ebook img

NASA Technical Reports Server (NTRS) 20110005564: A Critical Study of Agglomerated Multigrid Methods for Diffusion PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20110005564: A Critical Study of Agglomerated Multigrid Methods for Diffusion

A Critical Study of Agglomerated Multigrid Methods for Diffusion HiroakiNishikawa,NationalInstituteofAerospace,Hampton,VA23666∗ BorisDiskin,NationalInstituteofAerospace,Hampton,VA23666† JamesL.Thomas,NASALangleyResearchCenter,HamptonVA23681‡ Agglomeratedmultigridtechniquesusedinunstructured-gridmethodsarestudiedcriticallyforamodel problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretiza- tionsanddiscretizationsusedonagglomeratedgridsaretypicalofcurrentnode-centeredformulations. Ag- glomeratedmultigridconvergenceratesarepresentedusingarangeoftwo-andthree-dimensionalrandomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniquesareusedwithinanoveralltopology-preservingagglomerationframework. Theresultsshowthat multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the litera- tureasathin-layerformulation)providesconsiderablespeedupoversingle-gridmethodsbutitsconvergence deterioratesonfinergrids.MultigridwithaGalerkincoarse-griddiscretizationusingpiecewise-constantpro- longationandaheuristiccorrectionfactorisslowerandalsogrid-dependent. Incontrast,grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence ratesofmultigridcyclesareverifiedwithquantitativeanalysismethodsinwhichpartsofthetwo-gridcycle arereplacedbytheiridealizedcounterparts. Introduction Multigridtechniques1areusedtoaccelerateconvergenceofcurrentReynolds-AveragedNavier-Stokessolversfor steadyandunsteadyflowsolutions,especiallyforstructured-gridapplications. Mavriplisetal.2–5 pioneeredagglom- eratedmultigridmethodsforlarge-scaleunstructured-gridapplications. Impressiveimprovementsinefficiencyover single-gridcomputationshavebeendemonstrated.Duringarecentdevelopmentofmultigridmethodsforunstructured grids,6itwasrealizedthatsomeofthecurrentapproachesforcoarse-griddiscretizationofviscousfluxesusedinstate- of-the-art codes have serious limitations on highly-refined grids. The purpose of this paper is to critically study the currenttechniquesforasimplePoissonequation(representinglaminardiffusionintheincompressiblelimit), assess theirperformanceingridrefinement,anddevelopimprovedapproaches. The paper is organized as follows. The model diffusion equation is presented from a general finite-volume dis- cretization (FVD) standpoint. Elements of multigrid algorithms are described, including a tabulation of target and coarse-grid discretizations. Quantitative analysis methods, in which parts of the actual multigrid cycle are replaced by their idealized counterparts, are described in the next section. The target grids and typical agglomerated grids developedwithinatopology-preservingframeworkarenextshown,followedbytwodimensional(2D)andthreedi- mensional (3D) results. Results from applying analysis methods to 3D computations are also reported. The final sectioncontainsconclusions. I. ModelDiffusionEquationandBoundaryConditions TheFVDschemesconsideredarederivedfromtheintegralformofthediffusionequation, ∗ResearchScientist,100ExplorationWay,[email protected]. ThisauthorwassupportedbytheNationalInstituteofAerospaceunderNASA fundamentalAeronauticsProgramthroughNRAContractNNL07AA23C †AssociateFellow,100ExplorationWay,[email protected];VisitingAssociateProfessor,MechanicalandAerospaceEngineeringDepart- ment,UniversityofVirginia,Charlottesville. ThisauthorwassupportedbytheNationalInstituteofAerospaceunderNASAFundamentalAero- nauticsProgramthroughNRAContractNNL07AA31C ‡SeniorResearchScientist,ComputationalAerosciencesBranch,MailStop128,FellowAIAA,[email protected]. 