ebook img

NASA Technical Reports Server (NTRS) 20120013275: Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network PDF

0.91 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20120013275: Intercomparison of MODIS Albedo Retrievals and In Situ Measurements Across the Global FLUXNET Network

1 TITLE 2 IntercomparisonofMODISalbedoretrievalsandinsitumeasurementsacrosstheglobalFLUXNET 3 network. 4 5 Authorlist 6 AlessandroCescattia,BarbaraMarcollab,SureshK.SanthanaVannanc,JerryYunPanc,MiguelO. 7 Románd,XiaoyuanYange,PhilippeCiaisf,RobertB.Cookc,BeverlyE.Lawg,GiorgioMatteuccih, 8 MircoMigliavaccaa,EddyMoorsi,AndrewD.Richardsonj,GüntherSeuferta,CrystalB.Schaafe 9 10 11 12 Affiliations 13 aEuropeanCommission-DGJointResearchCentre,InstituteforEnvironmentandSustainability, 14 ClimateChangeUnit,Ispra21027Italy 15 bEdmundMachFoundation,IASMAResearchandInnovationCentre,38010S.Micheleall'Adige 16 38010,Italy 17 cEnvironmentalSciencesDivision,OakRidgeNationalLaboratory,OakRidge,TN37831USA 18 d HydrosphericandBiosphericSciencesLaboratory,NASAGoddardSpaceFlightCenter,Greenbelt, 19 MD,UnitedStates 20 eCenterforRemoteSensing,DepartmentofGeographyandEnvironment,BostonUniversity,725 21 CommonwealthAvenue,BostonMA02215USA 22 fLaboratoiredesSciencesduClimatetdel’Environment(LSCE),JointUnitofCEA-CNRS-UVSQ, 23 Gif-sur-Yvette,France 24 gDepartmentofForestEcosystems&Society,OregonStateUniversity,Corvallis,OR,USA 1 1 hCNR-ISAFOM,ViaCavour,4-6,87036Rende,CS,Italy 2 iESS-CC,AlterraWageningenUR,Wageningen,Netherlands 3 jHarvardUniversity,DepartmentofOrganismicandEvolutionaryBiology,HarvardUniversity 4 Herbaria,22DivinityAvenue,CambridgeMA02138USA 5 6 7 Correspondingauthor 8 AlessandroCescatti [email protected] 9 EuropeanCommission-DGJointResearchCentre 10 InstituteforEnvironmentandSustainability 11 ClimateChangeandAirQualityUnit,TP290 12 ViaE.Fermi,2749,I-21027Ispra(VA),ITALY 13 Tel: +390332785582 14 Fax: +390332785704 15 2 1 Abstract 2 SurfacealbedoisakeyparameterintheEarth’senergybalancesinceitaffectstheamountofsolar 3 radiationdirectlyabsorbedattheplanetsurface.Itsvariabilityintimeandspacecanbeglobally 4 retrievedthroughtheuseofremotesensingproducts.Toevaluateandimprovethequalityofsatellite 5 retrievals,carefulintercomparisonswithinsitumeasurementsofsurfacealbedoarecrucial.Forthis 6 purposewecomparedMODISalbedoretrievalswithsurfacemeasurementstakenat53FLUXNET 7 sitesthatmetstrictconditionsoflandcoverhomogeneity.Agoodagreementbetweenmeanyearly 8 valuesofsatelliteretrievalsandinsitumeasurementswasfound(R2=0.82).Themismatchis 9 correlatedtothespatialheterogeneityofsurfacealbedo,stressingtherelevanceoflandcover 10 homogeneitywhencomparingpointtopixeldata.WhentheseasonalpatternsofMODISalbedois 11 consideredfordifferentplantfunctionaltypes,thematchwithsurfaceobservationisextremelygoodat 12 allforestsites.Onthecontrary,innon-forestsitessatelliteretrievalsunderestimateinsitu 13 measurementsacrosstheseasonalcycle.Themismatchobservedat grasslandsandcroplandssitesis 14 likelyduetotheextremefragmentationoftheselandscapes,asconfirmedbygeostatisticalattributes 15 derivedfromhighresolutionscenes. 