ebook img

NASA Technical Reports Server (NTRS) 20080009470: Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion PDF

1.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20080009470: Terahertz lasers and amplifiers based on resonant optical phonon scattering to achieve population inversion

(12) United States Patent (io) Patent No.: US 7,158,545 B2 Hu et al. (45) Date of Patent: Jan. 2,2007 (54) TERAHERTZ LASERS AND AMPLIFIERS 2003/0219052 A1 * 11/2003 Goodhue et al. ............. 372/45 BASED ON RESONANT OPTICAL PHONON SCATTERING TO ACHIEVE POPULATION INVERSION OTHER PUBLICATIONS (75) Inventors: Qing Hu, Wellesley, MA (US); Benjamin S. Williams, Cambridge, MA Williams et al. “3.4 THz quantum cascade laser operating above liquid nitrogen temperature” Elec. Letter., vol. 39, No. 12 (Jun. 12, (US) 2003).* (73) Assignee: Massachusetts Institute of Kazarinov and Suris, “Possibility of the amplification of electro- Technology, Cambridge, MA (US) magnetic waves in a semiconductor and superlattice,” Sov. Phys. Semicond. 5, 707 (1971). ( * ) Notice: Subject to any disclaimer, the term of this Faist, et al., “Quantum cascade laser,” Science 264, 477 (1994). patent is extended or adjusted under 35 Beck, et al., “Continuous Wave Operations of a Mid-infrared U.S.C. 154(b) by 150 days. Semiconductor Laser at Room Temperature,” Science 295, 301 (2002). (21) Appl. No.: 10/661,831 Helm, et al., “Intersubband Emission from Semiconductor Superlat- tices Excited by Sequential Resonant Tunneling,” Phys. Rev. Lett. (22) Filed: Sep. 12, 2003 63, 74 (1989). (65) Prior Publication Data (Continued) US 200510058168 A1 Mar. 17, 2005 Primary Examiner-Minsun Oh Harvey Assistant Examiner-Tod T. Van Roy (51) Int. C1. (74) Attorney, Agent, or Firm-Thomas J. Engellenner; HOlS 5/00 (2006.01) Reza Mollaaghababa; Nutter McClennen & Fish LLP (52) U.S. C1. ...................................... 372/4; 372145.012 (58) Field of Classification Search ........... 372145.012, (57) ABSTRACT 37214 See application file for complete search history. The present invention provides quantum cascade lasers and (56) References Cited amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum U.S. PATENT DOCUMENTS cascade laser of the invention includes a semiconductor 5,457,709 A 10/1995 Capasso et al. heterostructure that provides a plurality of lasing modules 5,509,025 A 4/1996 Capasso et al. connected in series. Each lasing module includes a plurality 5,745,516 A 4/1998 Capasso et al. of quantum well structure that collectively generate at least 5,936,989 A 8/1999 Capasso et al. an upper lasing state, a lower lasing state, and a relaxation 6,144,679 A 11/2000 Herman et al. state such that the upper and the lower lasing states are 6,154,475 A 11/2000 Soref et al. separated by an energy corresponding to an optical fre- 6,188,477 B1 2/200 1 Pu et al. quency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant 6,370,219 B1 4/2002 Peale LO-phonon scattering of electrons into the relaxation state. 6,472,683 B1 10/2002 Li 6,563,622 B1 5/2003 Mueller et al. 6,829,269 B1 * 12/2004 Goodhue et al. ........ 372/43.01 28 Claims, 10 Drawing Sheets 46 . ..... US 7,158,545 B2 Page 2 ~ OTHER PUBLICATIONS Troccoli, et al., “Mid-infrared (n = 7.4 um) quantum cascade laser amplifier for high power single-mode emission and improved beam Kohler, et al., “Terehertz semiconductor-heterostmcture laser,” quality,” Appl. Phys. Lett. 80, 4103 (2002). Nature, 417, 156 (2002). Tredicucci et al. “High performance interminiband quantum cas- Mueller, et al., “2.5 THz Laser Local Oscillator for the EOS Chem cade lasers with graded superlattice,” Appl. Phys. Letter. 