ebook img

NASA Technical Reports Server (NTRS) 20120002056: Robust Control Design for Uncertain Nonlinear Dynamic Systems PDF

4.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20120002056: Robust Control Design for Uncertain Nonlinear Dynamic Systems

Robust Control Design for Uncertain Nonlinear Dynamic Systems SeanP.Kenny, SeniorResearchEngineer,NASALangleyResearchCenter,Hampton,VA,23666 LuisG.Crespo, SeniorResearchScientist,NationalInstituteofAerospace,100explorationway,Hampton,VA,23666 LindseyAndrews, Student,MechanicalEngineeringDepartment,OldDominionUniversity,Norfolk,VA,23508 DanielGiesy, ResearchMathematician,NASALangleyResearchCenter,Hampton,VA,23666 ABSTRACT Robustnesstoparametricuncertaintyisfundamentaltosuccessfulcontrolsystemdesignandassuchithasbeenatthe coreofmanydesignmethodsdevelopedoverthedecades.Despiteitsprominence,mostoftheworkonrobustcontrol designhasfocusedonlinearmodelsanduncertaintiesthatarenon-probabilisticinnature.Recently,researchershave acknowledgedthisdisparityandhavebeendevelopingtheorytoaddressabroaderclassofuncertainties. Thispaper presentsanexperimentalapplicationofrobustcontroldesignforahybridclassofprobabilisticandnon-probabilistic parametric uncertainties. The experimental apparatus is based upon the classic inverted pendulum on a cart. The physicaluncertaintyisrealizedbyaknownadditionallumpedmassatanunknownlocationonthependulum. This unknownlocationhastheeffectofsubstantiallyalteringthenominalfrequencyandcontrollabilityofthenonlinear system,andinthelimithasthecapabilitytomakethesystemneutrallystableanduncontrollable.Anotheruncertainty to be considered is a direct current motor parameter. The control design objective is to design a controller that satisfiesstability,trackingerror,controlpower,andtransientbehaviorrequirementsforthelargestrangeofparametric uncertainties. Thispaperpresentsanoverviewofthetheorybehindtherobustcontroldesignmethodologyandthe experimentalresults. 1 Introduction Thispaperpresentsanapplicationofacontroldesignandanalysismethodologyforarbitrarydynamicsystemsinthe presenceofparametricuncertainty. Thespecificclassesofuncertaintyconsideredhereincludemultidimensionalsets and probability density functions (PDFs). In the context of this paper, multidimensional sets are simply regions in parameterspacewherethestabilityandperformanceofthedynamicsystemaretobeassessed. Aboundingsetintwo dimensions, for example, could be a rectangle that is defined by its center and semi-diagonal. Other bounding sets arepermitted,e.g.,circular,andelliptical,withnorestrictionsonthedimensionalityoftheuncertainparameterspace. Bounding set models are typically used when little is known about the true variability of the uncertain parameters, or when the stability and performance of the system need to be certified over a specific range of uncertainties. The otherformofuncertaintyusedinthisworkisthePDFthatdescribestherelativelikelihoodforarandomvariableto occuratagivenpoint. UncertaintymodelsbaseduponPDFsrequiremoreinformationtocreate,butyieldlikelihood informationofstabilityandperformanceofthecontrolledsystem. Despitethefundamentaldifferencesinthesetwo formsofuncertainty,aunifiedframework[1]hasbeendevelopedtoaccommodatebothsimultaneously. Theprimaryobjectiveofthispaperistoapplythemethodsoutlinedin[1]toahardwarerealizationoftheclassic Fig.1Invertedpendulumwithmovablemass inverted pendulum on a cart. This objective was broken into two tasks, one for pure analysis of both stability and performance, and one that focused on controller design for the nonlinear pendulum system. The analysis task was to assess the robustness of the system to parametric uncertainty in two parameters, whereas the design task was to synthesizeanoptimallyrobustfixed-architecturecontrollerforthenonlinearsystem. 