16 Keyword:MODIS,surfacealbedo,validation,FLUXNET,terrestrialecosystems,plantfunctional 17 types,remotesensing, 18 1. Introduction 19 LandsurfacebroadbandalbedodirectlyaffectsEarth’sclimatebydeterminingthefractionof 20 shortwaveradiationabsorbedatthegroundandthereforeinfluencingthesurfaceenergybudget 21 (Dickinson,1983).Surfacealbedoisacrucialparameterindeterminingthemagnitudeofenergyfluxes 22 inthesoil–plant–atmospherecontinuum(Bonan,2008;Chapinetal.,2008),affectingsurface 23 temperature,evaporationandtranspiration,cloudformationandprecipitation,thusultimately 24 impactinggrossprimaryproductivity(Dickinson,1983;Lawrence&Slingo,2004;Ollingeretal., 3 1 2008;Sellersetal.,1997).Severalauthorshaveinvestigatedtheinterplaybetweenalbedoanddrought 2 (Govaerts&Lattanzio,2008)orfires(Randersonetal.,2006),andtheclimatesensitivitytovariation 3 insurfacealbedocausedbymajorchangesinlandcoverastheexpansionofagriculturallandinthe 4 northernhemisphereduringthe18thcentury(Myhreetal.,2005;Vavrusetal.,2008).Surfacealbedois 5 alsoakeyfactorintheexpectedpositivefeedbackbetweensurfacetemperatureandglobalwarmingat 6 northernlatitudes(Chapinetal.,2005)andmayplayarelevantroleinoffsettingthecarbon 7 sequestrationpotentialofafforestationprograms(Andersonetal.,2010;Betts,2000;Bettsetal.,2007; 8 Birdetal.,2008;Rotenberg&Yakir,2010). 9 GiventherelevanceofsurfacealbedointheEarth’sclimatesystem,monitoringthisparameterinspace 10 andtimeisfundamentalforthedevelopmentofglobalclimatemodels(Alton,2009;FridaA-Metal., 11 2006;Hollingeretal.,2009;Tianetal.,2004)andforclimatechangeandecosystemresearchin 12 general(Betts,2000;Charlsonetal.,2007;Charneyetal.,1977;Dirmeyer&Shukla,1994;Hall&Qu, 13 2006;Henderson-Sellers&Wilson,1983;Pintyetal.,2011a).Animportantsteptowardthe 14 availabilityofglobalsurfacespectralalbedohasbeenthelaunchofNASA’sTerraandAquasatellites 15 andtheMODerate-resolutionImagingSpectroradiometer(MODIS)(Luchtetal.,2000b;Salomonson 16 etal.,1989;Schaafetal.,2002).TheMODISsensorprovidesglobalmapsofsurfacealbedo 17 reconstructedfromretrievedmodelsofreflectanceanisotropyata500-mgriddedspatialresolution 18 every16daysforthefirstsevenMODISspectralbands(0.47–2.1(cid:2)m)andforthreebroadbandregions 19 (0.3–0.7,0.7–5.0,and0.3–5.0,(cid:2)m)(Luchtetal.,2000b;Moodyetal.,2008;Schaafetal.,2002). 20 Comparingsatellitealbedoretrievalswithsurfacemeasurementsandwithindependentsatellite 21 productsisfundamentalinevaluatingtheaccuracyofremotesensingproductsandimprovingretrieval 22 algorithms(Liangetal.,2002;Pintyetal.,2011b).Severalrecentstudieshaveevaluatedthe 23 consistencyofglobalalbedoproductsusinginsitudataatvariousspatialandtemporalscales(Chenet 24 al.,2008;Jinetal.,2003a;Jinetal.,2003b;Liangetal.,2002;Liuetal.,2009;Románetal.,2010; 25 Románetal.,2009; Wangetal.,2010)andunderspecificsnowcoverconditions(Stroeveetal.,2005). 4 1 Mostofthesestudiesstressthatadirectcomparisonisverychallengingbecauseofscalemismatchand 2 heterogeneityofthelandsurfaceatthesatellitemeasurementscalethatreducesthespatial 3 representativenessofgroundpointmeasurements(Liangetal.,2002;Románetal.,2010;Románetal., 4 2009).Asaconsequence,acarefulselectionofgroundpointsandthecharacterisationoftheirspatial 5 representativenessarecrucialforameaningfulpoint-to-pixelcomparison(Liangetal.,2002;Luchtet 6 al.,2000a;Románetal.,2009). 7 Intercomparisonsofsurfaceandsatellitealbedohavebeenperformedsofaratalimitednumberof 8 locations(Jinetal.,2003a;Liuetal.,2009;Románetal.,2010;Románetal.,2009;Salomonetal., 9 2006;Wangetal.,2010)andaglobalanalysisacrossdifferentcontinentsandplantfunctionaltypes 10 (PFTs)isstilllacking.Theobjectiveofthisworkistoprovideacomprehensiveintercomparisonin 11 timeandspaceofinsitumeasurementsandsatelliteretrievalsofsnow-freebroadbandsurfacealbedo. 