1of13 AmericanInstituteofAeronauticsandAstronautics I ZZ (∇U ·nˆ) dΓ= fdΩ, (1) Γ Ω wheref isaforcingfunctionindependentofthesolutionU,ΩisacontrolvolumewithboundaryΓ,nˆistheoutward unit normal vector, and ∇U is the solution gradient vector. The boundary conditions are taken as Dirichlet, i.e., specifiedfromaknownexactsolutionoverthecomputationalboundary. Testsareperformedforsimplemanufactured solutions, namely collections of polynomial or sine functions. The corresponding forcing functions are found by substitutingthesesolutionsintothedifferentialformofthediffusionequation, ∆U =f, (2) and boundary conditions. The discretization error, E = U −Uh, is defined as the difference between the exact d continuoussolution,U,tothedifferentialequation(2)andtheexactdiscretesolution,Uh,ofthediscretizedequation (1).Thealgebraicerroristhedifferencebetweentheapproximateandexactdiscretesolutions.Aschemeisconsidered asdesign-orderaccurate,ifitsdiscretizationerrorscomputedonasequenceofconsistently-refinedgrids7,8 converge withthedesignorderinthenormofinterest. 1 2 0 3 4 Figure 1. Illustration of a node-centered median-dual control volume (shaded). Dualfacesconnectedgemidpointswithprimalcellcentroids.Numbers0-4denote gridnodes. The general FVD approach requires partitioning the domain into a set of non-overlapping control volumes and numerically implementing equation (1) over each control volume. Node-centered schemes define solution values at themeshnodes. In2D,theprimalmeshesarecomposedoftriangularandquadrilateralcells;in3D,theprimalcells aretetrahedral,prismatic,pyramidal,orhexahedral. Themedian-dualpartition9,10 usedtogeneratecontrolvolumes isillustratedinFigure1for2D.Thesenon-overlappingcontrolvolumescovertheentirecomputationaldomainand composeameshthatisdualtotheprimalmesh. The control volumes of each agglomerated grid are found by summing control volumes of a finer grid. Any agglomeratedgridcanbedefinedintermsofaconservativeagglomerationoperator,R ,as 0 Ωc =R Ωf, (3) 0 where superscripts c and f denote entities on coarser and finer grids, respectively. On the agglomerated grids, the control volumes become geometrically more complex than their primal counterparts and the details of the control- volume boundaries are not retained. The directed area of a coarse-grid face separating two agglomerated control volumes, ifrequired, isfoundbylumpingthedirectedareasofthecorrespondingfiner-gridfacesandisassignedto thevirtualedgeconnectingthecentersoftheagglomeratedcontrolvolumes. II. Multigrid Elements of the multigrid algorithm are presented in this section. A V-cycle,1 denoted as V(ν ,ν ), uses ν 1 2 1 relaxationsperformedateachgridbeforeproceedingtothecoarsergridandν relaxationsaftercoarse-gridcorrection; 2 2of13 AmericanInstituteofAeronauticsandAstronautics thecoarsestgridissolvedexactly(withmanyrelaxations). Residuals,r,correspondingtotheintegralequation(1)are restrtictedtothecoarsegridusingR ,as 0 rc =R rf. (4) 0 TheprolongationsP andP areexactforpiecewise-constantandlinearfunctions,respectively. Theprolongation 0 1 P is the transpose of R . The operator P is constructed locally using linear