2 Inverted Pendulum System Figure 1 illustrates the experimental apparatus used in this work. The system features a cart driven by a rack and pinionmechanismusingaDCmotor. Thecartpositionismeasuredusinganopticalencodercoupledtotherackvia anadditionalpinion.Apendulummountedonthecartisfreetorotateanditsangleismeasuredviaanopticalencoder. Thependulumarrangementhasbeenmodifiedtoaccommodatetheneedsofthisresearch. Theprimarymodification istheadditionofarigidcouplingconnectedtothepivotpointtoallowanadditionallinktobeadded. Themodified systemconsistsoftwocollinearlinks,theoriginalupperlinkwithlength2L ,andanewlowerlinkwithlength2L . 1 2 Thelowerlinkhasbeendesignedtopermittheadditionofamovablepointmass,M ,whosedistancefromthepivot p point, L , is considered as one of the uncertain parameters. A total of two uncertain parameters were considered in p thisstudyandweredistinctinthatonewasphysicallyrealizablebychangingthelocationofamovablemassonthe pendulum, and one was a simulation model parameter corresponding to the relationship of current input to torque outputoftheDCmotorusedtoactuatethesystem. Bothuncertainparametershaveaprofoundeffectonthestability, performance, andcontrollabilityofthedynamicsystem. Forexample, themovablemassdegradescontrollabilityof the system by requiring larger control signals to maintain stability and achieve adequate performance as the mass movesawayfromthepivotpoint. 2.1 ModeloftheDynamicSystem The classic inverted pendulum is well-studied and the equations of motion can be found in many references, e.g., [2]. However, the configuration used in this work departs slightly from the conventional inverted pendulum, so the equationsofmotionarestatedhereforcompleteness. TheinputforcetothesystemisgeneratedbyapplyingavoltagetoaDCmotortomovethecart. Therelationship betweenvoltage,V,andappliedforce,F,canberepresentedas: X˙ c V =I R +K K ω =I R +K K m m m g g m m m g r T =K K I m g m KmKgV Km2Kg2X˙c F = − (1) R r R r2 m m whereK istheDCmotortorqueconstant,K istheplanetarygearboxgearratio,ω istheangularvelocityofthe m g g piniongear,R isthemotorarmatureresistance,I isthemotorarmaturecurrent,risthemotorpiniondiameter,and m m V istheappliedvoltage. Usingtherelationshipsgivenin(1)togetherwiththefundamentalphysicsresultsinthe followingnonlinearequationsofmotion: VNW−X˙ NW2+cos(Θ)gsin(Θ)R P2+Θ˙2sin(Θ)R NP X¨ = c m m (2) c R (NM−cos2(Θ)P2) m P(cid:0)gsin(Θ)R M+cos(Θ)Θ˙2sin(Θ)R P+cos(Θ)VW−cos(Θ)X˙ W2(cid:1) Θ¨ =− m m c (3) R (NM−cos2(Θ)P2) m where K K g m W = (4) r P=M L +M L −M L (5) 2 2 p p 1 1 4 N= (M L 2+M L 2)+M L 2 (6) 2 2 1 1 p p 3 M=M +M +M +M (7) c p 1 2 X isthepositionofthecartandΘistheangleofthependulum. TheangleΘismeasuredcounter-clockwisewith c zerodefinedwhenlinkoneispointingverticallyup. NotethatwiththisdefinitionofΘ,theangulardisplacement showninfigure1isactuallynegative. Theremainingparametersabovearedefinedasfollows: M isthemassofthe c cart,M isthemassoflinkone,M isthemassoflinktwo,L isthehalf-lengthoflinkone,L isthehalf-lengthof 1 2 1 2 linktwo,andgisthegravitationalacceleration. TheMKSsystemofunitsareusedthroughoutthepaper. Furthermore,itshouldbenotedthatequationsgivenin(2)and(3)neglectdamping. 2.2 LinearSystemModel Ageneralrepresentationofthenonlinearequationsgivenin(2)and(3)canbegivenas X˙ =F(X,U,p) (8) whereF isanonlinearfunctionofthestatevectorX,thecontrolinputU,andthevectorofuncertainparameters p. Inthissystem,thevectorofuncertainparametersis p=[L ,K ]. p m Forcontroldesignpurposes,thisnonlinearplantislinearizedabouttheequilibriumpoint(x¯,u¯)satisfyingF(x¯,u¯,p)= 0. Deviationsfromtheequilibriumvaluesx¯(p)andu¯(p)arewrittenaslowercaselettershereafter,e.g.,X =x¯+xand U =u¯+u. Linearizationof(8)aboutthisequilibriumpointleadstothesystem x˙=A(p)x+B(p)u+η(x,u,p) (9) where ∂F(cid:12)(cid:12) ∂F(cid:12)(cid:12) A(p)= (cid:12) B(p)= (cid:12) (10) ∂X (cid:12) ∂U (cid:12) x¯(p),u¯(p) x¯(p),u¯(p) andη(x,u,p)containshigher-orderterms.NotethatA,Bandthehigh-ordertermsdependonp.Inasufficientlysmall neighborhood of the equilibrium point the effect of the higher-order terms is negligible. The Linear Time Invariant (LTI)representationoftheplantresultsfromdroppingthehigher-ordertermsinEquation(9). ThisLTIsystemcanbe writtenas x˙=A(p)x+B(p)u y=Cx (11) whereA(p)isthesystemmatrix,B(p)istheinputmatrix,Cistheoutputmatrix,xisthestatevector,anduisthe input. Thisisappliedtotheinvertedpendulumbychoosingthestatevectortobex=[x ,θ,x˙,θ˙]>andthecontrol c c inputtobetheappliedvoltage;i.e.,u=V. Theequilibriumpointaboutwhichwelinearizeisx¯(p)=[0,0,0,0]>and u¯(p)=0. Withthesechoices,theLTIrepresentationmatricesare:   0 0 1 0    0 0 0 1    A(p)= 0 gP2 − NW2 0  (12)  NM−P2 Rm(NM−P2)    0 − gPM PW2 0 NM−P2 Rm(NM−P2)  0   0      B(p)= NW  (13)  Rm(NM−P2)    − PW Rm(NM−P2) and " # 1 0 0 0 C= (14) 0 1 0 0 3 Control Architecture Therehavebeennumerouscontrolarchitecturesdevelopedandsuccessfullyimplementedonsimilarinvertedpendu- lum systems. The objective of this work is not to introduce a new control architecture, but instead use one that is familiartomanywithcontroldesignexperienceandthendemonstratemethodstooptimallyrobustifythisfixedarchi- tecturecontrollertoparametricuncertainties. Themathematicalframeworkforrobustnessanalysisandcontroltuning, coveredinSection4,iscapableofhandlingawidearrayofcontrolarchitecturesandplantmodels,linearornonlinear, with arbitrary parameter dependence. The primary objective of the control system is for the cart to track a periodic referencesignalwhilemaintainingstabilityandadequateperformance.Oneperiodofthecommandedreferencesignal isgiveninfigure2. SeeSection4.3foradetaileddescriptionofperformancerequirements. Fig.2Cartpositionreferencesignal 3.1 LinearQuadraticRegulatorControlwithStateEstimation A Linear Quadratic Regulator (LQR) control together with state estimation constitute the control architecture. The estimatorwasnecessarysinceonlythetwopositionalstates(cartpositionandpendulumangle)ofthefourstateswere measured outputs. Conventional steady-state implementations of LQR control works by multiplying the states by a constantgainmatrix,K,toproducetheplantcontrolsignal. Thegainmatrixisgeneratedbyminimizingthefollowing costfunction: Z ∞ J= [x>Qx+u>Ru]dt (15) 0 Inthiscostfunction,weightingmatricesQ≥0andR>0areusedtopenalizedeviationofthestatesfromzeroand penalizecontrolenergy. Choosingtheseweightingmatricesisthefundamentaltaskofthecontroldesigner. Inthe resultstofollow,theseweightingmatriceswerechosenusinganumericaloptimizationstrategy. Two additional features were added to the control architecture to achieve better tracking and steady state error performance. Thefirstwastheadditionofafeed-forwardcontroltermusingtheknownreferencecommand,andthe secondwasanintegralerrorfeedbacktermoncartpositionerror. Thefeed-forwardcommandwasaddedtoregulate thesystemaboutthereferencecommandinsteadofregulatingitaboutx(t)=0. Thisresultedinthefollowingcontrol signal: u(t)=−K(x−x )=−Kx+Kx (16) ref ref wherex isthe4-elementstatereferencevector. Thesecondfeatureisanintegralerrorfeedback,whichisaddedby ref augmentingthenominalstatevectorwithanadditionalelement. Thisadditionalelementisanerrorbetweenthe cart’sactualpositionanditscommandedposition. Thetotalcontrolsignalis: u(t)=−K(x−x )−Ke (17) ref i whereeisdefinedas: Z t e= (x (τ)−x (τ))dτ (18) cref c 0 withx definedas: x =[1,0,0,0]x . Notethatintegralactionisonlyaddedtothecarterrorsignalandnotto cref cref ref thefullmeasurementvector. Thescalargainterm,K,isthelastelementinthegainvectorobtainedbysolvingan i LQRproblemonanaugmentedsystemthatincludestheerrorstate. Fig.3SimulinkModeloftheControlArchitecture