73, 2101 1 Satellite,” Proceedings of the Ninth International Space Terahertz (1998). Technology Symposium, pp. 563-572, Pasadena, CA, Mar. 17-19 Rochat, et al., “Low-threshold terahertz quantum-cascade lasers,” (1998). Appl. Phys. Lett. 81, 1381 (2002). Williams, et al., “Narrow-linewidth terahertz intersubband emission Williams, et al., “3.4-THz quantum cascade laser based on from three-level systems,” American Institute of Physics (1999). Longitudunal-optical-phonon scattering for depopulation,” Appl. Phys., Lett. 82, 1015 (2003). Also published in Virtual Journal of Williams and Hu, “Optimized energy separation for phonon scat- Nanoscale Science & Technology, 7(8) (2003). tering in three-level terahertz intersubband lasers,” American Insti- Unterrainer, et al., “Quantum cascade lasers with double metal- tute of Physics (2001). semiconductor waveguide resonators,” Appl. Phys. Lett. 80, 3060 Xu and Hu, “Electrically pumped tunable terahertz emitter based on (2002). intersubband transition,” American Institute of Physics (1997). Lee, et al., “Au-In bonding below the eutectic temperature,” IEEE Trans. Comp, Hybrids, Manuf. Technol. 16, 311 (1993). Faist, et al., “Bound-to-Continuum and Two-Phonon Resonance Wang, et al., “Die bonding with AdIn isothermal solidification Quantum-Cascade Lasers for High Duty Cycle, High-Temperature technique,” J. Electron. Mat. 29, 443 (2000). Operation,” IEEE (2002). Wang, et al., “Stable and shallow Pdln ohmic contancts to n-GaAs,” Appl. Phys. Lett. 56, 2129 (1990). * cited by examiner FIG. 1 3 I 3 12 24 h) h) 0 0 4 FIG. 2 A GaAs UNDOPED 81.9 A (29 MU CI ,, 0 A10.15Gao. 25As UNDOPED 25.4 A (9 MLI CI 0 Ga As UNDOPED 67.8 A (24 ML) A10. ~ s G ~2o5.A s UNDOPED 39.6 A (14 ML) REPEAT 175 nt GaAs SUBSTRATE GaAs 1.gx&m3 155.4 A (55 ML) TIMES Au 14 A$, 25As UNDOPED 25.4 A (9 ML) GaAs UNDOPED 98.9 A (35 ML) 15Ga0. 25As UNDOPED 56.5 A (20 ML) \tnt-“ U.S. Patent Jan. 2,2007 Sheet 2 of 10 US 7,158,545 B2 FIG. 3A 294 (500 nml . gGaO.g As (20 nm) (1000 nm) Au (120 nml I r GaAs RECEPTOR SUBSTRATE nt 1 I \ 32 34 FIG. 38 26 FIG. 3C I I n+ GaAs RECEPTOR SUBSTRATE U.S. Patent Jan. 2,2007 Sheet 3 of 10 US 7,158,545 B2 F I G . 30 AU Au 42 Au 40 1 I n+ GaAs RECEPTOR SUBSTRATE FIG. 3E TilAu {201200 nm) n+ GaAs RECEPTOR SUBSTRATE U.S. P: Ltent Jan. 2,2007 Sheet 4 of 10 US 7,158,545 B2 FIG. 4A 13 12 MODE INTENSITY - Re {E) (a.u.1 11 11 Au ACTIVE SEMI INSULATING GaAs SUBSTRATE REGION 10 FIG. 48 13 .. . . . . - . r-------i I l e I 12 MODE 'I INTENSITY - Re {&I (a.u.1 11 Au ACTIVE Au REGION 10 20 30 40 DISTANCE (nm) U.S. Patent Jan. 2,2007 Sheet 5 of 10 US 7,158,545 B2 FIG. 5 46 Egq=13.2 meV : m U.S. Patent Jan. 2,2007 Sheet 6 of 10 US 7,158,545 B2 FIG. 6 58 COOLANT 56 62 DEVICE DETECTOR MIRROR- I LOCK-IN AMPLIFIER 60 -: : BSJ 1 I I I I I I I [ 1 1 FTIR SPECTROMETER TRANSLATING/ MIRROR MIRROR POSITION r PC U.S. Patent Jan. 2,2007 Sheet 7 of 10 US 7,158,545 B2 FIG. 7 WAVELENGTH hm) 82 80 78 76 5- 70 K - - INTENSITY (a.u.1 0 3.65 3.7 3.75 3.8 3.85 3.9 3.95 FREQUENCY (THz) FIG. 8 68 nt GaAs U.S. Patent Jan. 2,2007 Sheet 8 of 10 US 7,158,545 B2 FIG. 9 \ CURRENT DENSITY (A/cm2) 0 200 400 600 800 io00 12 00 15 10 10 PEAK BIAS OPTICAL IVI POWER (mW) 5 5 0 CURRENT (AI r( 76 I I 0 50 1 TEMPERATURE (KI

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.