ebook img

NASA Technical Reports Server (NTRS) 20060028188: Blunt Body Aerodynamics for Hypersonic Low Density Flows PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20060028188: Blunt Body Aerodynamics for Hypersonic Low Density Flows

Blunt Body Aerodynamics for Hypersonic Low Density Flows (cid:0) (cid:0) (cid:0) James N(cid:2) Moss (cid:3) Christopher E(cid:2) Glass (cid:3) and Francis A(cid:2) Greene (cid:0) NASA Langley Research Center(cid:2) MS (cid:3)(cid:4)(cid:5)A(cid:2) Hampton(cid:2) VA (cid:6)(cid:7)(cid:8)(cid:5)(cid:9)(cid:10)(cid:6)(cid:9)(cid:11)(cid:11) Abstract(cid:2) Numerical simulations are performed for the Apollo capsule from the hypersonic rare(cid:2)ed to the continuum regimes(cid:3) The focus is on (cid:4)ow conditions similar to those experienced by the Apollo (cid:5) Command Module during the high altitude portion of its reentry(cid:3) The present focus is to highlight some of the current activities that serve as a precursor for computational tool assessments that will be used to support the development of aerodynamic data bases for future capsule (cid:4)ight environments(cid:6) particularly those for theCrew Exploration Vehicle (cid:7)CEV(cid:8)(cid:3)Results for aerodynamic forces and momentsare presented that demonstrate their sensitivity to rarefaction(cid:9) that is(cid:6) free molecular to continuum conditions(cid:3) Also(cid:6) aerodynamic data are presented that shows their sensitivity to a range of reentry velocities(cid:6) encompassing conditions that include reentry from low Earth orbit(cid:6) lunar return(cid:6) and Mars return velocities (cid:7)(cid:10)(cid:3)(cid:10) to (cid:11)(cid:12) km(cid:13)s(cid:8)(cid:3) The rare(cid:2)ed results obtained with direct simulation Monte Carlo (cid:7)DSMC(cid:8) codes are anchored in the continuumregime with data fromNavier(cid:14)Stokes simulations(cid:3) INTRODUCTION Blunt(cid:2)body space capsules form much of the legacy of the international manned space programs(cid:3) With NASA(cid:4)s recently announced Constellation Program for exploring the moon(cid:5) Mars and beyond(cid:5) once again a blunt(cid:2)body con(cid:6)guration has been selected as the capsule for the Crew ExplorationVehicle (cid:7)CEV(cid:8)(cid:3) The CEV includes a capsule much like Apollo(cid:5) but larger(cid:5) and like Apollo will be attached to a service module for life supportandpropulsion(cid:3) MissionapplicationsoftheCEVincludethatofalow(cid:2)Earth(cid:2)orbit(cid:7)LEO(cid:8)versionwith a crew of six to the International Space Station(cid:5) a lunar version that would carry a crew of four(cid:5) and a Mars version that would carry a crew of six(cid:3) With commitments to evolve the CEV design(cid:7)s(cid:8) for LEO(cid:5) lunar(cid:5) and Mars missions(cid:5) aerothermodynamic databaseswillbegeneratedutilizingcomputationalandexperimental(cid:7)bothground(cid:2)basedand(cid:9)ight(cid:8)resources(cid:3) These new data bases along with an extensive capsule heritage(cid:5) particularly that from Apollo (cid:7)Refs(cid:3) (cid:10)(cid:11)(cid:12)(cid:13)(cid:14)(cid:5) for example(cid:8)(cid:5)willprovidethebasisforoptimizingtheCEV(cid:4)sdesign(cid:5)withparticularemphasisonsafety(cid:5)(cid:9)exibility(cid:5) and a(cid:15)ordability(cid:3) The current study expands on the results presented in