The remaining element of the control system is the state estimator which is a standard implementation of the Kalman filter. As is standard, the state estimate, xˆ, is used to replace x in (17) for implementation on the inverted pendulumhardware.Inthedesignandanalysisthatfollows,thestateestimatorparametersarefixed.Thisisconsistent with current practices, since the true values of the parameters are not known prior to implementation. The Kalman filter gains in this work were computed according to the system performance when the uncertainties assume their nominalvalues. ASimulink(cid:13)R implementationofthecontrolarchitectureisshowninfigure3.Alinearrepresentationofthissystem isasfollows:   x˙ˆ A−LC−BK LC −BKi xˆ BK   x˙= −BK A −BKi x+BKxref (19)   e˙ e C 0 −C 0 1 1 whereListheKalmangainmatrix,andC =[1,0,0,0]. 1 4 Mathematical Framework for Robustness Analysis and Control Tuning 4.1 RobustnessAnalysis Abriefintroductiontothemethodologyproposedin[1]ispresentednext. Considertheclosed-loopdynamicsystem X˙ =F(X,U,p,r) (20) whererisagenericrepresentationofareferencesignal,withx inEquation19asaspecificrealizationofthe ref referencesignal. Thecontrolinputcanberepresentedas U =U(X,r,K) (21) wherethefunctionU referstoaparticularcontrolstructureandK∈Rdim(K)isthesetoffreeparameters,tobechosen by the control engineer (e.g., control gains), that fully prescribe the controller. The controller is deemed acceptable if the closed-loop response satisfies a set of requirements. These requirements, which are represented by a set of inequalityconstraintsonselectedoutputmetrics,dependontheuncertainparametervector p. Thecontrolsystemis deemedacceptableforagivenrealization, p,oftheuncertainparametersifallinequalitiesaresatisfied. Specifically, thesatisfactionofthevectorinequality g(p,r,K)<0 (22) implies the satisfaction of all the requirements1, and where g∈Rdim(g). These constraints partition the uncertain parameter space into two sets, the failure domain F ={p:g(p)≥0, forsomei}, where at least one requirement i is violated, and the safe domain S={p:g(p)<0}, where all requirements are satisfied. The term “satisfactory performance”,whichistobecaptureding,isbroadinscopeandreferstoacceptablerangesofvariationinmetricsof interest. Thesemetricsmaycorrespondtospecificperformancespecificationsaswellastobasicnotionsofgoodness. For instance, if y(p,t) is the system output to a step-input andt is the admissible settling time, the corresponding as requirementfunctionisg =t −t wheret istheminimaltimeforwhich|y(p,t)−y(p,∞)|≤0.99forallt>t . settling s as s s Theparameterrealization p¯∈Rdim(p),calledthenominaloperatingconditionspoint,denotesourbestestimateof the actual value of p. The objective of this robustness analysis is to determine the largest deviation of p from p¯ for which all the requirements are met. In this paper, such a deviation is prescribed as a hyper-rectangular set of fixed proportions. Notethatthehyper-rectanglecenteredat p¯withsemi-diagonalvectorm>0isgivenby R(p¯,m)={p:p¯−m≤p≤p¯+m} (23) Thenotionsrequiredtocalculatethisdeviationareintroducednext. Ahomotheticdeformationresultsfromauniform,radialexpansionorcontractionofthespaceaboutafixedpoint. Thedistancefromanypointinthespacetothefixedpointchangesbyafactorα afterthedeformation. Thisfactor is called the similitude ratio of the homothetic deformation. Note that if α is greater than 1, the deformation is anexpansion,whileifα islessthan1,thedeformationisacontraction. Areferenceset,denotedasΩ⊂Rdim(p),is deformedwithrespecttoitsgeometriccenterp¯.Intuitively,onecanimaginethatΩisbeingdeformedwithrespecttop¯ untilitsboundaryjusttouchesthefailuredomainboundary∂F. Thisdeformationiscalledthemaximaldeformation. The set resulting from this deformation, denoted as M ⊆Rdim(p), is the maximal