ebook img

NASA Technical Reports Server (NTRS) 20070032921: Measured Activities of Al and Ni in gamma-(Ni) and gamma'-(Ni)3Al in the Ni-Al-Pt System PDF

0.86 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20070032921: Measured Activities of Al and Ni in gamma-(Ni) and gamma'-(Ni)3Al in the Ni-Al-Pt System

Measured Activities of Al and Ni in γ-(Ni) and γ′-(Ni) Al 3 in the Ni-Al-Pt System Evan Copland NASA Glenn Research Center / Case Western Reserve University, Cleveland, Ohio 44135 Abstract Adding Pt to Ni-Al coatings is critical to achieving the required oxidation protection of Ni-based superalloys, but the nature of the “Pt effect” remains unresolved. This research provides a fundamental part of the answer by measuring the influence of Pt on the activities of Al and Ni in γ-(Ni), γ'-(Ni) Al and liquid in the Ni-Al-Pt system. Measurements have 3 been made at 25 compositions in the Ni-rich corner over the temperature range, T = 1400 – 1750 K, by the vapor pressure technique with a multiple effusion-cell mass spectrometer (multi-cell KEMS). These measurements clearly show adding Pt (for X < 0.25) decreases a(Al) while increasing a(Ni). This solution behavior supports the Pt idea that Pt increases Al transport to an alloy / Al O interface and also limits the 2 3 interaction between the coating and substrate alloys in the γ-(Ni) + γ'-(Ni) Al region. 3 This presentation will review the progress of this study. National Aeronautics and Space Administration measured a(Al) and a(Ni) in γ-(Ni) and γ′-(Ni) Al 3 in the Ni-Al-Pt System E. Copland Case Western Reserve University / NASA Glenn Research Center Cleveland, Ohio MS&T 2007: 9/19/2007 – COBO Center Detroit, Michigan, USA www.nasa.gov 2 motivation 1.5 γ+γ'-(20Pt) ∼10μm 1 ) 2 m β-(15Pt) c / β-(15Pt) γ+γ'-(20Pt) g m ( 0.5 t h g protective Al O formation ei 2 3 w β Δ 0 γ+γ' -0.5 0 100 200 300 400 500 1h cycles cyclic oxidation at 1150˚C in air β-(Pt) coatings (cid:116) γ + γ′-(Pt) coating / alloy S. Hayashi, S. Ford, D. Young, D. Sortelet, M. Besser, B. Gleeson, Acta Materialia, 2005, 53, 3319. 3 measured alloy compositions phase Ni Al Pt 91.7 8.3 ~ γ 85.0 15.0 ~ 80.5 19.5 ~ 82.2 14.8 2.0 87.9 10.1 2.0 80.0 15.0 5.0 76.4 13.7 9.9 80.9 9.1 10.0 70.0 12.0 18.0 75.2 6.9 17.9 Knuds6e5n.3 effus9io.8n-cel2l4.9 70.0 5.0 25.0 50.0 ~ 50.0 76.8 23.2 ~ γ′ 75.0 25.0 ~ 73.7 27.3 ~ 73.6 24.3 2.0 65.8 24.2 10.0 57.9 24.0 18.1 51.1 23.8 25.1 70.8 27.2 2.0 γ-(Ni), γ′-(Ni,Pt) Al and L equilibrium with Al O 3 2 3 63.8 26.4 9.8 54.9 27.0 18.1 (cid:116) Ni-Al-Pt-O system 48.1 26.7 25.2 ( at.