Ref(cid:3) (cid:10)(cid:16)(cid:14) where the focus was on the aerodynamicsoftheApolloCommandModuleduringthetransitionalportionofitsreentry(cid:5)fromfreemolecular to continuum conditions(cid:3) New results included in the present study are solutions obtained with a di(cid:15)erent DSMC code (cid:10)(cid:17)(cid:14) and comparisons of the numerical simulations with (cid:9)ight and ground(cid:2)based measurements(cid:3) The primaryfocusis on(cid:9)owconditionssimilar tothoseexperienced bythe Apollo(cid:17)(cid:9)ight test(cid:5) with areentry (cid:0) velocity of (cid:18)(cid:3)(cid:17) km(cid:19)s at (cid:2)(cid:20)(cid:16) angle of attack(cid:3) Numerical simulations for the transitional (cid:9)ow regime are made with the (cid:21)D DSMC codes of Bird (cid:10)(cid:22)(cid:14) and LeBeau(cid:10)(cid:17)(cid:14) and for the continuum regimewith the (cid:21)D Navier(cid:2)Stokes (cid:7)NS(cid:8) codeof Gno(cid:15)o(cid:10)(cid:23)(cid:14)(cid:3) Results arepresentedthat showthe sensitivity ofthe capsuleaerodynamicsto a wide range of altitude or rarefaction conditions and the sensitivity of the aerodynamics to velocity and angle(cid:2)of(cid:2) attack variations at an altitude of (cid:11)(cid:24)(cid:16) km(cid:3) Also(cid:5) results from the DSMC and NS simulations show that the calculated aerodynamics are reasonably consistent near the (cid:18)(cid:16) km altitude conditions(cid:3) Lessons learned from this study can be applied to simulating other capsule con(cid:6)gurations(cid:5) such as the proposed CEV(cid:3) 1 NUMERICAL PROGRAMS AND MODEL PARAMETERS DSMC Analyses For the more rare(cid:6)ed (cid:9)ow conditions(cid:5) two DSMC codes(cid:5) DS(cid:21)V and DAC (cid:7)DSMC Analysis Code(cid:8)(cid:5) were used to both generate the data and provide a check on the consistency of the results(cid:3) The majority of these calculationsweremadewiththeDS(cid:21)VprogramofBird(cid:10)(cid:22)(cid:14)(cid:5)ageneral(cid:21)Dcodethatprovidesbothtime(cid:2)accurate unsteady(cid:9)owandtime(cid:2)averagedsteady(cid:9)owsimulations(cid:3) Inthecurrentstudy(cid:5)ascalarversionofthisprogram wasusedandallthepresentsimulationsweremadebyusinga(cid:21)(cid:3)(cid:20)GHzpersonalcomputerwithamemoryof(cid:20)(cid:3)(cid:24) GB(cid:3) The DAC programofLeBeau(cid:10)(cid:17)(cid:14) providesboth scalarand parallelprocessingoptions(cid:3) Parallelprocessing isaccomplishedbydomaindecompositionandtheparallelversionofDACisemployedinthecurrentstudy(cid:3) For both DSMC programs(cid:5) the molecular collisions are simulated with the variable hard sphere molecular model(cid:3) The Larsen(cid:2)Borgnakkestatistical model (cid:10)(cid:18)(cid:14) controls the energy exchange between kinetic and internal modes(cid:3) All simulationsareperformedby usinga(cid:6)ve(cid:2)speciesreactingair gasmodel while consideringenergyexchange between translation(cid:5)rotational(cid:5)andvibrationalmodes(cid:3) Also(cid:5) thesurfaceisassumedtobe noncatalyticandat a speci(cid:6)ed wall temperature(cid:3) As for gas(cid:2)surface interactions(cid:5) they are assumed to be di(cid:15)use(cid:5) with full energy accommodation(cid:3) An indicator of the resolution achieved in a DS(cid:21)V simulation is given by the ratio of the mean collision separation between collision partners to the local mean free path (cid:7)mcs(cid:2)mfp(cid:8)(cid:3) As