set. A critical parameter value (CPV),denotedas p˜∈Rdim(p),is(oneof)thepoint(s)wherethemaximalsettouches∂F. Thispointisaworst-case uncertaintycombinationassociatedwithΩ. Thecriticalsimilituderatio(CSR),denotedbyα˜ ∈R, isthesimilitude ratioofthatdeformationandisanon-dimensionalmetricproportionaltotheseparationbetweenthepoint p¯ andthe failuredomain.Theparametricsafetymargin(PSM),denotedasρ∈Risitsdimensionalequivalent.Thevaluestaken onbytheCSRandthemagnitudeofthePSMareproportionaltothesizeofthemaximalsetandmeasuretheseparation between p¯and∂F. ThePSMisassignedanegativevalueifthecontrollerdoesnotevensatisfytherequirementsat p¯. IfthePSMiszero,thecontrollerexhibitsnorobustnessbecausethereisanarbitrarilysmalldeviationfrom p¯leading toarequirementviolation. IfthePSMispositive,therequirementsaresatisfiedat p¯andinitsvicinity. Thelargerthe PSM,thelargertheΩ-shapedvicinity. Figure4illustratessomeofthesevariableswhentworequirementsarepresent.TheCPV,p˜,thenominalparameter point, p¯,thereferenceset(regionwithindashedline)andthemaximalsetcorrespondingtodeformationsinthesafe (blue)andfailure(red)domainsareshown. Notethatbyconstruction,themaximalsetisfullycontainedinthesafeor failuredomains. Theformulationenablingsizingthemaximaldeformationisasfollows. IfΩ=R(p¯,m),theCPV,CSR,PSMand maximalsetscorrespondingtotheithrequirementare p˜i=argmin{kp−p¯k∞:σg(p,r,K)≥0,p ≤p≤p } (24) m i i min max p kp˜i−p¯k∞ α˜ = m (25) i kmk ρ =σα˜ kmk (26) i i i Mi=R(p¯,α˜ m) (27) i wherekxk∞=max{|x|/m}, p and p boundtheregionofinterest,andσ =1ifg(p¯)<0,otherwiseσ =−1. m i i i min max i i i Notethatσ canreversetheinequalitysignoftheconstraint. Thisisneededsincedeformationscenteredatanominal i point in the safe domain require a different formulation than those where the nominal point is in the failure domain (Seefigure4). Whileintheformercaseallpointswithinthemaximalsetmustsatisfyallconstraints,inthelattercase 1Forthereminderofthepaperisassumedthatvectorinequalitiesholdcomponent-wise,vectorandsetsuper-indicesdenoteaparticularrealiza- tion,andvectorsub-indicesdenoteaparticularcomponent,e.g.,pjistheithcomponentofpj∈Rdim(p). i Fig.4Maximaldeformationsinthesafeandfailuredomains allpointsmustviolateatleastoneconstraint. Thevalueofthecontroller’sparametersK andthecommandsinr are setaprioriandkeptfixedduringtheanalysis. WhileK canbeprescribedaccordingtoanycontroldesignpractice,r isprescribedtoachievetheultimategoalofthesystem. The CPV, CSR, PSM and maximal sets associated with all requirements are given by Equations (24-27) after replacing g with max(g). The resulting values are qualified as aggregate since they take all requirements into i i i account. If p¯∈F, these aggregate values coincide with those corresponding to the individual requirement attaining the smallest PSM, e.g., α˜ =α˜ where j=argmin(ρ). Therefore, for a maximal safe set, the aggregate PSM is the j i worst-caseindividualPSM. The calculation of the maximal deformation requires solving an standard optimization problem. In this work, a gradient-basednonlinearconstrainedoptimizationwasused. Thisproblemclassis,ingeneral,non-convexwhenthe dependencyofthevectorg ofrequirementfunctionsontheuncertaintypisnonlinear.Inanynon-convexoptimization i problemthereisalwaysthepossibilityofconvergencetoanon-globaloptimum. Whenthisoccurs, theCPVresult- ingfrom thenumericaloptimizationis mistakenandthe correspondingmaximalset intrudesintothefailure region. This intrusion yields to a spuriously larger PSM. Absolute guarantees are not possible, but a variety of algorithmic safeguards can be used to deal with this deficiency. For instance, g can be evaluated at a few sample points in the maximalsetandifonehappenstofallintothefailuredomain, itcanbeusedasaninitialconditioninasubsequent optimization. Requirementsfunctionswithapolynomialparameterdependencycanbehandledusingthemethodsin [3]. Thesemethods, whicharebasedonlinearmatrixinequalitiesandBernsteinexpansions, donotsufferfromthis potentialdrawbackandguaranteeconvergencetoactualmaximaldeformation. Noticehowever,thatinmostpractical applicationstheexplicitfunctionalformofgisunknown. Thisintrinsicfeatureoftheproblemprecludestheusageof convexityconditionsfromtheoutset. 