ebook img

NASA Technical Reports Server (NTRS) 20120013322: All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index PDF

2.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20120013322: All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index

Mon.Not.R.Astron.Soc.000,1–17(2011) Printed4January2012 (MNLATEXstylefilev2.2) All-sky Observational Evidence for An Inverse Correlation between Dust Temperature and Emissivity Spectral Index 1(cid:2) 2 1 Z. Liang, D. J. Fixsen and B. Gold 1DepartmentofPhysics&Astronomy,TheJohnsHopkinsUniversity,3400N.CharlesSt.,Baltimore,MD,21218,USA 2UniversityofMaryland,GoddardSpaceFlightCenter,MD,20771,USA 1 1 0 4January2012 2 c e ABSTRACT D We show that a one-component variable-emissivity-spectral-index model (the free-α 0 model)providesmorephysicallymotivatedestimatesofdusttemperatureattheGalacticpo- 3 lar caps than one- or two-componentfixed-emissivity-spectral-indexmodels (fixed-α mod- ] els)forinterstellardustthermalemissionatfar-infraredandmillimeterwavelengths.Forthe A comparisonwehavefitall-skyone-componentdustmodelswithfixedorvariableemissivity G spectralindextoanewandimprovedversionofthe210-channeldustspectrafromtheCOBE- FIRAS,the100−240μmmapsfromtheCOBE-DIRBEandthe94GHzdustmapfromthe . h WMAP.Thebestmodel,thefree-αmodel,iswellconstrainedbydataat60−3000GHzover p 86percentofthetotalskyarea.Itpredictsdusttemperature(Tdust)tobe13.7−22.7(±1.3)K, - the emissivity spectral index (α) to be 1.2−3.1 (±0.3) and the optical depth (τ) to range o r 0.6−46×10−5witha23percentuncertainty.Usingtheseestimates,wepresentall-skyev- t idenceforaninversecorrelationbetweentheemissivityspectralindexanddusttemperature, s a whichfitstherelationα=1/(δ+ω·Tdust)withδ =−0.510±0.011andω =0.059±0.001. [ This best modelwill be usefulto cosmic microwavebackgroundexperimentsfor removing foregrounddustcontaminationanditcanserveasanall-skyextended-frequencyreferencefor 1 v futurehigherresolutiondustmodels. 0 Keywords: dust,extinction–infrared:ISM–submillimetre:ISM–Galaxy:general–meth- 6 ods:dataanalysis–technique:spectroscopic. 0 0 . 1 0 2 1 INTRODUCTION ter (FIRAS, FIRASExplanatorySupplement (1997)) instrument 1 onboardtheCosmicBackgroundExplorer(COBE,Mather1982) Anaccuratemodelofthermaldustemissionatthefar-infraredand : satellite to constrain dust models with emissivity proportional to iv millimetrewavelengths isimportant for cosmic microwave back- ν2. They found that dust emission is best described by a three- X ground (CMB)anisotropy studiesbecause ithelpstoremove one componentdustmodel:awarm(16−21K)andacold(4−7K) of the three major diffused foreground contaminants. In the last r componentthatarepresenteverywhereinthesky,andaninterme- a decade,experimentssuchastheWilkinsonMicrowaveAnisotropy diate temperature (10−14 K) component that exists only at the Probe(WMAP,Bennettetal.2003a)havepreciselymeasuredthe InnerGalaxy.In1996,Boulangeretal.independentlyderivedan- angularvariationsinCMBsignalinordertounderstandtheglobal other set of dust spectra using the FIRAS measurements and fit geometryandexpansionoftheuniverse.However,studyingvaria- it a one-component ν2 emissivity dust model. They find that the tionsthatare10−5 thestrengthoftheprincipalsignalisdifficult, averagespectrum of dust associated withHI gashasanaveraged and the removal of contaminating signals in thedata needs to be temperatureof17.5±0.2K.In1998,Lagacheetal.usedDIRBE doneaccurately.Fortheseexperiments,adusttemplate,suchasone bands at 100, 140 and 240 μm to decompose FIRAS spectra at extrapolatedfromtheFinkbeiner,Davis&Schlegel(1999)(FDS) |b| > 10◦ intoacirrusandacoldcomponent. For61percentof studyofinterstellardustinthefar-infraredhasbeenusedtoremove theskywherethecoldemissionisnegligible,theyfoundthatthe thermal dust contribution from sky measurements (Bennettetal. cirrushadameantemperatureof17.5Kwithadispersionof2.5K. 2003b;Hinshawetal.2007;Goldetal.2009). For the 3.4 per cent sky where both cirrus and cold components Among major efforts to derive an all-sky dust model from arepresent,thetwocomponentsarebothassumedtofollowaν2 observational data, Reachetal. (1995) use dust spectra derived emissivitylaw,withthecirruscomponentfoundtohaveatemper- frommeasurementsoftheFarInfraredAbsoluteSpectrophotome- atureof17.8±1.2K,andthecoldcomponentwithatemperature of 15 ± 0.8 K. A widely used dust model in CMB studies was (cid:2) E-mail:[email protected] obtainedbyFinkbeineretal.(1999).Theirbestmodel(Model#8) (cid:2)c 2011RAS 2 Z. Liang, D.J. FixsenandB. Gold totheFIRASdustspectraconsistoftwodustcomponents:acold newsetofFIRASdustspectraandtounifycalibrationsofthedata component following a ν1.67 emissivity law with temperature at sets.InSection4,wepresentresultsandanalysisfromfittingone- 7.7−13.1K,andawarmcomponentfollowingaν2.70emissivity componentdustmodelswithfixedandvariableemissivityspectral lawwithtemperatureat13.6−21.2K.Adecadelater,thePlanck indextothedata.InSection5,wecomparetemperaturepredictions Collaboration (PlanckCollaboration 2011a) used the Planck-HFI of the free-α model with those of the fixed-α models and show (350μm–2mm)andIRAS100μmdatatoderiveall-skydusttem- thatonlythefree-αmodel givesphysicallymotivatedpredictions peratureandopticaldepthmapsusingaone-componentmodelwith ofdusttemperatureattheGalacticpolarcaps.Wealsodiscussthe