demonstratedin Ref(cid:3) (cid:10)(cid:16)(cid:14)(cid:5) the averagevalue for this parameteroverthe computational domain should be approximately (cid:24)(cid:3)(cid:11)or lessto obtain grid resolved aerodynamics(cid:3) The total number of simulated molecules used in the current DS(cid:21)V simulations rangedfrom approximately(cid:11) to (cid:11)(cid:17) million(cid:5) and the grid adaption produced nominally (cid:20)(cid:24) simulated molecules per collision cell(cid:3) For the DAC code(cid:5) the user can implement a sequence of grid re(cid:6)nements of the two(cid:2)level Cartesian grid such that the cell size is small in relation to the local mean free path(cid:3) The current DAC simulations used between (cid:23) to (cid:13)(cid:17)(cid:24) million molecules(cid:5) depending on the altitude(cid:5) with the cell dimension equal to or less than the localmeanfreepath(cid:3) BothDSMC codesused the samede(cid:6)nition forthe Apollo surfacegeometry(cid:25) that is(cid:5) an unstructured grid consisting of (cid:11)(cid:18)(cid:11)(cid:20) points and (cid:21)(cid:22)(cid:11)(cid:23) triangles while making use of the problem symmetry such that the (cid:9)ow is computed about only half of the vehicle(cid:3) This surface resolution was deemed adequate after a calculation was made for a case with a much (cid:6)ner surface grid resoultion (cid:7)(cid:16)(cid:18)(cid:13)(cid:17) and (cid:11)(cid:11)(cid:5)(cid:11)(cid:22)(cid:23) points and triangles(cid:5) respectively(cid:8) and with a negligible change in results(cid:3) Navier(cid:2)Stokes Analyses Navier(cid:2)Stokesanalysesareperformedby usingthe LAURA computational(cid:9)uid dynamicscode (cid:10)(cid:23)(cid:14)(cid:3) LAURA is an upwind(cid:2)bias(cid:5) point(cid:2) or line(cid:2)implicit relaxation algorithm for obtaining the numerical solution to the Navier(cid:2)Stokes equations for three(cid:2)dimensional(cid:5) viscous(cid:5) hypersonic (cid:9)ows in thermochemical nonequilibrium(cid:3) LAURA hasboth thethin layerandfull NS options(cid:5)andboth options wereexercisedin the currentstudy(cid:3) All oftheLAURAsimulationsassumedthe(cid:9)owtobeareactinggasmixturewiththesurfaceboundaryconditions consistingofaconstantwalltemperature(cid:5)anoncatalyticsurface(cid:5)andnosliportemperaturejump(cid:3) Thevolume grid consists of (cid:20)(cid:13) blocks with a total of (cid:11)(cid:18)(cid:17)(cid:17)(cid:24)(cid:24)(cid:24) cells(cid:5) and in the direction normal to the wall(cid:5) there are (cid:23)(cid:24) cells(cid:5)whichcovertheregionfromthewalltotheouterboundary(cid:3) GridadaptionassuredthatthecellReynolds numbers adjacent to the wall were at a nominal value no greater than (cid:24)(cid:3)(cid:16) for the highest altitude (cid:7)(cid:18)(cid:16) km(cid:8) and (cid:16)(cid:3)(cid:24) for the lowest altitude (cid:7)(cid:17)(cid:16) km(cid:8)(cid:3) The structured surface grid consisted of (cid:20)(cid:13)(cid:16)(cid:22)(cid:17) cells(cid:3) To balance the computationalload(cid:5)calculationswereperformedon(cid:11)(cid:20)dualprocessor(cid:20)(cid:3)(cid:23)GHz Opteronworkstationswith one block assigned to each of the (cid:20)(cid:13) processors(cid:3) Solutions were considered converged when the surface properties became steady and changed little after additional integration cycles(cid:3) Free Molecular and