12 ForthispurposewecomparedMODISgriddedalbedoretrievalsatthe500-mscalewithground 13 measurementsperformedacrosstheFLUXNETnetwork(Baldocchietal.,2001),thelargestglobal 14 datasetofenergyandmassfluxmeasurementsat ecosystemscale. 15 ThegeographicalextentoftheterrestrialdatasetallowedthecomparisonofseveralPFTsina 16 comprehensiveandconsistentwayacrosstheseasonalcycle.Inaddition,thelargenumberof 17 experimentalsitesinthenetworkprovidedanunprecedentedopportunitytoperformacareful 18 evaluationofthesurfaceheterogeneityatthereferenceplots,basedonacombinationofqualitativeand 19 quantitativemetrics.ForthispurposeimagesfromGoogleEarth, MODISandEnhancedThematic 20 MapperPlus(ETM+)havebeenusedatvariousspatialscales(from1x1to7x7km).Differences 21 betweensatelliteretrievalsandin-situalbedohavebeenanalyzedasafunctionofsurface 22 heterogeneity,PFTandseasonality.Resultsoftheintercomparisonhavebeenfinallydiscussed 23 consideringthedifferentsourcesofuncertaintythataffecttheterrestrialandsatellitedatasets. 24 25 5 1 2. Materials and methods 2 2.1. Surface data set 3 Inthisstudy,weusedinsituradiometricmeasurementsavailableintheFLUXNET“LaThuile” 4 database(www.fluxdata.org,October2010)releasedinDecember2007,whichincludeshalfhourly 5 observationsofecosystemfluxesandmeteorologicaldatafrommorethan250sites,foratotalof960 6 site-years. 7 Albedoiscomputedastheratioofdownwardandupwardglobalradiationasobservedwithdouble 8 pyranometers(e.g.CMA-11,CMA-6orCNR-1,Kipp&Zonen,Delft,TheNetherlands).Surfacealbedo 9 istypicallyestimatedinthespectralrange280-2800nm(accountingformorethan98.5%ofthe 10 surfacesolarradiationaccordingtoASTMG-173referencespectra)andisthereforecomparablewith 11 thebroadbandMODISalbedo(300-5000nm).Givingthatthefieldofview(FOV)ofpyranometersis 12 typically180deg,thefootprintofsurfacereflectancemeasurementsistheoreticalinfinite.However, 13 duetothecosineresponseofthesensor,50%ofthesignaloriginatesinaFOVof90degand80%ina 14 FOVof127deg.Thefootprintofsurfacealbedothereforedependsontheheightofthealbedometer 15 abovethecanopytop(rangingfrom5to10m)andtypicallyextendsupto10-20mfromthetowerat 16 80%ofthesignal. 17 Theuncertaintyofsurfacealbedomeasurementsdependsontheabsoluteaccuracyofphyranometers 18 (about5%)andonthenon-idealcosineresponse(about3%).Mostoftheerrorsassociatedwiththe 19 absoluteaccuracyoftheinstrumentaresimilarforupwardanddownwardfluxesandtherefore 20 compensate.Overalltheexpectedaccuracyisintheorderof4-7%inclearskyand1-4%inovercast 21 condition(Pirazzini,2004;Pirazzinietal.,2006). 22 ThegeographicaldistributionofthesitesisstronglyclusteredinEuropeandNorthAmerica(97and 23 106sitescorrespondingto38%and42%ofthetotal),whicharetheregionswiththelongesthistoryof 24 continuousecosystemfluxmeasurements(Baldocchietal.,2001).Severalsitesinthedatabaseare 6 1 locatedintropicalAmazoniaandEastAsia,whilethecoverageinAfrica,CentralAsia,andAustralia 2 remainssparseandlimitedinthenumberofobservationyears.Despitetheunevengeographical 3 distribution,the“LaThuile”databaseguaranteesa goodcoverageofthemostimportantplant 4 functionaltypes,amongwhichevergreenneedleleafforest(ENF),grassland(GRA),deciduous 5 broadleafforest(DBF),andcropland(CRO)arethemostrepresentedwithrespectively28%,18%, 6 13%and12%ofthesites. 7 Outofthe138FLUXNETsitesreportingcontinuousmeasurementsofincomingandoutgoing 8 shortwaveradiation(300-2800nm;CMA-11,CMA-6orCNR-1,Kipp&Zonen,Delft,The 9 Netherlands)18havebeenexcludedafteraQA/QCanalysisofthealbedodataseries.TheQA/QC 10 procedurewasbasedonthefollowingcriteria:occurrenceofanoffsetintheincomingorreflected 11 radiation(night-timedatasystematicallyandsignificantlydifferentfromzero),occurrenceofphaselag 12 betweenincidentandreflectedradiationandsystematicoccurrenceofunrealisticvalues(e.g.reflected 13 radiationhigherthanincidentradiation). 