interpolation from a triangle (2D) or 0 0 1 tetrahedra (3D) defined on the coarse grid. The geometrical shape is anchored at the coarser-grid location of the agglomerate that contains the given finer control volume. Other nearby points are found using the adjacency graph. An enclosing simplex is sought that avoids prolongation with non-convex weights and, in situations where multiple geometrical shapes are found, the first one encountered is used. Where no enclosing simplex is found, the simplex withminimalnon-convexweightsisused. Thecoarse-gridsolutionapproximationisrestrictedas R (UfΩf) Uc = 0 . (5) Ωc ThecorrectionδU tothefinergridisprolongedtypicallythroughP ,as 1 (δU)f =P (δU)c. (6) 1 Target-GridDiscretizations Green-Gauss Avg-LSQ Table1. Summaryoftarget-griddiscretizations. The available consistent target-grid discretizations are listed in Table 1 where Avg-LSQ stands for average- least-squares. TheseschemesarerepresentativeofviscousdiscretizationsusedinReynolds-AveragedNavier-Stokes unstructured-grid codes. The main target discretization of interest is the Green-Gauss scheme, which is the most widely-usedviscousdiscretizationfornode-centeredschemesandisequivalenttoaGalerkinfinite-elementdiscretiza- tionfortriangular/tetrahedralgrids.Formixedelements,edge-basedcontributionsareusedtoincreasetheh-ellipticity oftheoperator. Theavg-LSQschemeusestheaverageofthedual-volumeLSQgradientstodetermineagradientat theface,whichisaugmentedwiththeedge-baseddirectionalcontributiontodeterminethegradientusedintheflux. AfulllinearizationhasbeenimplementedfortheGreen-Gaussscheme,enablingarobustmulticolorGauss-Seidel relaxation.Theavg-LSQschemehasacomparativelylargerstencilanditsfulllinearizationhasnotbeenimplemented; insteadrelaxationoftheavg-LSQschemereliesonanapproximatelinearization,whichconsistsofedgetermsonly. Sofar,weobservegoodsmoothingrateswiththisapproach,butpreviousanalysishasshownthatthesmoothingrate can deteriorate on highly skewed grids.6 The estimates for the smoothing rates obtained with quantitative analysis methods12 areshowninSectionVI.NotethattheGreen-Gaussschemereliesonanelement-baseddatastructureand henceisnotconsideredforagglomeratedgrids. Coarse-GridDiscretizations Avg-LSQ DirectDiscretization Edge-Terms-Only R AfP∗ GalerkinDiscretization 0 0 R AfP 0 1 Table2. Summaryofcoarse-griddiscretizations. Theavailablecoarse-griddiscretizationsaresummarizedinTable2,listingtwopossibledirectdiscretizationsand twopossibleGalerkindiscretizations,inwhichthecoarsegridoperatorsarederivedfromthefinegridoperator. The edge-terms-only discretization is often cited as a thin-layer discretization in the literature;2–4 it is a positive scheme butisnotconsistent(i.e.,itsdiscretesolutiondoesnotconvergetotheexactcontinuoussolutionwithconsistentgrid refinement)unlessthegridisorthogonal.7,8,11 Anorthogonalgridwouldhaveeachedgeconnectingnodesacrossa facebeingco-linearwiththeface-normaldirectionnˆ. 3of13 AmericanInstituteofAeronauticsandAstronautics TheGalerkincoarse-gridoperator1 isdenotedbyRAP. Becausethegoverningequationisasecond-orderequa- tion,theGalerkinconstruction,R AfP ,isformallyinconsistent;theheuristiccorrectionfactoradoptedbyMavriplis2 0 0 isused, 1 Ac =R AfP∗ = R AfP . (7) 0 0 2 0 0 Thecorrectionfactorisderivedbyenforcingconsistencyonuniformly-agglomeratedhexahedralmeshes.TheGalerkin construction, R AfP , is consistent, but was found to be unstable. Dirichlet boundary conditions are enforced 0 1 strongly. Thecoarse-gridoperatorisoverwrittenwiththeboundaryconditionlinearizationatboundarynodes. III. QuantitativeAnalysisofUnstructuredMultigridSolvers The quantitative analysis methods for unstructured multigrid solvers considered in this section are idealized re- laxation(IR)andidealizedcoarse-grid(ICG)iterationsintroducedinRef.