Newtonian Analyses The free molecular (cid:7)FM(cid:8) and modi(cid:6)ed Newtonian (cid:7)MN(cid:8) results were obtained with the DACFREE code of R(cid:3) G(cid:3) Wilmoth (cid:7)private communication(cid:5) July (cid:20)(cid:24)(cid:24)(cid:16)(cid:8)(cid:3) DACFREE computes aerodynamic forces and moments on arbitrary bodies using standard free molecular and modi(cid:6)ed Newtonian methods(cid:3) This code can handle arbitrarygeometriesspeci(cid:6)ed as an unstructured collection of triangles(cid:5) and for the present study(cid:5) the surface grid was the same as that used in the DSMC simulations(cid:3) 2 CONDITIONS AND RESULTS Conditions Considerable resources were devoted to quantifying the impact of the aerothermodynamic environment on the Apollo Command Module during reentry(cid:5) particularly the thermal protection system(cid:3) Reference (cid:10)(cid:11)(cid:14) lists some of the reentryparametersfor the (cid:13) unmanned Apollo heat(cid:2)shield(cid:2)quali(cid:6)cation(cid:9)ight tests(cid:5) two at orbital entry velocities and two at superorbital entry velocities(cid:3) The current study focuses on an altitude range from (cid:0) (cid:20)(cid:24)(cid:24) to (cid:17)(cid:16) km at (cid:18)(cid:3)(cid:17) km(cid:19)s (cid:7)corresponding to the Apollo (cid:17) reentry condition(cid:8) and (cid:2)(cid:20)(cid:16) angle of attack(cid:5) for a range of incidence angles at an altitude of (cid:11)(cid:24)(cid:16) km(cid:5) and for a range of reentry velocities (cid:7)(cid:22)(cid:3)(cid:17)(cid:23) to (cid:11)(cid:16) km(cid:19)s(cid:8) at (cid:11)(cid:24)(cid:16) km altitude(cid:3) The axisymmetric geometry for the Apollo Command Module used in the present study is shown in Fig(cid:3) (cid:11)(cid:3) The Apollo capsule was (cid:9)own at an angle of attack while using an o(cid:15)set center of gravity (cid:7)cg(cid:8)(cid:5) where the cg coordinates used in the current study are listed in Fig(cid:3) (cid:11)(cid:3) When the pressuresandshearstressesareintegratedoverthe surface(cid:5)the resultantforceactsatthe capsule center(cid:2)of(cid:2)pressure(cid:7)cp(cid:8)(cid:3) Thetotalforcevectorcanberesolvedintocomponents(cid:5)andthenomenclatureusedfor the body (cid:7)axial(cid:5) CA(cid:5) and normal(cid:5)CN(cid:8) andvelocity(cid:7)drag(cid:5)CD(cid:5) and lift(cid:5) CL(cid:8) oriented coordinatesareasshown in Fig(cid:3) (cid:20)(cid:3) Y CL 3.4306 y CN 2 3Rs x 1 33 CD Rb Cm, cg Rn + cg + CA X 4 Ra Cm, 0 cp cg CL 5 Location x y s Db = 3.9116 1 0.3743 1.8368 1.8872 Rb = 1.9558 V∞ 2 0.5543 1.9558 2.1158 Rn = 4.6939 3 0.6608 1.9242 2.2284 Rs = 0.1956 4 3.3254 0.1938 5.4056 Ra = 0.2311 5 3.3406 0.0000 5.6355 cg 1.1455 0.1600 - Dimensions in m Xcp Fig(cid:3) (cid:11)(cid:3) Apollo outer mold line(cid:3) Fig(cid:3) (cid:20)(cid:3) Nomenclature for aerodynamic forces(cid:3) Free(cid:2)stream atmospheric conditions (cid:7)details given in Ref(cid:3) (cid:10)(cid:16)(cid:14)(cid:8) are based on the data of Jacchia (cid:10)(cid:11)(cid:24)(cid:14) (cid:7)an exospheric temperature of (cid:11)(cid:20)(cid:24)(cid:24) K(cid:8) for altitudes of (cid:18)(cid:24) km and above and on that of Ref(cid:3) (cid:10)(cid:11)(cid:11)(cid:14) for altitudes less than (cid:18)(cid:24) km(cid:3) The surface temperatures are assumed to be uniformly distributed at constant values based on stagnation