4.2 ControlTuning Ultimately,agoodcontrollershouldsatisfythestabilityandperformancerequirementsimposedupontheclosed-loop systemwithsufficientlylargerobustnessmargins. ThePSMandCSRintroducedaboveareexamplesofsuchmargins. A computational framework, also used in [4], enables searching for the set of controller gains that maximize these margins. Thisframeworkisintroducednext. Equation (22)indicates thatthe geometry ofthe failuredomain, thusthe CSR andthe PSM,is a function of the control parameter K. Recall that this parameter is kept fixed when a robustness analysis is performed. A control design challenge is to find the value of K for which the closed-loop system exhibits satisfactory robustness charac- teristics. Specifically, anoptimaldesignwillbeonethathasthelargestoverallPSMforthegivencontrolstructure. This entails maximizing the separation between the nominal operating condition point p¯ and the failure domain F, sothelargestmaximalsetisattained. Sincetheresultingcontrollerstoleratethelargestdeviationsfromnominalop- erating conditions before violating any requirement, they are called optimally robust. In the presence of conflicting designobjectives,anoptimallyrobustcontrollertradesoffthePSMsofallindividualrequirementstoattainthelargest aggregatePSM. Twooptimization-basedformulationsforpursuingtheoptimallyrobustdesignpointK˜ arepresentednext.Thefirst oneevaluatesrobustnessviatheexactCSR.ThesecondoneusesanapproximationtotheCSRrootedinamulti-point approximation to the maximal set. The approximate nature of this formulation may not lead to controllers with the intendedfeatures. However, itsrelaxedcomputationaldemandsmayjustifythepotentialdrawbacksassociatedwith it. 4.2.1 EnlargingtheMaximalSet AformulationbasedontheexactoverallCSRisgivenby K˜ =argmax{α˜(K): h(p¯,K)>0} (28) K wherethevectorconstrainth(K,p¯)>0isusedtoenforceadditionalcharacteristicstothecontrollerbasedonstandard controlmetrics. Forinstance,h=PM(K,p¯)−60o>0ensuresthatthefeedbackloopcorrespondingtotheplantunder nominaloperatingconditionshasaphasemarginofmorethan60degrees. Examplesofotherperformance/stability metricsaretimedelay, settlingtime, disturbancerejection, noiseattenuation, referencetracking, andcontrolenergy. Thesemetricscanbeextractedfromthetimeand/orfrequencydomainsandmaycorrespondtolinearandnonlinear representationsoftheplantdynamics. Recall that calculating the CSR α˜ entails solving an optimization problem. Therefore, this formulation has an optimization in the outer loop and another one in the inner loop. While the outer loop searches for the robustly optimal gains K˜, the inner one searches for the CSR corresponding to the design point under consideration. Nested optimizations, such as Equation (28) and those resulting from worst-case-based design policies, impose stringent computationaldemands. Suchdemandscanbesubstantiallymitigatedbyusingmulti-pointapproximations. 