% ±0.5 ) 4 thermodynamic measurements multi-cell KEMS pressure measurement + p(i) = I T S ik ik activity measurement p(i) I a(i) = = i po(i) Io i p(i) ⎡ p(cid:68)(Au)⎤ I S g(R) ⎡ p(cid:68)(Au)⎤ a(i) = ⋅⎢ ⎥ = i ⋅ Au ⋅ ⋅⎢ ⎥ p(cid:68)(Au) ⎢⎣ p(cid:68)(i) ⎥⎦ IA(cid:68)u Si g(A) ⎢⎣ p(cid:68)(i) ⎥⎦ ( i = Ni, Al, Al O ) 2 routine experiment… easy 5 reference states / reaction enthalpies measured IVTAN reference state reaction (298K) (kJmol-1) (kJmol-1) 363.5±2.8 { Au(s,l) + C } Au(s,l) = Au(g) 367.0±0.9 367.0±1.3* { Ni(s) + Al O } Ni(s) = Ni(g) 428.3±2.6 428.0±8.0 2 3 Al(s) = Al(g) 341.0±2.2 330.0±3.0 4/3Al(s) + 1/3Al O (s) = Al O(g) 414.2±3.6 409.9±55 2 3 2 { Al(l) + Al O } 2Al(s) + 3O(g) = Al O (s) ~ -3083.2 ±5 2 3 2 3 2Al(g) + O(g) = Al O(g) -1075.5±9.0 -1057.8±20.0 2 4Al(g) + Al O (s) = 3Al O(g) ~ ~ 2 3 2 * 3rd law measurements • pure-Al data is wrong,… use my second law data • Au(s,l) ref. (cid:140) T and p(i) standards, good check of experiment • measure 2 alloys in single experiment 6 sensitivity of measurements? Au(s,l) = Au(g) xNi + yAl + zPt = γ-(NiAlPt) T(K) T (K) 1450 1350 1250 1150 1750 1650 1550 1450 50 10-3 1 Go−Ho 40 FEF = T 298 T ) 30 L γ-(Ni) T u A I ( n Rl 20 l) i) - A 10-4 N F) a( a( E G 10 - ( Δ 0 -10 10-5 0.1 6.5 7.0 7.5 8.0 8.5 9.0 5.6 6.0 6.4 6.8 104/T (K-1) 104/T (K-1) Ni-12Al-18Pt [ ( ) ] d Δ −FEF −RlnI T Δ Ho (Au)= Au =362.2±1.7kJmol−1 Δ Gγ = RTlna(Al)=−124.4±0.8kJmol−1 sub 298 d1T mix Al = 6.018 ± 0.029eV/atom = -2.10 ± 0.015eV/atom Δ Ho (Au)=T[Δ(−FEF)−Rln p(Au)]=366.3±0.8kJmol−1 Δ Gγ = RTlna(Ni)=−4.5±0.9kJmol−1 sub 298 mix Ni = 6.086 ± 0.013eV/atom = -0.08 ± 0.015eV/atom R. C. Paule, J. Mandel: NBS Special Publication 260-19, 1970. 7 a(Al) vs 1/T in Ni-24Al-XPt T (K) 1750 1650 1550 1450 10-3 L −1 Δ H(Al)= −203±10kJmol mix γ' ) l A 10-4 ( a t P / i N g Ni-24Al-2Pt n i s Ni-24Al-10Pt a e Ni-24Al-18Pt r c Nci-o2n4Aglr-2u5ePnt t melting, T ≈ 1640K e d 10-5 5.6 6.0 6.4 6.8 4 -1 10 /T (K ) E. Copland, J. Phase Equil. Diff., 28(1) (2007) 38 8 a(Ni) vs 1/T in Ni-24Al-XPt T (K) 1750 1650 1550 1450 1350 1.0 γ' L ) l A ( a Ni-24Al-2Pt Ni-24Al-10Pt Ni-24Al-18Pt Ni-24Al-25Pt 0.1 5.6 6.0 6.4 6.8 7.2 4 -1 10 /T (K ) 9 hypo- / hyper-stoichiometric γ´ T (K) 1750 1650 1550 1450 10-3 L γ' ) l A ( a 10-4 Ni-24Al-10Pt Ni-27Al-10Pt ~55 kJmol-1 Ni-24Al-18Pt Ni-27Al-18Pt ~45 kJmol-1 -5 30 5.6 6.0 6.4 6.8 4 -1 10 /T (K ) 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.