point heating conditions as discussed in Ref(cid:3) (cid:10)(cid:16)(cid:14)(cid:3) The free(cid:2)stream Knudsen numbers listed in the (cid:6)gures are based on the free(cid:2)stream number density(cid:5) a characteristiclength of (cid:21)(cid:3)(cid:18)(cid:11)(cid:20)m (cid:7)maximum capsule (cid:2)(cid:0)(cid:2) diameter(cid:8)(cid:5) and a constant molecular diameter of (cid:21)(cid:3)(cid:22)(cid:23) x (cid:11)(cid:24) m(cid:3) E(cid:3)ects of Rarefaction Results presented in Fig(cid:3) (cid:21) provide an overall summary of the Apollo aerodynamics as obtained with the DSMC and NS programs(cid:3) Results are presented in terms of a hard sphere free(cid:2)stream Knudsen number with a coverage of approximately six orders of magnitude(cid:3) As shown previously (cid:10)(cid:11)(cid:20)(cid:14) for a related blunt body con(cid:6)guration(cid:5) the pressure contribution is fairly constant(cid:5) but the shear contribution increases with altitude such that the drag coe(cid:26)cient increases and the lift coe(cid:26)cient decreases(cid:3) As detailed in Ref(cid:3) (cid:10)(cid:16)(cid:14)(cid:5) the DS(cid:21)V results included in this (cid:6)gure are those that are grid resolved to an accuracy of probably (cid:21) percent or better(cid:3) Examinationofthe gridsensitivityresults(cid:10)(cid:16)(cid:14)providequalitativeinformationastothe e(cid:15)ect ofgridresolution on simulated aerodynamics(cid:25) that is(cid:5) poor volume grid resolution for the Apollo capsule resulted in an over prediction of the drag(cid:5) axial(cid:5) and normal force coe(cid:26)cients and an under prediction of the lift and lift(cid:2)to(cid:2)drag coe(cid:26)cients(cid:3) Sensitivity studies conducted with the NS calculations (cid:10)(cid:16)(cid:14) indicated that the aerodynamics were insensitive to ionization e(cid:15)ects(cid:25) that is(cid:5) the use of a (cid:16)(cid:2)species neutral gas model as used in all the DSMC simulations or 3 one that accounted for neutrals(cid:5) ions(cid:5) and electrons with a (cid:11)(cid:11)(cid:2)species gas model did not signi(cid:26)cantly a(cid:15)ect the results(cid:3) Furthermore(cid:5) it was shown that the NS results were insensitive to whether the thin(cid:2)layer or full NS equations were used at the lower altitude conditions (cid:7)(cid:23)(cid:16) km(cid:8)(cid:5) but other studies (cid:10)(cid:11)(cid:21)(cid:14) have shown that the full NS solutions provide higher (cid:6)delity results for the more rare(cid:6)ed conditions(cid:3) Also included in Fig(cid:3) (cid:21) are the new DAC results that provide grid resolved solutions to an altitude of (cid:18)(cid:16) km(cid:5) overlapping the NS results(cid:3) Di(cid:15)erences in the two DSMC sets of solutions are larger than expected(cid:5) and currentlyitisnotknownwhattheymightbeattributedto(cid:3) Perhapstheyarebecauseofsimulationorphysical modeldi(cid:15)erences(cid:5) orpossiblyuserimplementation(cid:3) Speci(cid:6)cally(cid:5) di(cid:15)erences inthetwosimulationsforcommon altitudes between (cid:11)(cid:11)(cid:24) to (cid:11)(cid:24)(cid:24) km are less than (cid:13) percent for drag(cid:5) lift(cid:5) axial(cid:5) and moment (cid:7)about the nose(cid:8) coe(cid:26)cients(cid:5) but (cid:22) percent for L(cid:19)D and as much as (cid:11)(cid:20) percent for the normal force