1 TITLE 2 IntercomparisonofMODISalbedoretrievalsandinsitumeasurementsacrosstheglobalFLUXNET 3 network. 4 5 Authorlist 6 AlessandroCescattia,BarbaraMarcollab,SureshK.SanthanaVannanc,JerryYunPanc,MiguelO. 7 Románd,XiaoyuanYange,PhilippeCiaisf,RobertB.Cookc,BeverlyE.Lawg,GiorgioMatteuccih, 8 MircoMigliavaccaa,EddyMoorsi,AndrewD.Richardsonj,GüntherSeuferta,CrystalB.Schaafe 9 10 11 12 Affiliations 13 aEuropeanCommission-DGJointResearchCentre,InstituteforEnvironmentandSustainability, 14 ClimateChangeUnit,Ispra21027Italy 15 bEdmundMachFoundation,IASMAResearchandInnovationCentre,38010S.Micheleall'Adige 16 38010,Italy 17 cEnvironmentalSciencesDivision,OakRidgeNationalLaboratory,OakRidge,TN37831USA 18 d HydrosphericandBiosphericSciencesLaboratory,NASAGoddardSpaceFlightCenter,Greenbelt, 19 MD,UnitedStates 20 eCenterforRemoteSensing,DepartmentofGeographyandEnvironment,BostonUniversity,725 21 CommonwealthAvenue,BostonMA02215USA 22 fLaboratoiredesSciencesduClimatetdel’Environment(LSCE),JointUnitofCEA-CNRS-UVSQ, 23 Gif-sur-Yvette,France 24 gDepartmentofForestEcosystems&Society,OregonStateUniversity,Corvallis,OR,USA 1 1 hCNR-ISAFOM,ViaCavour,4-6,87036Rende,CS,Italy 2 iESS-CC,AlterraWageningenUR,Wageningen,Netherlands 3 jHarvardUniversity,DepartmentofOrganismicandEvolutionaryBiology,HarvardUniversity 4 Herbaria,22DivinityAvenue,CambridgeMA02138USA 5 6 7 Correspondingauthor 8 AlessandroCescatti [email protected] 9 EuropeanCommission-DGJointResearchCentre 10 InstituteforEnvironmentandSustainability 11 ClimateChangeandAirQualityUnit,TP290 12 ViaE.Fermi,2749,I-21027Ispra(VA),ITALY 13 Tel: +390332785582 14 Fax: +390332785704 15 2 1 Abstract 2 SurfacealbedoisakeyparameterintheEarth’senergybalancesinceitaffectstheamountofsolar 3 radiationdirectlyabsorbedattheplanetsurface.Itsvariabilityintimeandspacecanbeglobally 4 retrievedthroughtheuseofremotesensingproducts.Toevaluateandimprovethequalityofsatellite 5 retrievals,carefulintercomparisonswithinsitumeasurementsofsurfacealbedoarecrucial.Forthis 6 purposewecomparedMODISalbedoretrievalswithsurfacemeasurementstakenat53FLUXNET 7 sitesthatmetstrictconditionsoflandcoverhomogeneity.Agoodagreementbetweenmeanyearly 8 valuesofsatelliteretrievalsandinsitumeasurementswasfound(R2=0.82).Themismatchis 9 correlatedtothespatialheterogeneityofsurfacealbedo,stressingtherelevanceoflandcover 10 homogeneitywhencomparingpointtopixeldata.WhentheseasonalpatternsofMODISalbedois 11 consideredfordifferentplantfunctionaltypes,thematchwithsurfaceobservationisextremelygoodat 12 allforestsites.Onthecontrary,innon-forestsitessatelliteretrievalsunderestimateinsitu 13 measurementsacrosstheseasonalcycle.Themismatchobservedat grasslandsandcroplandssitesis 14 likelyduetotheextremefragmentationoftheselandscapes,asconfirmedbygeostatisticalattributes 15 derivedfromhighresolutionscenes. 16 Keyword:MODIS,surfacealbedo,validation,FLUXNET,terrestrialecosystems,plantfunctional 17 types,remotesensing, 18 1. Introduction 19 LandsurfacebroadbandalbedodirectlyaffectsEarth’sclimatebydeterminingthefractionof 20 shortwaveradiationabsorbedatthegroundandthereforeinfluencingthesurfaceenergybudget 21 (Dickinson,1983).Surfacealbedoisacrucialparameterindeterminingthemagnitudeofenergyfluxes 22 inthesoil–plant–atmospherecontinuum(Bonan,2008;Chapinetal.,2008),affectingsurface 23 temperature,evaporationandtranspiration,cloudformationandprecipitation,thusultimately 24 