emissivity proportional to ν1.8. They found that themedian tem- implicationsofthefree-αmodelontheinversecorrelationbetween perature of the sky at 10◦ above and below the Galactic plane is emissivityspectralindexanddusttemperature.Conclusionsalong 17.7K,seealsoLiang(2011). withsuggestionsforhowtouseourresultsarepresentedinSection Thislistofresultshighlightsthediversefindingsinthestudy 6. of thermal dust emission at far-infrared and millimetre wave- lengths. It also shows that the derived dust properties depend as much onthefittingmethodand thefunctional formof themodel 2 OBSERVATIONS asonthedata. Withadded new andmoresensitivedatafromthe WMAP,wenowcanconstrainmodelparameterswithmuchgreater Thefollowingsectionsreviewtheinstrumentsandthedatasetswe accuracy. usedinthefollowinganalysis. A second motivation for our work is to understand whether dust optical properties (Draine&Lee 1984) are the same at far- infrared and millimetre wavelengths from the perspective of em- 2.1 COBEDIRBE piricalmodelfitting.Thatfar-infrareddustemissivityfollowsaν2 The DIRBE instrument was a cryogenically cooled 10-band ab- power law has been widely accepted (see list above), yet the va- solute photometer designed tomeasure thespectrum and angular lidity of such extrapolation has not been proved by theory, lab- distributionofthediffuseinfraredbackground. Ithada0◦.7beam oratory experiment or empirical model fitting. In fact, laboratory andcoveredthewavelengthrangefrom1.25to240μm.Duringits measurementsofAgladzeetal.(1996)andMennellaetal.(1998) lifetime, the DIRBE achieved a sensitivity of 10−9 W m−2 sr−1 foundthatemissivityofamorphoussilicateandcarbongrainsdif- feredfromaν2powerlawandhadasignificanttemperaturedepen- at most wavelengths (Boggessetal. 1992; Silverbergetal. 1993; DIRBEExplanatorySupplement1998). dence.Thisinconsistencybetweenobservationandpracticemeans Weusethe1997“Pass3b”Zodi-SubtractedMissionAverage thatourunderstandingofdustemissioninthefar-infraredandmil- (ZSMA)Mapsatbands100,140and240μm.Thesemapsmeasure limetreisincomplete. Inthiswork, weattempttofillthisgapby theGalacticandextragalacticdiffuseinfraredemission,andhave first deriving best-fitting dust models with emissivity spectral in- beencalibratedtoremovezodiacallight(zodi).Theyareavailable dexfixedatdifferentvaluesandasavariable,andthencomparing at the LegacyArchive for Microwave Background Data Analysis thequality-of-fitofthesemodels.Basedonourfindings,weargue (LAMBDA)1. thatdustemissivitydiffersinthefar-infraredandmillimetrefrom theoptical. Athirdreasonforour workistodemonstrateaspatialaver- 2.2 COBEFIRAS aging technique to increase signal-to-noise of spectra. At low in- tensityregionsdataoftencomewithlargeuncertainty.Ifsuchdata The FIRAS instrument was a polarizing Michelson interfer- areuseddirectlytoconstraintamodel,resultsarehighlyuncertain ometer designed to precisely measure the difference between parameters. At times this problem is treated with averaging data the CMB and a blackbody spectrum. The FIRAS had a 7◦ within a predefined sky region. This approach has the disadvan- beam and covered the frequency range from 1 − 97 cm−1 at tageofusingapresupposeddustdistributioninthederivationofa 0.45 cm−1 resolution (Boggessetal. 1992; Fixsenetal. 1994a; solution whilefiguring out the distributionispart of the research FIRASExplanatorySupplement1997). question.Herewemakenoassumptionofthedustdistributionbut WederiveanewsetofdustspectralmapsfromtheDestriped insteadusethesignal-to-noiseofthedatatodeterminetheamount Sky Spectra of the Pass 4 final data release. The procedures are ofspatialaveragingneededforthedata.Theresultsarehigherspa- describedinSection3.The2106063-pixelmapscomprisethemain tialresolutionforregionswithgoodsignal-to-noiseandlessaver- bodyofspectralinformationweuseinmodelfitting. agingfortheoriginaldataset.Thistechniquecouldbeappliedto SixtypesofuncertaintieshavebeencharacterizedbytheFI- similarproblemsinotherareasofresearch. RASTeam.Fixsenetal.(1994b);FIRASExplanatorySupplement Finally,regardingthemanyempiricalmodelswenowknow, (1997);Matheretal.(1999)provideextensiveinstructionsonhow e.g. the ones listed above, one cannot help but ask: How do we to treat each type of uncertainty. Since we build models that re- test the validity of these models? Beside having good constraint spondtobothspectralandspatialvariationsofdustemission,the onmodel parameters, aretherephysicallymotivatedtestswecan following analysis includes all six FIRAS uncertainties: detector usetoverifypredictions ofthesemodels? Here,wepropose one: noise (D), emissivity gain uncertainties (PEP),bolometer param- to compare dust temperature distribution with the distribution of eter gain uncertainties (JCJ), internal calibrator temperature er- dustheatingsourceattheGalacticpoles.Weconductanindepen- rors (PUP), absolute temperature errors (PTP), and destriper er- dentandcomprehensivetestonall-skyone-componentmodels,and rors (β). Section 7.10 of FIRASExplanatorySupplement (1997) showthatallbuttheone-componentfree-αmodelfailthistest. provides very helpful instructions on how to assemble the co- Thestructureofourmanuscriptisasfollows.InSection2,we variance matrix. For example, the D and β matrices vary only review observations by the COBEsatellite’s DIRBE and FIRAS experiments and the WMAPsatellite that are used in our model construction. InSection3wedetailprocedures takentodeducea 1 TheLAMBDAWebsiteishttp://www.lambda.gsfc.nasa.gov/ (cid:2)c 2011RAS,MNRAS000,1–17 All-skyObservationalEvidenceforA TemperatureDependent EmissivitySpectralIndex 3 Table1.SpectralCoverageofDIRBE,FIRAS&WMAP λ 1/λ ν (μm) (cm−1) (GHz) DIRBE 100 100 2998 140 71 42 240 42 1249 FIRAS 103−4407 2−97 68−2911 WMAP 3189 3 94 among pixels, while the PEP, JCJ, PUP and PTP matrices dif- ferfordifferent frequencies. Interestedreadersarereferredtothe FIRASExplanatorySupplement(1997)fordetails. 