[12]. Themethodsanalyzethemaincom- plementarypartsofamultigridcycle: relaxationandcoarse-gridcorrection. Inmultigrid,relaxationandcoarse-grid correctionareassignedcertaintasks: relaxationisrequiredtosmooththealgebraicerrorandcoarse-gridcorrectionis requiredtoreducesmoothalgebraicerrors. To apply the analysis, we first choose a desired sample fine-grid solution (zero is a natural choice for linear problems)andsubstituteitintotheequationstogeneratethecorrespondingsourceandboundarydata. Thenweform aninitialguess(forexample, arandomperturbationofthesolution); thus, thefine-gridalgebraicerrorisknown. In the analysis, idealized iterations probe the actual two-grid cycle to identify parts limiting the overall efficiency. In these iterations, one part of the cycle is actual, and its complementary part is replaced with an idealized part. The idealized parts do not depend on the operators to be solved. They are numerical procedures acting directly on the knownalgebraicerrortoefficientlyfulfillthetaskassignedtothecorrespondingpartofthetwo-gridcycle.Theresults oftheanalysisarenotsingle-numberestimates;theyareratherconvergencepatternsoftheiterationsthatmayeither confirmorrefuteourexpectationsastowhatpartoftheactualcycleisnotefficientincarryingouttheassignedtask. These IR and ICG analysis methods can be regarded as a numerical extension of the Fourier analysis to problems wheretheclassicalFourieranalysisisinapplicable,inparticular,tounstructured-gridsolvers. IR and ICG iterations are analysis methods that test computational efficiency of a two-grid cycle. The two-grid cycleamplificationmatrix,M,transformstheinitialfine-gridalgebraicerror,eold,intotheafter-cycleerror,enew, enew =Meold. (8) Theamplificationmatrixcanbedefinedas M =Sν2CSν1. (9) Here, ν andν aresmallnonnegativeintegersrepresentingthenumberofpre-andpost-relaxationsweeps,S isthe 1 2 fine-gridrelaxationamplificationmatrix,andC istheamplificationmatrixofthecoarse-gridcorrection. C =E−P (Ac)−1R Af, (10) 0 0 whereAc andAf arethecoarseandfinegridoperatormatrices, P andR aretheprolongationandagglomeration 0 0 matrices,andE isthefine-grididentitymatrix. ForIRiterations,thecoarse-gridcorrectionpartisactualandtherelaxationisidealized. Theidealizedrelaxation maybedefinedasanexpliciterror-averagingprocedure. Inthispaper,weemploytheIRprocedurethatreplacesthe algebraicerrorateachdualcellwithanaverageofalgebraicerrorsatedge-adjacentcells. Ateachrelaxationstep,the knownexactsolution,ifnotzero,issubtractedfromthecurrentapproximationtoobtainthealgebraicerrorfunction. Theexplicitaveragingprocedureisapplieddirectlytotheerrorfunction. Thenumberofsweepsthroughoutthegrid istakenasν orν andwedenoteresultsasIR(ν ,ν ). Theexactsolutionisthenaddedback. Slowconvergenceof 1 2 1 2 IRiterationsindicatesinsufficientcoarse-gridcorrection. InICGiterations,therelaxationschemeisactualandthecoarse-gridcorrectionisidealized.Assumingthattheag- glomerationandprolongationoperatorsaresuitableforefficientmultigridsolution,theidealizedcoarse-gridcorrection involvesidealizedfineandcoarseoperatorsAf andAc ,suchthatDc(Ac )−1isanaccurateapproximationto ideal ideal Ω ideal Df(Af )−1forsmootherrorcomponents. Here,Dc andDf arediagonalmatriceswithcorrespondingcoarse-and Ω ideal Ω Ω fine-gridvolumesonthediagonals. Thesimplestidealizedoperatorsarecorrespondingfineandcoarsegrididentity matrices. Withthischoice,theidealizedcoarse-gridcorrectionbecomes C =E−P (Dc)−1R Df. (11) ideal 0 Ω 0 Ω 4of13 AmericanInstituteofAeronauticsandAstronautics Note that the operator (Dc)−1R Df represents volume-weighted averaging. In ICG analysis, the idealized C Ω 0 Ω ideal is applied directly to the known algebraic errors obtained after pre-relaxation sweep(s) of the actual relaxation. In implementation,thealgebraicerrorisaveragedtothecoarsegrid,changedinsign,andthenprolongedtothefinegrid. SlowconvergenceobservedintheICGiterationsisasignofpoorsmoothinginrelaxation. WedenoteICGresultsas ICG(ν ,ν ). 1 2 IV. TargetGridsandAgglomerations 1 0.8 0.6 z 0.4 0.2 0 0 0.5 1 x Figure2. Atypical2Dtargetgrid. ThegridsconsideredaregeneratedbysplittingisotropicmappedCartesiangridsintotriangular(2D)ortetrahedral elements (3D) and then randomly perturbing the grid points by up to one quarter of the local mesh size. A typical targetgridisshowninFigure2for2Dwith33pointsineachdirection. Anorthographicviewoftheboundarygrids ofatypicaltarget3DgridisshowninFigure3,againfor33pointsineachdirection. Thegridsareagglomeratedwithinatopology-preservingframework,inwhichhierarchiesareassignedbasedon connections to the computational boundaries. Corners are identified as grid points with three or more boundary- condition-type closures (or three or more boundary slope discontinuities). Ridges are identified as grid points with two boundary-condition-type closures (or two boundary slope discontinuities). Valleys are identified as grid points withasingleboundary-condition-typeclosureandinteriorsareidentifiedasgridpointswithnoboundaryclosure.The agglomerations proceed hierarchically from seeds within the topologies, first corners, then ridges, then valleys, and finallyinteriors. Rulesareenforcedtomaintaintheboundaryconditiontypesofthefinergridwithintheagglomerated grid. Candidatevolumestobeagglomeratedarevettedagainstthehierarchyofthecurrentlyagglomeratedvolumes usingtherulessummarizedinTable3. Theallowedentriesdenotethatinteriorvolumescanbeagglomeratedtoany existingagglomerate. Thesingledisallowedentryenforcesthattwocornerscannotbeagglomerated. Theconditional entries denote that further inspection of the connectivity of the topology must be considered before agglomeration is allowed. For example a ridge can be agglomerated into a corner if the ridge is part of the boundary condition specification associated with the corner. As another example, a ridge can be agglomerated into an existing ridge agglomerationifthetwoboundaryconditionsassociatedwitheachridgearethesame.Also,theprolongationoperator P ismodifiedtoprolongonlyfromhierarchiesequalorabovethehierarchyoftheprolongedpoint. Hierarchieson 1 eachagglomeratedgridareinheritedfromthefinergrid. There are two agglomeration schemes, referred to as scheme 1 and 2, that have evolved historically within this development. Theagglomerationscheme1ordersthepossiblepointswithinahierarchyusingthedistancefromthe 5of13 AmericanInstituteofAeronauticsandAstronautics Figure3. Orthographicviewofatypical3Dtargetgrid. Figure4. Controlvolumeboundaries(non-lumped)for2Dagglomerationsusingscheme1(toprow)andscheme2(bottomrow). cornersofthegridandclosestpointsaretakenfirst. Givenaseed,atriadisconstructedusingasurroundingcloudof