impactinggrossprimaryproductivity(Dickinson,1983;Lawrence&Slingo,2004;Ollingeretal., 3 1 2008;Sellersetal.,1997).Severalauthorshaveinvestigatedtheinterplaybetweenalbedoanddrought 2 (Govaerts&Lattanzio,2008)orfires(Randersonetal.,2006),andtheclimatesensitivitytovariation 3 insurfacealbedocausedbymajorchangesinlandcoverastheexpansionofagriculturallandinthe 4 northernhemisphereduringthe18thcentury(Myhreetal.,2005;Vavrusetal.,2008).Surfacealbedois 5 alsoakeyfactorintheexpectedpositivefeedbackbetweensurfacetemperatureandglobalwarmingat 6 northernlatitudes(Chapinetal.,2005)andmayplayarelevantroleinoffsettingthecarbon 7 sequestrationpotentialofafforestationprograms(Andersonetal.,2010;Betts,2000;Bettsetal.,2007; 8 Birdetal.,2008;Rotenberg&Yakir,2010). 9 GiventherelevanceofsurfacealbedointheEarth’sclimatesystem,monitoringthisparameterinspace 10 andtimeisfundamentalforthedevelopmentofglobalclimatemodels(Alton,2009;FridaA-Metal., 11 2006;Hollingeretal.,2009;Tianetal.,2004)andforclimatechangeandecosystemresearchin 12 general(Betts,2000;Charlsonetal.,2007;Charneyetal.,1977;Dirmeyer&Shukla,1994;Hall&Qu, 13 2006;Henderson-Sellers&Wilson,1983;Pintyetal.,2011a).Animportantsteptowardthe 14 availabilityofglobalsurfacespectralalbedohasbeenthelaunchofNASA’sTerraandAquasatellites 15 andtheMODerate-resolutionImagingSpectroradiometer(MODIS)(Luchtetal.,2000b;Salomonson 16 etal.,1989;Schaafetal.,2002).TheMODISsensorprovidesglobalmapsofsurfacealbedo 17 reconstructedfromretrievedmodelsofreflectanceanisotropyata500-mgriddedspatialresolution 18 every16daysforthefirstsevenMODISspectralbands(0.47–2.1(cid:2)m)andforthreebroadbandregions 19 (0.3–0.7,0.7–5.0,and0.3–5.0,(cid:2)m)(Luchtetal.,2000b;Moodyetal.,2008;Schaafetal.,2002). 20 Comparingsatellitealbedoretrievalswithsurfacemeasurementsandwithindependentsatellite 21 productsisfundamentalinevaluatingtheaccuracyofremotesensingproductsandimprovingretrieval 22 algorithms(Liangetal.,2002;Pintyetal.,2011b).Severalrecentstudieshaveevaluatedthe 23 consistencyofglobalalbedoproductsusinginsitudataatvariousspatialandtemporalscales(Chenet 24 al.,2008;Jinetal.,2003a;Jinetal.,2003b;Liangetal.,2002;Liuetal.,2009;Románetal.,2010; 25 Románetal.,2009; Wangetal.,2010)andunderspecificsnowcoverconditions(Stroeveetal.,2005). 4 1 Mostofthesestudiesstressthatadirectcomparisonisverychallengingbecauseofscalemismatchand 2 heterogeneityofthelandsurfaceatthesatellitemeasurementscalethatreducesthespatial 3 representativenessofgroundpointmeasurements(Liangetal.,2002;Románetal.,2010;Románetal., 4 2009).Asaconsequence,acarefulselectionofgroundpointsandthecharacterisationoftheirspatial 5 representativenessarecrucialforameaningfulpoint-to-pixelcomparison(Liangetal.,2002;Luchtet 6 al.,2000a;Románetal.,2009). 7 Intercomparisonsofsurfaceandsatellitealbedohavebeenperformedsofaratalimitednumberof 8 locations(Jinetal.,2003a;Liuetal.,2009;Románetal.,2010;Románetal.,2009;Salomonetal., 9 2006;Wangetal.,2010)andaglobalanalysisacrossdifferentcontinentsandplantfunctionaltypes 10 (PFTs)isstilllacking.Theobjectiveofthisworkistoprovideacomprehensiveintercomparisonin 11 timeandspaceofinsitumeasurementsandsatelliteretrievalsofsnow-freebroadbandsurfacealbedo. 12 ForthispurposewecomparedMODISgriddedalbedoretrievalsatthe500-mscalewithground 13 measurementsperformedacrosstheFLUXNETnetwork(Baldocchietal.,2001),thelargestglobal 14 datasetofenergyandmassfluxmeasurementsat ecosystemscale. 15 ThegeographicalextentoftheterrestrialdatasetallowedthecomparisonofseveralPFTsina 16 comprehensiveandconsistentwayacrosstheseasonalcycle.Inaddition,thelargenumberof 17 experimentalsitesinthenetworkprovidedanunprecedentedopportunitytoperformacareful 18 evaluationofthesurfaceheterogeneityatthereferenceplots,basedonacombinationofqualitativeand 19 quantitativemetrics.ForthispurposeimagesfromGoogleEarth, MODISandEnhancedThematic 20 MapperPlus(ETM+)havebeenusedatvariousspatialscales(from1x1to7x7km).Differences 21 betweensatelliteretrievalsandin-situalbedohavebeenanalyzedasafunctionofsurface 22 heterogeneity,PFTandseasonality.Resultsoftheintercomparisonhavebeenfinallydiscussed 23 consideringthedifferentsourcesofuncertaintythataffecttheterrestrialandsatellitedatasets. 24 25 5 1 2. Materials and methods 2 2.1. Surface data set 3 Inthisstudy,weusedinsituradiometricmeasurementsavailableintheFLUXNET“LaThuile” 4 database(www.fluxdata.org,October2010)releasedinDecember2007,whichincludeshalfhourly 5 observationsofecosystemfluxesandmeteorologicaldatafrommorethan250sites,foratotalof960 6 site-years. 7 Albedoiscomputedastheratioofdownwardandupwardglobalradiationasobservedwithdouble 8 pyranometers(e.g.CMA-11,CMA-6orCNR-1,Kipp&Zonen,Delft,TheNetherlands).Surfacealbedo 9 istypicallyestimatedinthespectralrange280-2800nm(accountingformorethan98.5%ofthe 10 surfacesolarradiationaccordingtoASTMG-173referencespectra)andisthereforecomparablewith 11 thebroadbandMODISalbedo(300-5000nm).Givingthatthefieldofview(FOV)ofpyranometersis 12 typically180deg,thefootprintofsurfacereflectancemeasurementsistheoreticalinfinite.However, 13 duetothecosineresponseofthesensor,50%ofthesignaloriginatesinaFOVof90degand80%ina 14 FOVof127deg.Thefootprintofsurfacealbedothereforedependsontheheightofthealbedometer 15 abovethecanopytop(rangingfrom5to10m)andtypicallyextendsupto10-20mfromthetowerat 16 80%ofthesignal. 17 Theuncertaintyofsurfacealbedomeasurementsdependsontheabsoluteaccuracyofphyranometers 18 (about5%)andonthenon-idealcosineresponse(about3%).Mostoftheerrorsassociatedwiththe 19 absoluteaccuracyoftheinstrumentaresimilarforupwardanddownwardfluxesandtherefore 20 compensate.Overalltheexpectedaccuracyisintheorderof4-7%inclearskyand1-4%inovercast 21 condition(Pirazzini,2004;Pirazzinietal.,2006). 22 ThegeographicaldistributionofthesitesisstronglyclusteredinEuropeandNorthAmerica(97and 23 106sitescorrespondingto38%and42%ofthetotal),whicharetheregionswiththelongesthistoryof 24 continuousecosystemfluxmeasurements(Baldocchietal.,2001).Severalsitesinthedatabaseare 6 1 locatedintropicalAmazoniaandEastAsia,whilethecoverageinAfrica,CentralAsia,andAustralia 2 remainssparseandlimitedinthenumberofobservationyears.Despitetheunevengeographical 3 distribution,the“LaThuile”databaseguaranteesa goodcoverageofthemostimportantplant 4 functionaltypes,amongwhichevergreenneedleleafforest(ENF),grassland(GRA),deciduous 5 broadleafforest(DBF),andcropland(CRO)arethemostrepresentedwithrespectively28%,18%, 6 13%and12%ofthesites. 7 Outofthe138FLUXNETsitesreportingcontinuousmeasurementsofincomingandoutgoing 8 shortwaveradiation(300-2800nm;CMA-11,CMA-6orCNR-1,Kipp&Zonen,Delft,The 9 Netherlands)18havebeenexcludedafteraQA/QCanalysisofthealbedodataseries.TheQA/QC 10 procedurewasbasedonthefollowingcriteria:occurrenceofanoffsetintheincomingorreflected 11 radiation(night-timedatasystematicallyandsignificantlydifferentfromzero),occurrenceofphaselag 12 betweenincidentandreflectedradiationandsystematicoccurrenceofunrealisticvalues(e.g.reflected 13 radiationhigherthanincidentradiation). 