2.3 WMAP TheWilkinsonMicrowaveAnisotropyProbewasdesignedtode- termine the geometry, content and evolution of the universe by measuring temperature anisotropy of the CMB radiation. It con- sisted of two back-to-back offset Gregorian telescopes, and used 20 high electron mobility transistor (HEMT) based differential radiometers to measure the brightness difference between two lines of sight that were 141◦ apart. At five frequency bands: 23, 33, 41, 61 and 94 GHz, the WMAP made full sky measure- ments, which were analyzed by the data processing pipeline and form 13(cid:3) FWHM HEALPix2 pixelization maps. The spin mo- tion of the observatory and its scanning strategy symmetrized the WMAP beams. Beam sizes were estimated using square- root of the beam solid angle. In order of increasing frequen- Figure1.ExamplesofthenewFIRASdustspectra.Plottedinredarethe cies, they are: 0.88, 0.66, 0.51, 0.35 and 0.22◦ (Jarosiketal. new dustspectra andtheir errorestimates; inpurple arethedustspectra 2003; Pageetal. 2003; Hinshawetal. 2003; Jarosiketal. 2007; derivedbytheFIRASteam;indarkgreenisthetotalskyintensitymeasured byFIRAS;inblueistheCMBmonopole;andinorangeistheCMBdipole. WMAPFive-YearExplanatorySupplement 2008; Hinshawetal. 2009;Hilletal.2009). We use the dust temperature map (at 94 GHz) derived from applied to both signal and noise maps. Procedures on zodi zero- the“basemodel”inWMAP’sFive-Yearforegroundmodelinganal- pointcorrectionsandFIRASsystematicerrorsareappliedtonoise ysis by Goldetal. (2009). In the same study, Gold et al. used mapsonly. different models to account for diffused foreground emission at different WMAP bands, with nonthermal synchrotron, thermal bremsstrahlung,andthermaldustasthestandardcomponentsand testedthepossibleexistenceofsteepeningsynchrotronand/orspin- 3.1 DeducingFIRASdustspectralmaps ningdust.Theirlikelihoodanalysisshowedthatbasicmodelwith TheFIRASdust spectra onLAMBDA exhibit a“jump” between just three main foreground components was sufficient to subtract thelow-andhigh-banddataduetoaninconsistantCMBmonopole outforegroundsfromskymapsathighGalacticlatitudes. temperaturesubtraction.Inaddition,thePass4datawerereleased withanearlycalibration,makingitnecessarythatwederiveanew setofdustspectra.Inthefollowingwedescribeprocedurestosub- 3 DATAPREPARATION tractfromtheDestripedSkySpectraablackbodyspectrumforthe CMB,adipole of the Earth’smotion withrespect totheCMB, a Sincewewanttomodelbothspectralandspatialvariationsofdust zodimodel,andcontributionfromthecosmicinfraredbackground emission, we unify different hardware constraints and calibration (CIB).ExamplesofthenewdustspectraareplottedinredinFig. standards to ensure that different data sets are compared on an 1.Forcomparison,correspondingdustspectraprovidedbytheFI- equal footing. InSection3.1wediscuss theFIRASdata, thepri- RASTeamareplottedinpurple. maryforthisstudy.InSections3.2–3.7weexplainalignmentof theDIRBEandWMAPdatawiththeFIRASdata.Theprocedures onbeamdifferences,mapprojections,spatialresolutions,DIRBE- 3.1.1 CMBmonopoleanddipole FIRASabsolutecalibrations,andtemperature-fluxconversionare The CMB temperature has been extensively treated (see Matheretal. 1990; Fixsenetal. 1994b; Matheretal. 1994; 2 For definition and applications of the HEALPix projection, Fixsenetal. 1996; Matheretal. 1999; Fixsen&Dwek 2002; refer to Go´rski,Hivon&Wandelt (1999), Go´rskietal. (2005), Fixsen 2009). The appropreate correction for the Pass 4 data set Calabretta&Roukema(2007)andhttp://healpix.jpl.nasa.gov. isa2.7278blackbodyspectrum. (cid:2)c 2011RAS,MNRAS000,1–17 4 Z. Liang, D.J. FixsenandB. Gold A WMAP-determined dipole (Hinshawetal. 2009) is re- frequency measured by FIRAS. The central portion of the beam moved from the Destriped Spectra. Specifically, Tdipole = (θ < 3◦.5)isapproximatedbyatophatsinceanyslightazimuthal 3.355mKand(l,b)=(263◦.99,48◦.26).Higherordervariationsin asymmetryshould havebeensmoothed out bytherotationof the theCMBtemperaturewereignoredbecausetheyareinsignificant instrumentalongitsownaxis(Matheretal.1993)duringitsoper- forthisstudy. ation. On the other hand, DIRBE was built with a goal to reject straylighttomeasuretheabsolutespectrumandangulardistribu- 3.1.2 Zodi tion of the CIB. This goal was met by using a series of optical Zodi is the thermal emission and scattered light from interplan- elements and baffle protections, among which the last field stop etary dust in our solar system. Kelsalletal. (1998) derived a setthe0◦.7×0◦.7instantaneousfieldofviewforallspectralbands time-dependent parametric model for its emission, and the FI- (Silverbergetal.1993;DIRBEExplanatorySupplement1998).To RAS Team extended those resultsto the entire FIRAS frequency construct theZSMAmaps, theDIRBETeamcalculatedthezodi- coverage (FIRASExplanatorySupplement 1997; Fixsen&Dwek acal light intensity using the IPD model by Kelsalletal. (1998), 2002).DerivationofthezodimodelforFIRAShingesonthefact andsubtracteditofffromeachweeklymeasurement.Theremain- thatFIRASmeasurements overlapwithDIRBEbandsat140and ing signal was averaged over time. In this way, the ZSMA maps 240 μm. Therefore, the DIRBE model predictions for these two preservetheoriginal0◦.7×0◦.7angularresolutionoftheskyobser- bandswerecoaddedandfittedwithapowerlawemissivitymodel vation. and extrapolated to the frequency coverage of FIRAS. The zodi Thedust map fromtheWMAPwasone of theproducts de- modelusedhereisamongFIRASdataproductsonLAMBDA.For rived from Markov chain Monte Carlo fittingof temperature and furtherdetailsofthemodelderivation,seeFixsen&Dwek(2002). polarization data (Goldetal. 2009). Since their analysis used the band-averaged mapsthatweresmoothedbya1◦ Gaussianbeam, thedustmaphasthesameangularresolution. 3.1.3 Emissionlines The FIRAS beam is the lowest common angular resolution achievable among all three data sets, so the higher resolution TheFIRASdetected18molecularandatomiclinesemittedbyin- DIRBE andWMAPmaps need to be convolved withthe FIRAS terstellargas.SincetheFIRASfrequencyresolutionismuchlarger beam to make them all 7◦ maps. Additionally, since Fixsenetal. thanthewidthofeachoftheselines,eachlineprofileiseffectively (1997b)foundthattheFIRASbeamwaselongatedinthescandi- FIRAS’sinstrumentresponsetoadeltafunction.Amongthese18 rectionby2◦.4,thatpatternismatchedinthedegradedDIRBEand detectedemissionlines,notallofthemhaveadiscerniblepresence WMAPmaps by convolving those data with an effective FIRAS overthefullsky.Mostnotablyarethe[CII]and[NII]lines,which beam. exhibitadistinctgradientofintensityfromthecentreoftheGalaxy tohigherlatitudes.Otheremissionlines,thoughdetected,areweak inmostoftheskyexceptattheInnerGalaxy.ByInnerGalaxywe meantheinnerGalacticdiskabouthalfthedistancetotheedgeof theGalaxy. Since the derivation of FIRAS line intensity maps on LAMBDAusedtheirGalacticdustspectra,theFIRASlineinten- 3.3 Mapprojectionandspatialresolution sitymapscannotbeusedheretoremoveemissionlinecontribution. Both DIRBE and FIRAS maps are organized in COBEquadri- Instead,intensitiesof[CII]and[NII]emissionarefitaspartsofthe lateralized spherical cube format (quad-cube, Chan&O’Neill overallmodelinthefollowing. 1975, O’Neill&Laubscher 1976, White&Stemwedel 1992, and Calabretta&Greisen2002).WhiletheDIRBEmapsareinquad- 3.1.4 Cosmicinfraredbackground cube resolution level 9 (res9, 19m. 43 per pixel), the FIRAS maps areinquad-cube resolution level 6(res6, 2◦.59 per pixel). Differ- TheisotropicCIBsignalwasremovedfromskyspectrausingre- entfromtheFIRASandtheDIRBEmaps,theWMAPdustmapis sults from three studies: For DIRBE measurements at 140 and in HEALPix (Go´rski,Hivon&Wandelt 1999, Go´rskietal. 2005, 240 μm,theCIB isremoved at15 and13 nWm−2 sr−1 respec- and Calabretta&Roukema 2007) resolution level 6 (res6, 54m. 97 tively according to Hauseretal. (1998). For the DIRBE band at per pixel). One way to reconcile these different formatsand spa- 100 μm, the CIB is removed at 25 nW m−2 sr−1, as given in tial resolutions is to carry out analysis inCOBEquad-cube res6. Finkbeineretal. (2000). Notice that the Finkbeiner prediction is Thisdecision is made toretain maximum amount of information withintheupperandlowerlimitsestimatedbytheDIRBETeam. containedintheoriginaldatasetsandachievethehighestcommon To remove the CIB from FIRAS sky spectra, the CIB model in resolutionpossible. Fixsenetal.(1998)isused. Asaresult,DIRBEmapswerere-binnedtores6;theWMAP dust mapwasfirstconvertedintoaquad-cube res9mapand then re-binnedtores6.DuringWMAP’sdustmapconversion,wetook 3.2 Beamdifference thefollowingstepstoensurethatnoexcessiveartificialnoisewas The three instruments that produced the data used in this study introducedtothefinalmap:WecomparedtheoriginalHEALPix- haddifferentbeampatterns.Forexample,theFIRASusedaquasi- projectionmapwiththere-binnedquad-cube-projection map,and opticalmultimodehornantennatocollectradiationfroma7◦field found that 98.6 per cent of the 49,152-coordinate pairs sampled of view (Matheretal. 1986). The horn was designed in a trum- gavenodifferencebetweenthequad-cube andtheHEALPixval- petbellshapetoreduceresponsetooff-axisradiation.Asaresult, ues.Whentherewasadifference,themaximumwas0.0059mK, whenthebeamprofilewasmeasuredontheground andinflight, whichamountedtoa0.11percentnoiseincreasefortheoriginal it was found to have very low sidelobes over the two decades of HEALPixmap. (cid:2)c 2011RAS,MNRAS000,1–17 All-skyObservationalEvidenceforA TemperatureDependent EmissivitySpectralIndex 5 3.4 Gradientcorrection where ν is the effective frequency (93.5 GHz) of the dust map (Goldetal. 2009; Jarosiketal. 2003), and k isBoltzmann’s con- The FIRAS dust maps are based on coadding interferograms, so stant. theirvaluesaregenerallynot atthedefinedcentreofmappixels. Thispositionaldifferencerequiresanadditionalcorrectionstepto prepare the quad-cube res6 DIRBEand WMAP maps. Detailsof thistechniquearedescribedinFixsenetal.