points,definedfromtheadjacencylist. Thefirstlegofthetriadisdefinedbytheseedandthenearestpoint. Thenext legofthetriadisdefinedbyincludinganotherpointfromtheentriesinthecloudsuchthatthelegismostorthogonal tothefirstleg. Thethirdlegisfoundastheonemostparalleltothecross-productofthefirsttwolegs. Pointswithin thevolumedefinedbythetriads(extendedtoinfinitelength)aretaken,firstfortheedge-adjacenciesinthecloudand 6of13 AmericanInstituteofAeronauticsandAstronautics Figure5. Controlvolumeboundaries(non-lumped)for3Dagglomerationsusingscheme2. HierarchyofAgglomeration HierarchyofAddedVolume AgglomerationDecision corner interior allowed(cornertointerior) corner valley conditional corner ridge conditional corner corner disallowed(twocorners) ridge interior allowed(ridgetointerior) ridge valley conditional ridge ridge conditional valley interior allowed(valleytointerior) valley valley conditional interior interior allowed(interiortointerior) Table3. Admissibleagglomerations. subsequentlyfortheentireadjacency, tosatisfyaglobalcoarseninggoal(4volumesagglomeratedfor2Dand8for 3D). The agglomeration scheme 2 also starts from corners. After all corners have been agglomerated, a front list is defined by collecting nodes adjacent to the agglomerated corners. It then proceeds to agglomerate nodes in the list (whileupdatingthelistasagglomerationproceeds)inthefollowingorder:ridges,valleys,interiors.Anodeisselected amongthoseinthesamehierarchy,thathastheleastnumberofnon-agglomeratedneighborstoreducetheoccurrences ofagglomerationswithsmallnumbersofvolumes. Foragivenseed,itcollectsallneighborsandagglomeratesthem uptoaspecifiedmaximumnumber,e.g.,8in3D.Theagglomerationcontinuesuntilthefrontlistbecomesempty. For eitheragglomerationscheme,agglomerationscontainingonlyafewvolumesarecombinedwithotheragglomerations, asistypicalofthemethodsusedintheliterature. For highly stretched meshes, the agglomerations are first constructed along the boundary of the grid (corners, ridges,andvalleys)andthenthecellsareagglomeratedfromtheboundarytotheendsoftheimplicitlinesassociated with the stretched grid. The boundary agglomerate is merged with the volumes corresponding to the next point in the line. The agglomeration continues to the end of the shortest line in the boundary agglomerate, forming an agglomeration from the volumes associated with the next two entries in the line. After agglomeration of lines, the algorithmusesthepointagglomerationmethodfortherestofthedomain. Figure4showsthreeagglomeratedgridsgeneratedfromtheprimalgridinFigure2usingschemes1and2.Figure5 showsthreeagglomeratedgridsgeneratedfromtheprimalgridinFigure3usingscheme2. Theagglomerationsare representativeofthoseintheliterature. 7of13 AmericanInstituteofAeronauticsandAstronautics FineGrid DirectDiscretization GalerkinDiscretization Avg-LSQ Edge-Terms-Only R AfP∗ R AfP 0 0 0 1 33x33 0.15 0.20 0.51 divergent 65x65 0.22 0.26 0.53 divergent 129x129 0.21 0.32 0.60 divergent 257x257 0.17 0.45 — — Table4. Summaryofmulti-levelasymptoticconvergenceratesperV(2,1)multigridcyclewithagglomerationscheme1forvariouscoarse- gridoperators. FineGrid DirectDiscretization GalerkinDiscretization Avg-LSQ Edge-Terms-Only R AfP∗ R AfP 0 0 0 1 33x33 0.17 0.29 0.49 divergent 65x65 0.19 0.44 0.58 divergent 129x129 0.18 0.54 0.68 divergent