14 Thelandcovercharacteristicsoftheremaining120siteshavebeencarefullyclassifiedusinghigh 15 resolutionsatelliteimages(availableviaGoogleEarth(cid:2)),toidentifythosematchingtherequirement 16 ofhomogeneityintheareasurroundingthemeasurementtower(Jinetal.,2003b;Románetal.,2010; 17 Románetal.,2009).AlthoughMODISalbedoisgriddedat500-mresolutionthelandclassificationhas 18 beenperformedat1km2,takingintoaccounttheuncertaintyinthegeospatialregistrationofsatellite 19 productsandthefactthatthealbedoretrievalalgorithmisbasedonmulti-angleobservationscovering 20 largerareasatedgeofscan. 21 Theclassificationprocesswasbasedonthefollowingfoursteps: 22 1. visualidentificationofthenumberandextensionofdifferentPFTsinthe1km2area 23 surroundingthetower; 24 2. verificationofthecorrespondencebetweenthedominantPFTinthe1km2areaandthePFTat 25 thetowersiteasreportedintheFLUXNETdatabase; 7 1 3. qualitativerankingoflandscapeheterogeneityinthreeclasses(low,medium,high)basedonthe 2 plantcanopycharacteristics(treedensity,patchiness,etc.); 3 4. attributionofaconfidencelevelintheclassificationofthesites(low,medium,high)basedon 4 thequalityoftheimage. 5 Toguaranteethehighestlevelofhomogeneityandtominimizeissuesassociatedwithspatial 6 representativenessinthepoint-to-pixelcomparison,onlythosesitescharacterizedbythelowestlevel 7 ofheterogeneityandwithonlyonePFTinthe1km2areawereincludedintheanalysis. 8 2.2. MODIS products 9 TheMODISalbedoretrievalsattheFLUXNETsitesweregeneratedusingthreeMODISproducts, 10 namely,MCD43A1(BRDF-AlbedoModelParameters16-DayL3Global500m),M*D04(Aerosol 11 productdailyL2Global10km),andMCD43A2(BRDF-AlbedoQuality16-DayL3Global500m).All 12 theseproductsarefromtheCollectionV005MODISreprocessingcampaign.TheMODISsurface 13 reflectanceanisotropyandalbedoproductisbasedonallhighquality,cloud-free,atmospherically 14 correctedsurfacereflectancesthatareobtainedovera16-dayperiod.Whensufficientobservationsare 15 availabletoadequatelysamplethesurfaceanisotropy,anappropriaterenditionofthe 16 RossThickLiSparseReciprocalBidirectionalDistributionReflectanceModel(BRDF)modelisretrieved 17 (Luchtetal.,2000b;Schaafetal.,2002).Thisretrievalisattemptedevery8daysata500mgridded 18 resolution.Thisretrievalmodelisusedtogenerateintrinsicvaluesofclear-skydirectsurfacealbedo 19 (referredtoasdirectionalhemisphericalreflectanceorblack-skyalbedo)andwhollydiffusealbedo 20 underisotropicillumination(bihemisphericalalbedoorwhite-skyalbedo).Thesecanbecombined 21 underparticularilluminationandatmosphericaerosolopticaldepthconditions(Luchtetal.,2000b; 22 Románetal.,2010)toprovideclear-skyalbedoscomparabletothosemeasuredinsituatafluxtower. 23 Albedoquantitiesarereportedata500-mgriddedresolution,butallmulti-angleobservationsthat 24 encompassareasareutilizedintheretrieval.Therefore,althoughextendedobservationcoverageis 8 1 somewhatcompensatedforintheretrievalprocess,itisbesttoconsiderregionslargerthan500 m 2 whencomparingobservationsmadefromsatellitetothosemadeontheground. 