(1997b).Insummary,a second-degreesurfacefunctionisfittotheintensityandlocationin- 4 RESULTSANDANALYSIS formationofapixelanditsimmediateneighborsinoneofthecon- 4.1 Overviewofmodelfittingstrategy vertedmaps.Thisfunctionisthenusedtopredictemissionatthe FIRASmeanpositionforthatparticularpixel.Overall,a5percent The thermal emission of a dust grain is described by a modified rmscorrectionisappliedtoeachoftheDIRBEmapsat100,140 blackbodyfunction: and240μmandtotheWMAPdustmap. I (ν)=τ (cid:3) ·B (T ), dust ν ν dust 3.5 Colorcorrection whereBν(Tdust)istheblackbodyspectrumattemperatureTdust, (cid:3)ν =(ν/ν0)αistheemissivitywithspectralindexα,andτ isthe In accordance with the IRAS convention opticaldepthnormalizedtofrequencyν0 =900GHz. (IRASExplanatorySupplement 1988), DIRBE photometric Inadditiontomeasuringthermaldustemission,theprepared measurementswerereportedinMJysr−1atnominalwavelengths, FIRASspectraretaincontributionsfrom[CII]and[NII]emission, assumingthesourcespectrumtobeν·Iν =constant.Sinceeach duetothelackofpreciseall-skytemplates.Asaresult,twoemis- DIRBEbandhasamuchwiderbandwidththanaFIRASchannel, sionlinesaremodeledatthesametimewiththedust: spectral shape could have changed enough that at the nominal I (ν)=[C ] f (ν), wavelengththerealintensityissignificantlydifferentfromthenor- [CII] II intensity [CII] malizedintensity.Asaresult,weincludecolor correctionsinthe and overall model, i.e., model predictions are compared with DIRBE mKeiassuthreemcoelnotrscuosrirnegcttihoenrfealcattoiorndeIfiνn,emdodaesl =KIν,DIRBE,where I[NII](ν)=[NII]intensity f[NII](ν), (cid:2) wheref(ν)isthesyntheticlineprofiledeterminedbyFIRASre- (I /I ) ·R dν K = (cid:2) ν ν0 actual ν . (1) sponsetoadelta-functionsignal.Together,thefullmodelhasthe (ν /ν) ·R dν 0 quoted ν form (cid:2) Isnkythniosrmeqauliazteiodnt,oth(eIνin/tIeνn0s)itayctautalfreisqutheencsypeνc0i,fiacndinRtenνsiistyDoIfRBthEe Itotal =Idust+I[CII]+I[NII]. (2) relativesystemresponseatfrequencyν.ThevaluesofRνaredoc- Eachfull model isfittothedata byminimizing athree-part umentedinDIRBEExplanatorySupplement(1998)Section5.5. χ2,witheachpartcorrespondingtooneofthethreedatasets: χ2 =χ2DIRBE+χ2FIRAS+χ2WMAP, (3) 3.6 DIRBEuncertainties where (cid:3) The DIRBE photometric system was maintained to ∼ 1 per cent accuracy by monitoring the internal stimulator during 10 months χ2instrument= (Iobs−Imdl)i (M−1)ij (Iobs−Imdl)j, (4) of cryogenic operation and observing the bright stable celes- i,j tial sources during normal sky scans. It was absolutely cal- Here,Iobsistheobservedspectralintensity,Imdlisthemodelpre- ibrated against Sirius, NGC7027, Uranus and Jupiter. Among diction,andMisthecovariancematrixoftherespectivedataset. different types of uncertainties identified by the DIRBE Team, Inthefollowingsections,wefitone-component dustmodels those relevant to this work are standard deviations of intensity tospectraoffixed(Section4.2)anddifferent(Section4.3)sizesky maps, detector gain and offset uncertainties, and zodi model un- regions.Intheformercase,spectraretainthe7◦angularsizeofFI- certainties (Hauseretal. 1998; Kelsalletal. 1998; Arendtetal. RASpixels;inthelattercase,the7◦spectraareaveragedbyvarious 1998).Forbands8–10,respectively,thedetectorgainsare:0.135, amountstoincreasesignal-to-noiseofthefinalspectra.Chi-square 0.106 and 0.116 nW m−2 sr−1; detector offsets are 0.81, 5 and perdegreeoffreedomvalues,χ2dof,areusedtoassessthequality- 2 nW m−2 sr−1; and zodi model uncertainties are: 6, 2.3 and of-fitofamodeltoeachspectrum.Inparticular,theone-component 0.5nWm−2 sr−1 (Arendtetal.1998).Theprocessofre-binning fixed-αmodelshave214−4=210degreesoffreedom.Adopting thehighresolutionDIRBEmapsintoFIRASresolutionaffectsonly a 10 per cent probability cut-off for acceptable models, it corre- thestandarddeviationsoftheoriginalmaps.Thefinaluncertainty sponds to a χ2dof (cid:2) 1.13. The free-α model has 209 degrees of isthequadraturesumoftheindividualnoisecomponents. freedomandits10percentprobabilitycutoffisχ2dof (cid:2)1.13. 3.7 Temperature-intensityconversion 4.2 Fittingspectraof7◦skyregions ForegroundmapsoftheWMAPproductionarereportedinantenna temperature,TA,inmK.Ontheotherhand,mapsproducedbythe Wefitone-componentmodelswithfixedαintherange1.4−2.6 DIRBEandtheFIRASTeamsarereportedinspectralintensity,Iν, at 0.1 increment to the spectrum at each 7◦ pixel. The fits have in MJy sr−1. In the following analysis, the WMAPdust map is acceptablevalues(χ2dof (cid:2)1.13)overmostoftheskyexceptatthe convertedintofluxdensityvaluesfollowingIν = 2 (ν/c)2 kTA, Galacticplane. (cid:2)c 2011RAS,MNRAS000,1–17 6 Z. Liang, D.J. FixsenandB. Gold Figure2.χ2 vs.Galactic latitude. Thevalueofχ2 isobtainedfrom Figure3.χ2 distributionsofthe7◦ fitsusingone-componentα = 2.0 dof dof dof fittingone-componentα=2.0modelto7◦spectracovering98.68percent model.ThereddistributionincludesonlypixelsatGalacticlatitudes|b|> areaofthefullskywhereFIRASdataareavailable. Thisplotshowsthat 10◦;thebluedistributionincludesall6063pixelsatallGalacticlatitudes. mostfits at|b| (cid:3) 10◦ havea χ2 ∼ 1, andfits at |b| (cid:4) 10◦ have a Best-fitting parameters of the Gaussians are printed in respective colors. dof χ2 >1. Bothχ2 distributionsarewellapproximatedbyaGaussian,whichmeans dof dof thatthereisnoapparent systematicbiasinthefits.Thatthedistributions centerat0.93meansthaterrorsinthedataareslightlyoverestimated,and 4.2.1 Quality-of-fitofmodels thewidthsofthedistributions areasexpected (0.1)foradistribution of