14 Thelandcovercharacteristicsoftheremaining120siteshavebeencarefullyclassifiedusinghigh 15 resolutionsatelliteimages(availableviaGoogleEarth(cid:2)),toidentifythosematchingtherequirement 16 ofhomogeneityintheareasurroundingthemeasurementtower(Jinetal.,2003b;Románetal.,2010; 17 Románetal.,2009).AlthoughMODISalbedoisgriddedat500-mresolutionthelandclassificationhas 18 beenperformedat1km2,takingintoaccounttheuncertaintyinthegeospatialregistrationofsatellite 19 productsandthefactthatthealbedoretrievalalgorithmisbasedonmulti-angleobservationscovering 20 largerareasatedgeofscan. 21 Theclassificationprocesswasbasedonthefollowingfoursteps: 22 1. visualidentificationofthenumberandextensionofdifferentPFTsinthe1km2area 23 surroundingthetower; 24 2. verificationofthecorrespondencebetweenthedominantPFTinthe1km2areaandthePFTat 25 thetowersiteasreportedintheFLUXNETdatabase; 7 1 3. qualitativerankingoflandscapeheterogeneityinthreeclasses(low,medium,high)basedonthe 2 plantcanopycharacteristics(treedensity,patchiness,etc.); 3 4. attributionofaconfidencelevelintheclassificationofthesites(low,medium,high)basedon 4 thequalityoftheimage. 5 Toguaranteethehighestlevelofhomogeneityandtominimizeissuesassociatedwithspatial 6 representativenessinthepoint-to-pixelcomparison,onlythosesitescharacterizedbythelowestlevel 7 ofheterogeneityandwithonlyonePFTinthe1km2areawereincludedintheanalysis. 8 2.2. MODIS products 9 TheMODISalbedoretrievalsattheFLUXNETsitesweregeneratedusingthreeMODISproducts, 10 namely,MCD43A1(BRDF-AlbedoModelParameters16-DayL3Global500m),M*D04(Aerosol 11 productdailyL2Global10km),andMCD43A2(BRDF-AlbedoQuality16-DayL3Global500m).All 12 theseproductsarefromtheCollectionV005MODISreprocessingcampaign.TheMODISsurface 13 reflectanceanisotropyandalbedoproductisbasedonallhighquality,cloud-free,atmospherically 14 correctedsurfacereflectancesthatareobtainedovera16-dayperiod.Whensufficientobservationsare 15 availabletoadequatelysamplethesurfaceanisotropy,anappropriaterenditionofthe 16 RossThickLiSparseReciprocalBidirectionalDistributionReflectanceModel(BRDF)modelisretrieved 17 (Luchtetal.,2000b;Schaafetal.,2002).Thisretrievalisattemptedevery8daysata500mgridded 18 resolution.Thisretrievalmodelisusedtogenerateintrinsicvaluesofclear-skydirectsurfacealbedo 19 (referredtoasdirectionalhemisphericalreflectanceorblack-skyalbedo)andwhollydiffusealbedo 20 underisotropicillumination(bihemisphericalalbedoorwhite-skyalbedo).Thesecanbecombined 21 underparticularilluminationandatmosphericaerosolopticaldepthconditions(Luchtetal.,2000b; 22 Románetal.,2010)toprovideclear-skyalbedoscomparabletothosemeasuredinsituatafluxtower. 23 Albedoquantitiesarereportedata500-mgriddedresolution,butallmulti-angleobservationsthat 24 encompassareasareutilizedintheretrieval.Therefore,althoughextendedobservationcoverageis 8 1 somewhatcompensatedforintheretrievalprocess,itisbesttoconsiderregionslargerthan500 m 2 whencomparingobservationsmadefromsatellitetothosemadeontheground. 