Table5. Summaryofmulti-levelasymptoticconvergenceratesperV(2,1)multigridcyclewithagglomerationscheme2forvariouscoarse- gridoperators. V. TwoDimensionalResults A summary of multigrid convergence rates is compiled in Tables 4 and 5 for the two agglomeration schemes, respectively,foraV(2,1)multigridcyclewithvariouscoarse-gridoperators. Multigridcyclesemployasmanylevels aspossible;e.g.,thereare6levelsusedforthe129x129targetgridand4levelsforthe33x33targetgrid. Somewhat surprisingly, with the Galerkin coarse-grid operator constructed via R AfP , the multigrid algorithm is divergent. 0 1 Thereason,confirmedbyanalysis,isthatthecoarse-gridoperator,althoughaccurate,losesh-ellipticity.1 Thislossof h-ellipticityfortheGalerkinoperatorwithsimplex-basedP -prolongationhasbeenobservedevenwithquadrilateral 1 grids,forwhichbilinearprolongationisknowntoresultinh-ellipticcoarse-gridoperators. WiththeGalerkincoarse-gridoperatorconstructedviaR AfP∗,themultigridalgorithmisstable. However,the 0 0 convergenceratesdegradeonfinergridswitheitheragglomerationscheme. Withthecoarse-gridoperatorusingonly theedgeterms,theconvergencepercycleisbetter,butagainshowsadeteriorationonfinergrids. Thedeteriorationis noticeablyworsewiththeagglomerationscheme2, althoughitishardtojudgethereasonfromvisualinspectionof theagglomeratedgrids. Withtheavg-LSQscheme,theconvergencepercycleis0.22orbetterandgrid-independent. 1stOrderVariation 100 2ndOrderVariation Agglomerates(65x65primal) Edge-Terms-Only Agglomerates(65x65primal) Avg-LSQ Agglomerates(129x129primal)Avg-LSQ 10-1 or Err10-2 n o ati cretiz10-3 s Di 10-4 10-5 0.05 0.1 0.150.2 EquivalentMeshSize,h V Figure6. Spatialconvergenceofdiscretizationerrorforagglomeratefamilies. 8of13 AmericanInstituteofAeronauticsandAstronautics Thespatialconvergenceofdiscretizationerrorforagglomeratefamilieswiththeavg-LSQtarget-griddiscretiza- tion is shown in Figure 6. Results with the edge-terms-only (thin-layer) discretization are also shown for reference. The manufactured solution is U = sin(πx+0.8πy)+0.1x+0.2y and the coarser grids were generated using ag- glomerationscheme2.Eachagglomeratefamilyiscomposedofasingleprimalgridandagglomeratedgridsgenerated recursively;aparticularagglomeratefamilyisdenotedbythedensityoftheprimalmeshinparentheses. TheL norm 1 ofthediscretizationerrorisshownversusanequivalentmeshsize,takenastheL normofalocalcharacteristicdis- 1 tance,i.e.,h =||Ω1/d||,wheredisthenumberofspatialdimensions. Theedge-terms-onlydiscretizationshowsno V orderproperty,asexpected,buttheavg-LSQschemeshowsasecond-orderconvergenceofdiscretizationerror. This resultisbelievedtobethefirsttoshoworderpropertiesfordiffusiononafamilyofagglomeratedmeshes. 10-3 PrimalGrid Agglomerate1 10-5 Agglomerate2 Agglomerate3 Error10-7 Agglomerate4 al u d si Re10-9 10-11 10-13 0 2 4 6 8 10 12 14 16 18 20 MultigridCycle Figure7. Multigridconvergenceforagglomeratefamilycomposedofthe129x129primalmeshanditscoarsenedagglomerates. Forthefineragglomeratefamily,multigridconvergenceisshowninFigure7usingtheavg-LSQdiscretizationon allgrids. MultilevelV(2,2)cyclesareusedwith2levelsonthecoarsestagglomerateand6levelsontheprimalmesh. Theinitialconditionsaretakenastheexactsolutionwitharandomlyperturbederroroneachgrid. Grid-independent convergenceisshownwithapproximatelyanorderofmagnitudereductioninresidualpercycle. 