randomdatawith210degreesoffreedom. Asanexample,Fig.2presentsχ2dof asafunctionofGalacticlat- itudefortheα = 2.0model.Itshowsthatmostfitsat|b| (cid:3) 10◦ haveχ2dof ≈1,andfitsat|b|(cid:4)10◦haveaχ2dof (cid:4)1.Fig.3com- 17.5±0.26K,comparedtoTdust ∼ 18.5±0.28Katα = 1.8. paresthedistributionofχ2dof at|b| (cid:3) 10◦ withthedistributionof Thisdifferenceintemperatureislargerthanthesumoftheirerrors. χ2doffortheentiresky.Bothdistributionsarewellapproximatedby Similarly,thedifferenceinτ ofthetwoαmodelsislargerthanthe aGaussian,anindicationthatthefitsdon’thaveasignificantsys- sumoftheirerrors.Onthecontrary,intheLSNcase,thedifference tematicbias.Thewidthsofthedistributionsareasexpected(0.1) inthebest-fittingTdustandτ ofα=1.8andα=2.0modelsare foradistributionofrandomdatawith210degreesoffreedom.That wellwithintheuncertaintiesoftherespectiveparameters. thedistributionscenter at0.93 means that statisticalerrorsof the Theseresultsdemonstratethesensitivityofthefitstomeasure- data are slightly overestimated by ∼ 7%, and that the χ2dof cut- menterrors.Theexistenceofmeasurementnoiseinevitablycauses offisreallyat∼ 1.21withaprobabilityof< 10%. Becausethe ahighdegreeofdegeneracybetweentheemissivityspectralindex uncertainties of the FIRAS data include some systematic effects, and the dust temperature in the fits. While it is difficult to break we do not feel at liberty to reduce the uncertainty. Based on the this degeneracy, high signal-to-noise data help. Fitting data with χ2dof (cid:2)1.13cut,themodelisagoodfittothedataover87percent highsignal-to-noiseresultsinwellconstrainedparameters,which ofthefullskyarea,butisrejectedbythedataattheGalacticplane. means that the choice of an α model can cause statistically sig- Readers interested in the best-fit parameters (Tdust, τ, [CII] nificantdifferencesinthepredictionsoftheseparameters.Onthe and[NII]intensities),theiruncertaintiesandcorrelationsforeach otherhand,fittinglowsignal-to-noisespectraresultsinsmalldif- of theaforementioned αmodels arereferred to theauthor’s PhD ferenceinχ2dof andlargeerrorbarsofthebest-fitparameters,and thesis(Liang2011). soisnotpossibletodifferentiatemodelswithdifferentfixedvalues ofα.ThisisdemonstratedinFig.6,whichshowsthatthe68and 95percentconfidencecontoursofaHSNfitenclosemuchsmaller 4.2.2 Dependenceofbest-fittingparametersonthe regionsintheT-αspacethanthoseofaLSNfit. signal-to-noiseofdata Figs.7showsskymapsofαandTdustthatcorrespondtothe Figs.4and5presentχ2dof,Tdustandτ ofthebest-fittingαmodels minimum-χ2dof modelamongallmodelstestedateachpixel.Over- fortwospectra:onehashighsignal-to-noise(HSN)andisatalow all,thetwomapsarenoisy,whichisaresultofinsufficientsignal- Galacticlatitude,andtheotheronehaslowsignal-to-noise(LSN) to-noise in the data that prevents setting tight constraints on the andisatahighGalacticlatitude.Inbothcases,theχ2dofvs.αplots best-fittingparameters.Morespecifically,bothmapsshowgreater show that models with a wide range of different α values can fit consistencyinvalueatlowlatitudesandmorefluctuationsaround the data well. In the HSN case, a curve fit to χ2dof as a function theGalacticpoles.Thatconsistentvaluesappearintheregionsur- of α is a concave up parabola, with the minimum χ2dof = 0.89 rounding the Inner Galaxy is reasonable because star formation atα = 1.8. Thedifference betweenχ2dof atα = 1.8 andthat at takesplaceintheGalacticdiskandatthebulge,andstarformation α=2.0isΔχ2dof =0.01.At210degreesoffreedom,thismeans isthemostimportantheatsourcefordust.Thatlargefluctuations aΔχ2 of∼ 2.1,whichisa2-sigmadifference.IntheLSNcase, appearnearthepoles,ontheotherhand,hastodowithlowsignal- thebest-fittingcurvetoχ2dof vs.αisamuchflatterparabolaover to-noisedataintheseregionscomparedtothosemeasuredatlower 1.4 (cid:2) α (cid:2) 2.3withtheminimumχ2dof = 0.80atα = 1.6.The latitudes.Thishappens because fewdust grainsexist athighlati- differencebetweenχ2dof atα=1.8andα=2.0is∼0.002. tudes,andtheydonotemitasstronglyasthoseclosetotheGalactic Althoughmodelswithdifferentαhaveonlyasmalldifference disk. inχ2dof,thebest-fittingTdustandτ aredifferentsignificantlyinthe Sincelowsignal-to-noisedatacannotgiveadequateconstraint HSNcase:Atα=2.0,thebest-fittingdusttemperatureisTdust ∼ tomodelparametersandexacerbatesthedegeneracybetweendust (cid:2)c 2011RAS,MNRAS000,1–17 All-skyObservationalEvidenceforA TemperatureDependent EmissivitySpectralIndex 7 Figure 4. χ2dof, Tdust and τ as a function of α. Each data point on Figure 5. χ2dof , Tdust and τ as a function of α. Each data point on the Tdust and τ plots is thebest-fitting value ofthe corresponding one- the Tdust and τ plots is the best-fitting value ofthe corresponding one- component fixed-α model to the 7◦ spectrum measured in the direction component fixed-α model to the 7◦ spectrum measured in the direction l = 63◦.78andb = −11◦.53.Thissetofplotsservesasanexampleof l=254◦.32andb=65◦.08.Thissetofplotsservesasanexampleoflow high signal-to-noise fits. The green curve fits the best-fitting values as a signal-to-noisefits.Thegreencurvefitsthebest-fittingvaluesasafunction function of α. Inparticular, the plot of χ2 shows that the model with ofα.Becauseofthesmalldifferenceinχ2 andlargeerrorsinthemodel dof dof α=1.8isabetterfittothedatathanthemodelwithα=2.0.Thesmall parameters,fitresultscannotdifferentiate modelsatdifferentfixedvalues errorbarsofTdust andτ showthatthechoiceofanαmodelcancause ofα. statisticallysignificantdifferenceinthepredictionsoftheseparameters. theamountofspatialaveragingneedstobeadjustedaccordingto thesignal-to-noiseofthedata. temperatureandspectralindex,inordertoconstructthebestdust Onewaytoincreasethesignal-to-noiseofhigh-latitudespec- model,weneedtofindwaystoincreasethesignal-to-noiseofthe tra and to best preserve intrinsic variations in the signal detected data. fromdifferentskydirectionsistobasetheamountofspectralaver- agingonsignal-to-noiseoftheaveragedspectrum.Startingwiththe baselevel,whereapixel’sownspectrumisusedtofitamodel,if 4.3 Fittingaveragedspectraofdifferent-sizeskyregions thefitdoesnotgivewellconstrainedparametersduetoinadequate signal-to-noise,theproceduregoesontofittheaverageoftheorig- Takingaverageofthehigh-latitudespectrabasedonlatitudinalor inal spectrum and its eight immediate neighbors. Thisprocess of longitudinaldivisionsoftheskycantightentheconstraintonmodel involvingmoreoftheadjacentspectratoformanewaveragegoes parameterssinceitincreasesthesignal-to-noiseofthedata.How- onuntilthederivedparametersaresufficientlyconstrained.Inthis ever,suchdivisionsarebasedonourexpectationsofthedistribu- way,resultsfromfitsdoneatthebaselevelhaveaspatialresolu- tionofGalacticdust.Sinceourknowledgeisnotcomplete,thedi- visionsarenotoptimal.Inourexperiments(Liang2011),χ2ofre- tionof6.71(cid:5)(cid:6)2.Atthenextlevel,resultshaveaspatialresolution gionalfitsaremuchhigherthanχ2offitstotheindividual7◦spec- of60.37(cid:5)(cid:6)2,andsoon. trathatcomprisetheregionalaverages.Sincelargerskyregionsin- cχl2udvealduieffmereeanntstythpaetstohfedauvsetreamgiinsgsihoanssapcehcitervae,dthaessutefefipciiennctresiagsneailn- 4.3.1 Tdust/δTdustconstraintonfixed-αmodels to-noiseratio,sospectralvariationbecomesstatisticallyimportant. All-skyone-componentfixed-αmodelswithαintherange1.4− Inordertopreserveinformationonspectralvariationinthemodel, 2.6andlowerlimitofTdust/δTdustat5,10,20and40areobtained (cid:2)c 2011RAS,MNRAS000,1–17 8 Z. Liang, D.J. FixsenandB. Gold Figure6.68and95percentprobabilitycontoursintheTdust-αspacefor Figure7.SkymapsofαandTdust.Ateachpixelthevaluecomesfrom ahighsignal-to-noisespectrum(upperplot,measuredinthedirectionl= the7◦ fitwiththeminimumχ2 amongallone-component fixed-αfits 63◦.78andb=−11◦.53)andalowsignal-to-noisespectrum(lowerplot, intherange1.4 (cid:2) α (cid:2) 2.3atd0o.f1increment.ThesemapsareMollweide l = 254◦.32andb = 65◦.08).Inbothplots,thewhitecrossrepresents projectionsoftheGalaxyinGalacticcoordinates.Thecentreofeachmapis location oftheminimumχ2;theblueareaisthe68percentconfidence theGalacticcentre.Theupperandlowerendsoftheminoraxisare+90◦ region;andthegreenareaisthe95percentconfidenceregion.Theseplots and−90◦ latitudes respectively, andtheleftandrightendsofthemajor demonstratetheeffectofmeasurementnoiseonthedegeneracybetweenα axisrepresent+180◦ and−180◦ longitudesrespectively. Bothmapsare andTdustinspectralmodelfitting.Forthehighsignal-to-noisespectrum noisy,particularlysoathighlatitudes.Pixelsthatcorrespondtofitswitha (upperplot),the68percentconfidenceregionisat1.7 < α < 1.9and χ2lessthan10percentprobabilityaremaskedinwhite.Thegroupofblack 17.9K < Tdust < 19.5K;forthelowsignal-to-noisespectrum(lower pixelsthatslantfromthecentreoftheupperleftquadrant(NorthEcliptic plot),the68percentconfidenceregionhasamuchwiderextent,at1.2< Pole,NEP)tothecentreofthelowerrightquadrant(SouthEclipticPole, α<2.2and18.5K <Tdust<24.7K. SEP)arepositionswhereFIRASdidnotprovidedata. separately.Ingeneral,one-component fixed-αmodelswithdiffer- entlowerlimitsontheTdust/δTdustvaluescanfitmostspectraex- modelwithTdust/δTdust (cid:5) 5,only0.59percentofthetotalsky ceptthoseattheGalacticplane.Amorerestrictedlowerlimitonthe arearequire fitswitha60.37 (cid:5)(cid:6)2 resolutioninstead of thedefault Tdust/δTdustvaluesrequiresagreateramountofspatialaveraging 6.71(cid:5)(cid:6)2.Fora10percentconstraintonTdust,0.47percentareaof whichstressesthedustmodelandcausesχ2dof aroundtheGalactic thefullskyrequirefitstobeat167.70(cid:5)(cid:6)2resolution,7.24percent poles to increase in value. Theupper plot of Fig. 8 demonstrates at60.37(cid:5)(cid:6)2resolution,andtherestat6.71(cid:5)(cid:6)2resolution.Abalance thisrelationbyplottingχ2dof asafunctionofGalacticlatitudefor between having adequate constraint on parameters, preserving as thecaseofα=2.0.Notethatχ2dof ofhigh-latitude(|b|>60◦)fits manyvalidmodelsaspossible,andkeepingregionalsizeslowcan movefrom0.7−1.0to0.8−1.3aslowerlimitonTdust/δTdust beachievedattheTdust/δTdust (cid:5)10level. startswithnoneandincreasesto40. A plot of χ2dof distributions for 13 all-sky fixed-α mod- Histogramsoftheall-skycollectionsofχ2doffordifferentlim- els with α in the range 1.4 − 2.6 at 0.1 increment and satisfy itsonTdust/δTdust arepresentedinthelowerplotofFig.8.The Tdust/δTdust (cid:5)10ispresentedinFig.9.Thehigh-χ2tailsofthese three histograms for Tdust/δTdust (cid:5) 5, 10 and 20, in the shape distributionsshow that modelswiththelargest(2.6)andsmallest of a Gaussian, peak at 0.93, 0.94 and 0.96 respectively, and they (1.4)valuesofαhavemorefitswithlargeχ2dof.Wepresentaspe- all have a width of 0.10. The histogram for Tdust/δTdust (cid:5) 40 cificcomparisonoftheχ2dof excessfortheseall-skymodelsinthe peaks at 1.00, has a width of 0.12 and