4.2.2 EnlarginganApproximationtotheMaximalSet ThevariablesKˆ andαˆ,whichareestimatesofK˜ andα˜(K˜)respectively,aregivenby (cid:26) (cid:27) hKˆ,αˆi=argmax α : max (cid:8)g (cid:0)p¯+α(pj−p¯),r,K(cid:1)(cid:9)<0, α ≥0, h(p¯,K)>0 , (29) i K,α i≤dim(g),j≤n where{p1,p2,...,pn}areparameter-pointsonthesurfaceofR(p¯,m). Thesepointsshouldbeuniformlydistributed overthesurface. NotethatthisformulationreplacestheinneroptimizationloopinEquation(28)withamulti-point constraintoverparameterpointslyingonthesurfaceofamaximalsetestimate. Equation(29)mayleadtosuboptimal designs, for which αˆ >α˜(K˜) and M(Kˆ)⊂M(K˜), because the satisfaction of the multi-point constraint does not guaranteethecontainmentofthemaximalsetestimatebythesafedomain.TheformulationofSection4.1canbeused todetermineifthisanomalyhasoccurred. Sincetherobustnessanalysisandtuningproceduresaboveidentifythecriticalcombinationofuncertaintiesand/or failures(i.e.,theCPV)theparticularcontrolarchitectureismoresensitiveto,weexpecttheresultingcontrollerstobe saferthanthosevalidatedbybruteforceMonteCarlosimulations. 4.3 ApplicationtotheInvertedPendulum The components of the uncertain parameter p are the distance, L , of the mass m to the pivot point, and the mo- p p tor torque constant K . These parameters are free to assume any non-negative value, i.e., p =[0,0]>, p = m min max [0.330m,∞]>. Thenominaloperatingconditionpointis p¯=[0.165m, 0.00767N-m/Amp]>. Therobustnessofthe controllertouncertaintyinthevalueofthesetwoparametersisevaluatedandimprovedusingthemethodsabove. The reference command is given by r=[x ,x˙ ,0,0]>, where x is the periodic signal shown in Figure 2. The design ref ref ref parametersK arediagonalelementsoftheQandRmatricesoftheLQRformulationofSection3. DenotebyK base the gains of a baseline controller attaining satisfactory performance at p= p¯, andt the final simulation time. The f closed-looprequirementsdefiningtheconstraintfunctiongareasfollows: 1) Commandtracking: therequirementg <0,where 1 Z tf(cid:16) (cid:17)2 Z tf(cid:16) (cid:17)2 g = x (t)−x (p,r,K,t) dt−γ x (t)−x (p¯,r,K ,t) dt (30) 1 cref c 1 cref c base 0 0 andγ >1ensuressatisfactorytrackingofthereferencecommand. 1 2) Actuation: therequirementg <0,where 2 Z tf g = u2(p,r,K,t)−γ u2(p¯,r,K ,t)dt (31) 2 2 base 0 andγ >1avoidsoveractuation. 2 3) Peakovershoot: therequirementg <0,where 3 (cid:8) (cid:9) (cid:8) (cid:9) g =max x (p,r,K,t):t ≤t≤t −γ max x (p¯,r,K ,t):t ≤t≤t (32) 3 c 0 f 3 c base 0 f t t andγ >1boundsthepeakovershootoftheresponse. 3 4) Settlingtime: therequirementg <0,where 4 g =t (p,r,K)−γ t (p¯,r,K ) (33) 4 s 4 s base t (p,r,K)=min{|x (p,r,K,t)−0.1|<ε forallt satisfyingt <t<5s} (34) s c s t andγ >1imposesanupperboundtothesettlingtime. 4 5) LocalStability: therequirementg <0,where 5 g =max{Real{Eigenvalues{A(p,K)}}} (35) 5 andAistheclosed-loopsystemmatrixoftheLTIsystem,ensuresthattheup-rightpositionofthependulumis locallystable. TheconstraintfunctionscorrespondingtothefirsttworequirementsareevaluatedusingtheL norm, andtherefore, 2 theyareafunctionofthetransientresponse. Noticethatthedependencyofgon passumesanunknownandimplicit functional form. Also notice that evaluating g for a particular realization of p requires simulating the closed-loop responseandcalculatingthefiveconstraintfunctionscomprisingg. Furthernoticethatwhilethenotionsofgoodness supportingtherequirementfunctionsarefairlyuniversal,theirparticularfunctionalformisnot. 5 Results 5.1 BaselineController Thiscontroller,tobedenotedasK ,wasdesignedusingthestructurepresentedinEquation17basedontheclosed- base loop performance at p= p¯. The parameters determining K are the LQR matrices Q=diag{[40,0,0,0,50]>} and R=10−3. This controller performed well in both the simulation and experimental settings. Figure 5 shows the number of requirement violations in the parameter space and the maximal set when the time responses, thus the constraintfunctiong, areevaluatedusingalinearsimulation. Notethatthesafedomain, whereallrequirementsare satisfied, corresponds to the green region. The color scale indicates the number of constraints violated, with black corresponding to all five constraints violated. The colored lines correspond to constraint boundaries for each of the

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.