3 Thecalculationofclear-skysurfacealbedoatthetowersitesinvolvedthefollowingtwosteps.Thefirst 4 stepwasthegenerationoftheaerosolopticaldepthvaluesforeachsiteandeachcalendardateusing 5 theMODIS–Terra(MOD04)andMODIS-Aqua(MYD04)aerosolswathproducts.Togeneratethe 6 opticaldepth,theMODISAdaptiveProcessingSystem-MODAPS(Masuokaetal.,2000;Masuokaet 7 al.,2007)wasusedtoprepareM*04subsetsat50x50kmregioncenteredatthesite.Allpixelsthat 8 hadopticaldepthvaluesgreaterthan0.35oracloudfractiongreaterthan0.6werefilteredoutandnot 9 usedintheopticaldepthgeneration.Allpixelsthathadfillvaluesforsolarzenithanglewerealso 10 rejected.Afterthefilterswereapplied,acombinedM[OY]Dopticaldepthfilewasgeneratedforeach 11 site,takingvalidopticaldepthvaluesfromTerraandAquaandgeneratingonemeanvalueforthe 12 opticaldepthpersiteperday.Thismethodofcourseisnotasaccurateashavinginstantaneoussun 13 photometerdata(Holbenetal.,1998)atthesite,butthemeangivesanapproximationoftheaerosol 14 opticaldepthoverthelocalsolarnoon. 15 ThesecondstepwasthecalculationoftheclearskysurfacealbedoonthebasisoftheMODIS-derived 16 550nmaerosolopticaldepthscalculatedinthepreviousstep,thelocalsolarzenithangle,the 17 MCD43A1product,andQAflagsfromMCD43A2foreachsiteinvolvedintheanalysisandforeach 18 date.IfadatehasnovalidMCD43A1pixelsoriftheopticaldepthwasafillvalue,noalbedowas 19 calculatedforthatdate.Asfarasqualitycriteriaareconcernedonly“fullBRDFinversion”pixels 20 (QA=0processed,goodquality)wereincludedinthecalculation,whilethe"Snow_BRDF_Albedo" 21 bandoftheMCD43A2productwasusedtoidentifyandexcludesnowalbedoretrievals.Followingthis 22 procedureclear-skyMODISalbedoatlocalsolarnoonwereretrievedateachFLUXNETsiteforall 23 dayswithavailableaerosolMODISproduct(M*D04)information,snow-freeconditions,andsolar 24 elevationanglesgreaterthan20deg.Onthesamedates,thefluxtowermeasurementsofalbedohave 25 beenaveragedforthehourcenteredatsolarnoon. 9 1 TointegratetheobservationsattheFLUXNETsitesintheglobalpicture,snow-freeglobalalbedo 2 averagesperPFTandlatitudinalbandwerecomputedfromtheMODISV0050.05degreeClimate 3 ModelingGrid(CMG)productandstratifiedwiththeMCD12C1landcoverproduct.Yearlyaverages 4 havebeencalculatedoneachpixelfulfillingthefollowingrequirements:QA=0(majorityprocessed, 5 goodquality),snowcoveragelessthan10%(basedonMODISestimates),andmajorPFTcoverage 6 greaterthan70%ofthepixel.Notethatthe0.05degreeMCD43C1productisanaverageofthe500m 7 pixelunderlyingeach0.05degreepixelandthequalityflagonlyrepresentsthequalityofthemajority 8 oftheunderlyingpixels. 9 2.3. Landscape heterogeneity 10 Oneofthekeyissuesintheintercomparisonofsatelliteretrievalandsurfaceobservationsisthe 11 objectiveandquantitativeevaluationoflandscapeheterogeneityandtherepresentativenessofinsitu 12 measurements(Liangetal.,2002;Románetal.,2009;Susakietal.,2007). 13 ForthispurposeweappliedthemethodologypresentedbyRománetal.(2009)andbasedonthe 14 estimationofgeostatisticalattributesfromhighresolutionscenes(EnhancedThematicMapperPlus). 15 Thespatialpatternsandscalesoflandscapeheterogeneityhavebeenestimatedfromvariogrammodels 16 fittedatFLUXNETsitesoverthespatialscalesofMODISobservations. 17 Insynthesis,themethodologyadoptedfortheestimationofgeostatisticalindexesisbasedonthe 18 comparisonofvariogrammodelparametersretrievedatdifferentspatialresolution(i.e.from1.0km2to 19 1.5km2squaredsubsets).Byexaminingthevariogramparametersattwoscales,thespatial 20 characteristicsofagivenmeasurementsiteiscomparedagainstthelargerlandscapesextendingto 21 severalMODISpixels. 22 Fourdifferentgeostatisticalattributesofspatialrepresentativenesshavebeenusedtodescribethe 23 overallvariability(R ),spatialextent(R ),strengthofthespatialcorrelation(R ),and CV SE ST 10