3 Thecalculationofclear-skysurfacealbedoatthetowersitesinvolvedthefollowingtwosteps.Thefirst 4 stepwasthegenerationoftheaerosolopticaldepthvaluesforeachsiteandeachcalendardateusing 5 theMODIS–Terra(MOD04)andMODIS-Aqua(MYD04)aerosolswathproducts.Togeneratethe 6 opticaldepth,theMODISAdaptiveProcessingSystem-MODAPS(Masuokaetal.,2000;Masuokaet 7 al.,2007)wasusedtoprepareM*04subsetsat50x50kmregioncenteredatthesite.Allpixelsthat 8 hadopticaldepthvaluesgreaterthan0.35oracloudfractiongreaterthan0.6werefilteredoutandnot 9 usedintheopticaldepthgeneration.Allpixelsthathadfillvaluesforsolarzenithanglewerealso 10 rejected.Afterthefilterswereapplied,acombinedM[OY]Dopticaldepthfilewasgeneratedforeach 11 site,takingvalidopticaldepthvaluesfromTerraandAquaandgeneratingonemeanvalueforthe 12 opticaldepthpersiteperday.Thismethodofcourseisnotasaccurateashavinginstantaneoussun 13 photometerdata(Holbenetal.,1998)atthesite,butthemeangivesanapproximationoftheaerosol 14 opticaldepthoverthelocalsolarnoon. 15 ThesecondstepwasthecalculationoftheclearskysurfacealbedoonthebasisoftheMODIS-derived 16 550nmaerosolopticaldepthscalculatedinthepreviousstep,thelocalsolarzenithangle,the 17 MCD43A1product,andQAflagsfromMCD43A2foreachsiteinvolvedintheanalysisandforeach 18 date.IfadatehasnovalidMCD43A1pixelsoriftheopticaldepthwasafillvalue,noalbedowas 19 calculatedforthatdate.Asfarasqualitycriteriaareconcernedonly“fullBRDFinversion”pixels 20 (QA=0processed,goodquality)wereincludedinthecalculation,whilethe"Snow_BRDF_Albedo" 21 bandoftheMCD43A2productwasusedtoidentifyandexcludesnowalbedoretrievals.Followingthis 22 procedureclear-skyMODISalbedoatlocalsolarnoonwereretrievedateachFLUXNETsiteforall 23 dayswithavailableaerosolMODISproduct(M*D04)information,snow-freeconditions,andsolar 24 elevationanglesgreaterthan20deg.Onthesamedates,thefluxtowermeasurementsofalbedohave 25 beenaveragedforthehourcenteredatsolarnoon. 9 1 TointegratetheobservationsattheFLUXNETsitesintheglobalpicture,snow-freeglobalalbedo 2 averagesperPFTandlatitudinalbandwerecomputedfromtheMODISV0050.05degreeClimate 3 ModelingGrid(CMG)productandstratifiedwiththeMCD12C1landcoverproduct.Yearlyaverages 4 havebeencalculatedoneachpixelfulfillingthefollowingrequirements:QA=0(majorityprocessed, 5 goodquality),snowcoveragelessthan10%(basedonMODISestimates),andmajorPFTcoverage 6 greaterthan70%ofthepixel.Notethatthe0.05degreeMCD43C1productisanaverageofthe500m 7 pixelunderlyingeach0.05degreepixelandthequalityflagonlyrepresentsthequalityofthemajority 8 oftheunderlyingpixels. 9 2.3. Landscape heterogeneity 10 Oneofthekeyissuesintheintercomparisonofsatelliteretrievalandsurfaceobservationsisthe 11 objectiveandquantitativeevaluationoflandscapeheterogeneityandtherepresentativenessofinsitu 12 measurements(Liangetal.,2002;Románetal.,2009;Susakietal.,2007). 13 ForthispurposeweappliedthemethodologypresentedbyRománetal.(2009)andbasedonthe 14 estimationofgeostatisticalattributesfromhighresolutionscenes(EnhancedThematicMapperPlus). 15 Thespatialpatternsandscalesoflandscapeheterogeneityhavebeenestimatedfromvariogrammodels 16 fittedatFLUXNETsitesoverthespatialscalesofMODISobservations. 17 Insynthesis,themethodologyadoptedfortheestimationofgeostatisticalindexesisbasedonthe 18 comparisonofvariogrammodelparametersretrievedatdifferentspatialresolution(i.e.from1.0km2to 19 1.5km2squaredsubsets).Byexaminingthevariogramparametersattwoscales,thespatial 20 characteristicsofagivenmeasurementsiteiscomparedagainstthelargerlandscapesextendingto 21 severalMODISpixels. 22 Fourdifferentgeostatisticalattributesofspatialrepresentativenesshavebeenusedtodescribethe 23 overallvariability(R ),spatialextent(R ),strengthofthespatialcorrelation(R ),and CV SE ST 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.