0.5 0.5 0.45 0.45 z z 0.4 0.4 0.5 0.55 0.6 0.65 0.5 0.55 0.6 0.65 x x (a)Agglomerationscheme1. (b)Agglomerationscheme2. Figure8. Interiorviewofagglomeratedgridsgeneratedfrom257x257element-basedgrid. Thegrid-dependentconvergenceofmultigridcycleswiththeedge-terms-onlyscheme(Tables4and5)isattributed 9of13 AmericanInstituteofAeronauticsandAstronautics to the poor coarse-grid correction, which is confirmed by quantitative analysis. Both ICG and IR were applied to a family of element-based grids (33x33, 65x65, 129x129, and 257x257) with coarser grids constructed in turn using eachofthetwoagglomerationschemes. ConvergenceoftheICG(3,3)schemewaslessthan0.1percycleinallcases, indicatingthemulticolorrelaxationisnotasourceofthegrid-dependentconvergence. TheresultsofapplyingIR(3,3) areshowninTable6withthecoarse-gridcorrectionusingtheavg-LSQandtheedge-terms-onlyschemesforeachof the two agglomeration schemes. The asymptotic convergence per cycle and the number of cycles to reach machine precisionresidualsfromtherandomperturbationappliedinitiallyaretabulated. Withthecoarse-gridcorrectionusing theavg-LSQscheme,theconvergenceratespercyclearegrid-independentandbetterthan0.21;thenumberofcycles toconvergeis12atmost. Withthecoarse-gridcorrectionusingtheedge-terms-onlyscheme, theconvergencerates andnumberofcyclestoconvergearegrid-dependent. Asintheactualcycleresultsshownpreviously,IRresultswiththeagglomerationscheme2showmoredependence onthegrid. Comparingthetwoforthe257x257parentgrid,agglomerationschemes1and2provideagglomeration ratiosof3.3and3.9,respectively;thus,scheme2isclosertotherequestedratioof4. Aninteriorsectionofthetwo agglomerationsisshowninFig.8.Scheme2resultsinapiecewisenear-regulargridwithadistinctskewanglenear45 deg;thegridfromscheme1isnoticeablylessregular. Themaximumskewangleishigherwithscheme1(70degas comparedto60deg);however,withscheme2,47percentofthenodeshavecontrolvolumeswithskewanglesgreater than40degascomparedtoonly23percentofthenodeswithscheme1. Itishypothesizedtheconsistentskewingof scheme 2 causes the increased degradation with the edge-terms-only discretization. In any event, the differences in convergencebetweenthetwoschemesarefarsmallerwithaconsistentdiscretizationonthecoarsegrid. AgglomerationScheme1 AgglomerationScheme2 Coarse-GridDiscretization Coarse-GridDiscretization Element-BasedGrid Avg-LSQ Edge-Terms-Only Avg-LSQ Edge-Terms-Only 33x33 0.11(9) 0.32(15) 0.14(10) 0.55(26) 65x65 0.13(10) 0.49(21) 0.15(10) 0.72(44) 129x129 0.20(11) 0.54(26) 0.21(12) >0.99(>200) 257x257 0.17(10) 0.61(28) 0.20(11) >0.99(>500) Table6. AsymptoticconvergencepercycleusingIR(3,3)analysis;cyclesareinparentheses. With a consistent coarse-grid discretization, such as the avg-LSQ scheme, we expect good 2-level convergence rates. With the avg-LSQ scheme, relaxation is implemented within a defect-correction setting in which only the linerizationoftheedge-terms-onlyschemeisretained. TheviabilityofthisapproachischeckedusingICG(3,3)for the family of grids agglomerated from the parent 257x257 grid. The convergence per cycle is shown in Table 7 for differentagglomerationlevels, wheretheelement-basedgridisdenotedaslevel0. Inallcases, theedge-terms-only schemeprovidesadequaterelaxation,yieldinganorderofmagnitudeconvergenceperICG(3,3)cycle. AgglomerationScheme AgglomerationLevel 1 2 4 0.06(8) 0.06(8) 3 0.06(8) 0.05(7) 2 0.07(8) 0.07(8) 1 0.06(8) 0.08(8) 0 0.07(8) 0.08(8) Table7. AsymptoticconvergencepercycleusingICG(3,3)analysisforfamilyofagglomeratedgrids;cyclesareinparentheses. 10of13 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.