a thick tail in the range lowerplotofFig.9.Thisplotshowsthattheall-skyα=1.7model 1.2 < χ2dof < 1.4. This shows that the demand for a 40-times isthebestbecauseitcanfitthelargestamountofdata(87.6percent lowerlimitonTdust/δTdusthasputtoomuchstressonthemodel. areaofthefullsky).Fig.10presentsskymapsofχ2dof,spatialres- Imposing a more stringent limit on Tdust/δTdust leads to a olution,dusttemperature,opticaldepth,andthesignal-to-noiseof variety of spatial resolutions in each all-sky collection of fits. A parametersfromfittingtheone-component α = 1.7model.Each more stringent requirement on Tdust/δTdust means lower spatial of the 6063 fits presented there satisfies the Tdust/δTdust (cid:5) 10 resolutionsforfitsathighlatitudes.Forone-component α = 2.0 requirementwiththeleastamountofspatialaveraging.Inthepa- (cid:2)c 2011RAS,MNRAS000,1–17 All-skyObservationalEvidenceforA TemperatureDependent EmissivitySpectralIndex 9 Figure9.Upper:χ2 distributionsofthebest-fittingone-componentfixed- Figure8.χ2dof vs.Galacticlatitude(upper)andχ2dof distributions(lower) α models with αdionf the range 1.4 – 2.6 at 0.3 increment and satisfy o5,ft1h0e,a2l0l-saknydo4n0e,-croemsppeocntievnetlyα. W=ith2.0mofirtestrheasttrsicattiivsefyTTdduusstt//δδTTdduussttre(cid:5)- Tbedufisttb/yδTadounset-co(cid:5)m1p0o.neLnotwmeor:dePlewrciethntfiagxeedaeremaisosfivtihtyesfpuellctsrkaylitnhdaetxc(aχn2not quirements,χ2dof ofhigh-latitude(|b| > 60◦)fitsmigratefromtherange cutoffcorrespondsto10percentprobability).Thisplotshowsthatα=d1o.7f 0.7−1.0totherange0.8−1.3. modelscanfitthelargestamountofdata(87.6percentareaofthefullsky). rametermaps,ifafithaslessthan10percentχ2probability(i.e., χ2dof > 1.13for210degreesoffreedom),thenitscorresponding centrearound0.95.Thismeansthatthereisnoapparentsystematic pixel ismasked inwhite. Fitresultsfor other αmodels at differ- biasinthefitsandtheerrorestimatesforthedataisaboutright. ent levels of constraint on Tdust/δTdust are provided in the first Theplotofχ2dof vs.Galacticlatitude,lowerpanelofFig.12, author’sPhDthesis(Liang2011). showsthatatlatitudes|b| < 10◦,χ2 continuestobe(cid:4) 1asis dof thecaseoffittingall-skyone-component fixed-αmodels.Athigh 4.3.2 α/δαconstraintonafree-αmodel latitudes,χ2dof donotflareupwithincreasingconstraintonα/δα, asopposetothatwhichhappenswhenTdust/δTdustrequirements Weapplyasimilarstrategytoconstrainfitsthatuseafree-αmodel. areimposed on afixed-α model. It confirmsour expectation that Insteadofthesignal-to-noiseofthedusttemperature,wenowuse thefree-αmodelismoreadeptatfittingvariousspectralshapes. signal-to-noiseoftheemissivityspectralindextogaugetheamount Fig. 13 presents distributions of α and Tdust of one- of spectral averaging. As an example, we present sky maps of componentfree-αfitsthatusenoconstraintonanyparameterand thebest-fittingparametersandtheirsignal-to-noiseforthefree-α thosethatsatisfyα/δα(cid:5)5.0,6.7and10.0.Thecentresofthedis- modelwithα/δα(cid:5)10.0inFig.11. tributionsare at 1.80, 1.83, 1.85 and 1.88, respectively. Thisplot Notice that the current dust temperature map has more con- showsthattheα/δαrequirementhastheeffectofmovingαfrom sistentvaluesathighlatitudesneartheGalacticpolesthanthatob- below1.5tohighervalues.Withevenamoderateamountofcon- tainedfromthe7◦-pixelfitsinFig.7.TheuncertaintyofTdust is straintonα/δα,therangeofαvaluesquicklyreducestobetween lessthan7.4percentasaresultoftheconstraintonα/δα,andthe 1and3,anindicationthatvaluesoutsideofthisrangearerarein uncertaintyofτ hasamaximumof23.25percent.Thespatialres- nature. olutionofthesefitsarepresentedinanall-skymapinFig.11and AlsoshowninFig.13,theTdust distributionsdonotpeakat summarizedinTable2. asinglevalue. Instead, thereisarange ofmost popular tempera- The upper panel in Fig. 12 compares χ2dof distributions of turesbetween17and20K.Comparedtotheunconstrained case, fitsthatusenoconstraint onanyparameter andthosethatsatisfy theα/δαrequirementsmoothsoutthehigh-temperaturepointsand α/δα(cid:5)5.0,6.7and10.0.Itshowsthattheshapeoftheχ2dof dis- effectivelyreplacesthemwithvaluesatorbelow20K. tributionsresembleaGaussianandtheconstraineddistributionsall Theamountsofconstraintondusttemperature,opticaldepth (cid:2)c 2011RAS,MNRAS000,1–17 10 Z. Liang, D.J. FixsenandB. Gold Table2.Spatialresolutionoftheone-componentfree-αfitswithχ2 (cid:2)1.13 dof Level Regionalsizeoffits Percentageofthefullskyataregionalaverage ((cid:4)(cid:5)2) α/δα(cid:5)5.0 α/δα(cid:5)6.7 α/δα(cid:5)10.0 1 6.71 40.01 30.63 22.09 2 60.43 23.14 24.53 22.51 3 167.86 11.87 11.07 10.60 4 329.00 4.61 8.59 6.41 5 543.86 3.53 3.48 5.53 6 812.44 2.18 2.78 4.62 7 1134.73 1.01 2.12 3.30 8 1510.73 1.92 2.59 9 1940.45 1.22 2.23 10 2423.88 2.08 11 2961.03 1.90 12 3551.89 1.53 13 4196.47 0.72 14 4894.76 0.23 Total 87.66 87.19 86.34 Table3.Parametersandtheiruncertaintiesoftheone-componentfree-αfitswithχ2 (cid:2)1.13 dof Constraintonα/δα Tdust δTdust (K) (K) min max (cid:5) 5.0 10.11 23.83 2.67 (cid:5) 6.7 10.12 22.69 1.95 (cid:5)10.0 13.69 22.69 1.26 Constraintonα/δα α δα min max (cid:5) 5.0 1.08 4.71 0.91 (cid:5) 6.7 1.08 4.80 0.71 (cid:5)10.0 1.24 3.13 0.31 Constraintonα/δα τ δτ/τ ×10−5 (percent) min max (cid:5) 5.0 0.33 46.15 62.83 (cid:5) 6.7 0.45 46.15 49.02 (cid:5)10.0 0.61 46.15 23.25 (cid:2)c 2011RAS,MNRAS000,1–17

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.