ebook img

NASA Technical Reports Server (NTRS) 20120004020: Reduction of Defects in Germanium-Silicon PDF

2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20120004020: Reduction of Defects in Germanium-Silicon

50th AIAA Aerospace Sciences Meeting Nashville, Tennessee January 9-12, 2012 RRedducttiion off DDeffectts iin GGermaniium-SSiilliicon Martin. P. Volz1, Arne Cröll2, Konstantin Mazuruk3 1NASA, Marshall Space Fligght Center, EM31, Huntsville, AL 35812, USA 2Kristallographisches Institute, University of Freiburg, Hebelstr. 25, D-79104, Freiburgg, Germanyy 3University of Alabama in Huntsville, Huntsville, AL 35762, USA RDGS Flight Investigation • “Reduction of Defects in Germanium-Silicon” (RDGS) is a NASA Materials Science Flight Investigation • RDGS is a collaborative investigation between NASA and the European Space Agency (ESA) • The RDGS experiments will be conducted in the Low Gradient Furnace (LGF) in tthhee MMaatteerriiaallss SScciieennccee LLaabboorraattoorryy oonn tthhee IInntteerrnnaattiioonnaall SSppaaccee SSttaattiioonn ((IISSSS)) MSL Low Gradient Furnace Materials Science Laboratory Overview of Investigation This investigation involves the Float Normal Detached zone Bridgman Bridgman comparison of results achieved from tthhree ttypes off crysttall growtthh off feed rod germanium and germanium-silicon alloys: melt melt melt zzoonnee •FFlloatt zone growtthh •Bridgman growth •Detached Bridgman growth crystal ccrryyssttaall ccrryyssttaall An understanding of the de-wetting process that enables detached Bridgman growth and of the roles of thermo- and solutocapillary convecttiion iin ddettermiiniing tthhe chharactteriisttiics off fflloatt zone GGe-SSii crystals are the prerequisite objectives of this investigation. The fundamental objective is a quantitative comparison of the defects iindducedd bby variious growthh ffactors among thhe thhree types off growthh methods. Why Study Germanium-Silicon Alloys? • Technological applications  XX-rraayy aanndd nneeuuttrroonn ooppttiiccss ((ggrraaddiieenntt ccrryyssttaallss))  High-efficiency solar cell material  Thermoelectric converters  High-speed, high frequency electronic devices (HBTs, HBFETs) as alternative to GaAs • Characterization methods for silicon and ggermanium are well-established and are applicable to the alloy crystals. • Relatively well known material properties and material parametters • The vapor pressure of silicon and germanium melts can be neeggleecctteedd;; ttheeyy aaree noon-ttooxicc maatteeriaalss. Technological Challenges of Ge Si 1-x x • Large separation of solidus and lliiqquiidduss ccurrveess lleeaaddss ttoo ssttrroonngg segregation • Lattice mismatch (4%) leads to Phase diagram Ge-Si increased stress, cracks, high dislocation densities, ] C polycrystalline growth [° T • The reactivity of liquid silicon leads to a reaction with crucible mmaatteerriiaallss ((ssttiicckkiinngg)) aass wweellll aass Si concentration [at%] contamination of the melt and the crystals Principles of Detached Bridgman Growth Sufficient condition for detachment1,2: Advantages No stickingg of the cryystal Bridgman Detached to the ampoule wall growth Bridgman  Reduced stress  z  Reduced dislocations   No heterogeneous  nucleation by the ampoule :: ggrroowwtthh aannggllee melt melt :wetting angle  Reduced contamination    crystal gap crystal T m T Growth Angle and Wetting Angle Growth angle : Wetting angle :  llgg  lg  feed rod melt   sl   sl sg  substrate mmeelltt zzoonnee ssllgg ttrriijjuunnccttiioonn    arccos sg sl  lg  crystal sg ((YYoouunngg eeqquuaattiioonn))  2 2 2        sg lg sl    arccos  2       : surface energy liquid-gas  sgg lgg  lg  : surfface energy solliidd-lliiquiidd sl W.Bardsley, F.C. Frank, G.W. Green, D.T.J. Hurle:  : surface energy solid-gas J. Crystal Growth 23 (1974), 341 sg Gas Pressure Below Meniscus Schematic Diagram of Detached Solidification MM. PP. VVoollzz, KK. MMaazzuurruukk, JJoouurrnnaall ooff Crystal Growth 321 (2011) 29-35 Calculation of Meniscus Shapes d2z dz dr2 dr Young-Laplace Equation   P  Bz(r) 3 1  2  2  2  2  ddz   ddz  1   r1        dr   dr       P r P  P  P gh 2 P : Dimensionless pressure differential P  m 0 ,, m H C rr  across the meniscus H g r 2 B = 3.248; Ge, r = 6 mm B Bond number; ratio of gravity force to B  0 0 0 B = 4.651; InSb, r = 5.5 mm surface tension force  0 r z  sin Set of 3 coupled differential  cos,  sin,    P  Bz s s s r equations Boundary Conditions z(0) = 0; (0) = 90° -  : growth angle :: ccoonnttaacctt oorr wweettttiinngg aannggllee ((11)) =  – 9900°°; r((11)) = 11

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.