Turbopump Design and Analysis Approach for Nuclear Thermal Rockets Shu-cheng S. Chen1, Joseph P. Veres2, and James E. Fittje3 1NASA Glenn Research Center, Cleveland, Ohio 44135 2Chief, Compressor Branch, NASA Glenn Research Center, Cleveland, Ohio 44135 3Analex Corporation, 1100 Apollo Drive, Brook Park, Ohio 44142 1(216) 433-3585, [email protected] Abstract. A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed. Keywords: Turbopump; Nuclear Thermal Rocket Engine; Conceptual Design; System Analysis. 1 h 3 e c j t a t i d o F el i r . F E p s i s w p s e e A t m 2 L 4 e a r, 41 at s k 5e 4 J 3nt i c d 41Ce hio s o n 4h O e 6 o c 0 y c , l R a Ohiear ark en 20 na l 2s, nd, Res ok P nfer 15, A ma Vere ClevelaGlenn 44135ve, Bro 06 Co ruary ittje and her P. Center, NASA d, Ohio ollo Dri AIF-20 M, Feb By s E. F h , p T p h chanA T N me n e arcanvel00 S e, a g ar s se BrCle11 at qu J o eor , d r esi cle 1n, J Glenn Rmpress poration esente buque p D Nu Che ASA ef, Co x Cor Pr Al ter N e n i m 1 Ch al e r . n C S 2 A o 3 u h f g c p n r a e o e h s b c e - R r u u h n n S T e l G 2 w o d l F el i F a s i t w a e A L D A p t a m b y r u u g P T o l o d o h t e s M e s D e D n p m b g r i u u s P T e D r e t p n e m C h u S c r p S a e o E s e b N R r n u n e T l G 3 ) I e o m VA ed R I h e ht d t e R v E it al h g S (Nuclear Engine System Simulation) Co Features and Capabilities oped by NASA/LeRC, SAIC, and Westinghouse in early 1990’s ongoing and future studies of NERVA-based NTR engine syst ge design efforts is based on the Expanded Liquid Engine Simulation (ELES) m modified to include solid-core reactor design models nghouse (responsible for the reactor subsystem during the NE m) provided reactor design models for a near-term NERVA-deri (ENABLER I) and an upgraded version of this engine (ENABL can model expander, gas generator and bleed cycles, along w dundant propellant pump feed systems machinery design options include multistage axial and tradition gal pumps is used for rapid, preliminary detailed design analysis ofboth t and key engine subsystems. The code designs the reactor, achinery, tankage, nozzle, lines and valves in terms of both wei formance/operating characteristics esearch Centerat Lewis Field NES Devel upport nd sta NESS rogra Westi rogra ystem NESS multi-re Turbo entrifu NESS eactor urbom nd per enn R • s a • p • p s • • c • r t a Gl 4 d l e i F s i w e h L t t a a P w o l F e l c ) y 1 C r e l b r a e n E d ( n a p x E r e t S n e S C E h N c r a e s e R n n e l G 5 n c al e fi d g g d ci el s u o n < e Fi e f r a t s p s ri d h n S wi r t y l g g n a e u H t Ce r Axi Hei esi r if at L a o D o e or f or e 7 s d c F ) m/ f a ti 1. ta x 0 l s > a n a 2 M 0 B li D g M 7. P 32 if ea er l b a i s 5 R ~ e r es ge 4 e ( in Un um ric ) f d b i a r o m N p D e e r d st c d a e u oi h m u e S p T E p 0 v c m (2 nd pe he c S on A Ma on I S i o u ps w/ p e t cifi ss d t et um ed p m Ti v e mi e nl m s x a bo Pu Ma le h Sp al) Ad mit if I ni Ba r l b er y g Li d Mi s a a l u xi es w uc d b ifu tia M ge w ve ter S T h A tag Allo Ind ge entr Par RP Sta elo Cur Cen ES bot (4 s um and Sta or C s a m e is e is is B ncy arch N gn ps m p ps f gn 2c n n d e se Desi Pum Maxi Pum Pum ~800 Desi 0.76 Turbi Turbi Spee Effici nn Re e • • • • • • • • l G 6 s e l d u ) l e n d i F g e p si h is s m e c w S n e e u D w L u p f e o at - f r l o O u D a b s V r d s k u n e a T a r e p ) P r e f n r B m l o e g O d c s n s n ( u s u ) i s a p al S o ce nd , Ma g r L e o u o n I r r a g u m b f e o i m n t r l f a e r t p i n t r d r t Tu Ce on ulti rus d rfo clu pe sys SS or racti n (M n Th Spee e Pe s, In Tem Sub al F o g n e , r E xi s ti si n bi g e o N A s a e o r a at ct er y pe ( Bypa figur of D Sucti d Tu of St w R Rea Cent e K ts: ump Ty urbine PA Con action pecific puts: ump an umber ass Flo etailed esearch u P T T Fr S t P N M D R p u n n O n I • • • • • • • • • e l G 7 d l e 1 Fi ) : 0 5 s y e) 0 2 wi ar ac 0,0 of Le t m p 2 o a S i f t o a m n R g d u i e s a e S e e p D r t f S A s a l a s h n n t n l S o a u e p io e v n cti o n tat re ur Le mo Su g t I pu tu ss st m c in m m a e u i ol o er Pr o hr p Co cif o te C mp r ati T m n pe C s d e R N u o S e e b P l y e T m a k e ( z s 2 l z S e ea er ha Are 1. ga bin mp No ter ESS r Cycl (Incr hamb Pa C zzle nd 11 entrifu d Tur al Pu ative ch Cen N e -I C k o a C n g r r d r 5 N a u e a pan able 00K 94.7 0:1 7kN gle mp ntrif gen Rese x n 7 8 0 6. n u e e i n E E 2 6 3 6 S P C R n • • • • • • • • • • e l G 8 d l e i F 2 4 7 0 7 6 6 % 5 3 is . 6 6 0 4 5 7. 0 3 9 w 1 . 9 0 3 4. . 5 2 . 8. e ts 11 11 23 20 53 12 30 68. 25 67 t L a u p t u O n g % 2 9 7 0 7 1 3 7 i 7 4 3 0 4 3 9. 0 5 8 s . . 9 0 3 . 5 0 3 . 2. e 66 11 30 20 34 7. 18 68. 19 39 D p m u d P e ) s e ) / a p g r S P S s k e S N) M c e ( ) nt k ( i g e W e NE evel ( Rise Specif of Sta Pa) w Rat rk (k y (cm) N) ch C L re n r k lo Wo nc er ( ar u e ( F t t e st s o b P e e h s Thru Pres RPM Sucti Num NPS Mass Shaft Effici Diam Weig n Re n e l G 9 d l e i F 2 3 7 4 4 2 2 s ts 11. 206 27.8 46 396 2 0.56 .29 70% 0.4 69. ewi u 1 2. 2 1 1 2 2 L t a p t u O n g 2 7 7 3 4 2 si 6.7 056 27.7 48 093 2 .27 .27 70% 15.8 72. e 6 2. 3 6 1 1 D e n i b r u T ) ) ) K s a / r S P p ( es kg te S N) (M ro ag e ( en NE evel (k Drop ture D Speed of St w Rat Ratio y (cm) N) rch C L re ra c r lo re nc er ( ea t u e fi e F u e et ht s us ss mp eci M mb ss ss ci m ig Re Thr Pre Te Sp RP Nu Ma Pre Effi Dia We n n e l G