspacecraft endspacecraft2 Figure 2: The constellation of the three eLISA spacecraft constitutes the science instrument. The central spacecraft harborstwosend/receivelaserrangingterminals,whiletheendspacecrafthasoneeach. Thelaserintheendspacecraft isphase-lockedtotheincominglaserlight. Thebluedotsindicatewhereinterferometricmeasurementsaretaken. The sketchleavesoutthetestmassinterferometersforclarity. MeasurementS/Ctotestmass MeasurementS/Ctotestmass S/CtoS/Cmeasurement Figure 3: Partition of the eLISA measurement. Each measurement between two test masses is broken up into three different measurements: two between the respective test mass and the spacecraft and one between the two spacecraft (S/C).AsthenoiseinthemeasurementisdominatedbytheshotnoiseintheS/C-S/Cmeasurement,thenoisepenaltyfor thepartitioningofthemeasurementisnegligible. Theblue(solid)dotsindicatewheretheinterferometricmeasurements aretaken. 8of81 eLISA:Astrophysicsandcosmologyinthemillihertzregime 1e-17 Simulation of LISA Simulation of ELISA 1e-18 Analytical approximation ) 2 1e-19 1/ -z H ( 1e-20 y t i v i it 1e-21 s n e s n i 1e-22 a r t s 1e-23 1e-24 1e-05 0.0001 0.001 0.01 0.1 1 Frequency (Hz) Figure4: SensitivityofeLISA(averagedoverallskylocationsandpolarisations)versusfrequency: thesolidredcurve isobtainednumericallyusingthesimulatorLISACode2.0(Petiteauetal.,2008)andthedashedbluecurveistheanalytic approximationbasedonequation5.Forareference,wealsodepictthesensitivitycurveofLISA(dotted,greencurve). Sx,sn(f)=5.25×10−23 m2Hz−1 (3) andtheother(combined)measurementnoisewitharequiredpowerspectraldensity Sx,omn(f)=6.28×10−23 m2Hz−1. (4) According to the requirements, eLISA achieves the strain noise amplitude spe(cid:5)ctral density (often called sensitivity) showedinfigure4whichcanbeanalyticallyapproximateash˜(f)=2δ(cid:4)L(f)/L= S(f),where: ⎛ ⎛ ⎞ ⎞ S(f)= 20 4Sx,acc(f)+Sx,sn(f)+Sx,omn(f)⎜⎜⎜⎜⎜⎜⎜⎝1+⎜⎜⎜⎜⎜⎜⎝ f(cid:9) (cid:10)⎟⎟⎟⎟⎟⎟⎠2⎟⎟⎟⎟⎟⎟⎟⎠ , (5) 3 L2 0.41 c 2L Thisallowstode√tectastrainofabout3.7×10−24 ina2-yearmeasurementwithanSNRof1(displacementsensitivity of 11×10−12m/ Hz over a path length of 1×109m). The feasible reduction of disturbances on test masses and the displacementsensitivitiesachievablebythelaserrangingsystemyieldausefulmeasurementfrequencybandwidthfrom 3×10−5Hzto1Hz(therequirementis10−4Hzto1Hz;thegoalis3×10−5Hzto1Hz). 3 Ultra-Compact Binaries 1 Overview The most numerous sources in the low-frequency gravitational wave band are ultra-compact binary stars: double stars in which two compact objects, such as white dwarfs and neutron stars, orbit each other with short periods. They have 9of81 eLISA:Astrophysicsandcosmologyinthemillihertzregime Figure5: Artistimpressionofadetacheddoublewhitedwarfbinary(left)andaninteractingbinaryinwhichaneutron staraccretesmaterialfromawhitedwarfdonor.TheEarthisshowntosetthescale.CourtesyBinSimbyRobHynes. relativelyweakgravitationalwavesignalsincomparisontomassiveblackholebinaries,butarenumerousintheGalaxy andeventheSolarneighbourhood. Severalthousandsystemsareexpectedtobedetectedindividually,withtheirparametersdeterminedtohighprecision, whilethecombinedsignalsofthemillionsofcompactbinariesintheeLISAbandwillformaforegroundsignal. This isincontrasttolessthan50ultra-compactbinariesknowntoday. Thenumberofdetectionswillallowfordetailedstudy oftheentireWDbinarypopulation. Inparticular,themostnumeroussourcesaredoublewhitedwarfs,whichareoneof thecandidateprogenitorsoftypeIasupernovaeandrelatedpeculiarsupernovae. eLISAwilldeterminethemergerrate ofthesebinaries. Thedetailedknowledgeoftheultra-compactbinarypopulationalsoconstrainstheformationofthese binariesandthusmanyprecedingphasesinbinaryevolution. Thishasastrongbearingonourunderstandingofmany high-energy phenomena in the Universe, such as supernova explosions, gamma-ray bursts and X-ray sources, as they sharepartsoftheevolutionhistoryofthebinariesdetectablebyeLISA. AsmanyoftheGalacticsourcesareratherclose(withinafewkpc),theywillbedetectableathighSNR(oftenlarger than50),allowingdetailedstudiesofindividualbinaries. Formanyhundreds,thefrequencyandphaseevolutioncanbe studied,enablingthestudyofthephysicsoftidesandmasstransferinunprecedenteddetail. Theextremeconditionsof shortorbitalperiods,stronggravitationalfieldsandhighmass-transferratesareuniqueinastrophysics. The information provided by eLISA will be different from what can be deduced by electromagnetic observations. In particular, eLISA’s capability to determine distances and inclinations, as well as the fact that the gravitational wave signals are unaffected by interstellar dust, provide significant advantages over other detection techniques. Compared to Gaia, eLISA will observe a quite different population. Gravitational wave observations allow us to determine the distancestobinariesthatarerightintheGalacticcentreratherthantothoseclosetotheSun.Thedistancedeterminations willmakeitpossibletomapthedistributionofmanycompactbinariesintheGalaxy,providinganewmethodtostudy Galacticstructure. Theinclinationdeterminationsallowthestudyofbinaryformationbycomparingtheaverageangular momentumofthebinariestothatoftheGalaxy. Electromagneticobservationsandgravitationalwaveobservationsare complementarytooneanother;dedicatedcomplementaryobservingprogramsaswellaspublicdatareleaseswillallow simultaneousandfollow-upelectromagneticobservationsofbinariesidentifiedbyeLISA. Anumberofguaranteeddetectablesourcesareknowntodatefromelectromagneticobservations. Someofthesecan beusedtoverifyinstrumentperformancebylookingforagravitationalsignalattwicetheorbitalperiodandcomparingthe signalwithexpectations. Inaddition,onceeLISAhasdetectedseveralnearbybinariesanddeterminedtheirskyposition theycanbeobservedoptically,thusprovidinganadditionalquantitativecheckoninstrumentsensitivity. 10of81

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.