coe(cid:26)cient(cid:3) However(cid:5) the DSMC and NS results (cid:7)overlap for DAC and extrapolated for DS(cid:21)V(cid:8) show generally consistent agreement in thevicinityof(cid:18)(cid:16)km(cid:5)orahardsphereKnudsennumberof(cid:24)(cid:3)(cid:24)(cid:11)(cid:13)(cid:3) Notethatrarefactione(cid:15)ectsarepresentat(cid:18)(cid:16) km and lower altitudes(cid:25) however(cid:5)the integrated e(cid:15)ect on the aerodynamics is apparently not that signi(cid:6)cant(cid:3) 2.0 0.5 5 0.05 65km 85 100 120 150 200 C L Alt.=65km 85 100 115 125 200 1.8 0.4 4 Cm,cg 0.00 L/D x CP 1.6 0.3 D 3 -0.05 CD DDLASAUC3VRA andL/ x,mCP Cm,cg 1.4 FM 0.2 CL 2 -0.10 x =1.1455m ycg=0.1600m 1.2 CD 0.1 1 cg -0.15 DS3V DAC LAURA 1.0 0 0 -0.20 10-5 10-4 10-3 10-2 10-1 100 101 102 10-5 10-4 10-3 10-2 10-1 100 101 102 Kn∞,D,HS Kn∞,D,HS Fig(cid:3) (cid:21)a(cid:3) Drag(cid:5) lift and L(cid:19)D coe(cid:26)cients(cid:3) Fig(cid:3) (cid:21)b(cid:3) Center of pressure and moment coe(cid:26)cients(cid:3) FIGURE (cid:3)(cid:2) E(cid:15)ect of rarefaction onaerodynamics as calculated with DSMC andNScodes(cid:3) Figure (cid:21)b details the movement of the center of pressure and the corresponding moment coe(cid:26)cient about the centerof gravityas afunction of Knudsennumber(cid:3) As the capsuledescends from (cid:20)(cid:24)(cid:24)to (cid:17)(cid:16)km(cid:5) the center ofpressureexperiencesasubstantial translationasit movesfrom aposition forwardof thecenter of gravityto one well aft(cid:3) The corresponding change in the moment coe(cid:26)cient is from a negative value to a small positive value(cid:3) E(cid:3)ects of Angle of Attack Figure (cid:13) presents results of the DS(cid:21)V simulations that show the dependence of the Apollo capsule aerody(cid:2) namics to variations in angle of attack at (cid:11)(cid:24)(cid:16) km altitude conditions and (cid:18)(cid:3)(cid:17) km(cid:19)s(cid:3) Figure (cid:13)a highlights the dependence of L(cid:19)D on incidence angle and also demonstrates its sensitivity to rarefaction by including the free molecular (cid:7)FM(cid:8) and modi(cid:6)ed Newtonian (cid:7)MN(cid:8) results(cid:3) The FM and MN results were generated with the DACFREE code at the (cid:20)(cid:24)(cid:24) km and (cid:23)(cid:16) km conditions (cid:7)free(cid:2)stream gas composition changes with altitude(cid:8)(cid:5) respectively(cid:3) Results for the center of pressure location and the moment coe(cid:26)cient about the o(cid:15)set center of gravity are presented in Fig(cid:3) (cid:13)b(cid:3) These simulations show that the stable trim point for the Apollo capsule at (cid:11)(cid:24)(cid:16) km altitude occurs at an incidence angle of (cid:2)(cid:11)(cid:17)(cid:13) degrees rather than the nominal (cid:2)(cid:20)(cid:16) degrees (cid:9)own by Apollo (cid:17)(cid:25) that is(cid:5) the capsule is statically unstable for much(cid:5) if not all(cid:5) of the transitional (cid:9)ow regime(cid:5) a result not that uncommon for capsules in the transitional rare(cid:6)ed regime(cid:3) 4 0.8 FM,Alt=200km 0.15 DS3V,Alt=105km MN,Alt=85km C 1.40 0.6 m,cg x ,m 0.10 CP 1.20 0.4 1.00 0.2 Stabletrimpoint 0.05 atα=-164o L/D 0.0 Cm,cg 0.80x,mCP -0.2 0.00 0.60 -0.4 0.40 -0.6 AV∞ref==91.62.k0m2/ms2 -0.05 xyccgg==10..11465050mm KAAVn∞lt.∞==,=D9H11S.620=.5k00m2k.0m0/s7m92 0.20 -0.8-180 -120 -60 0 60 120 180 -0.10-180 -120 -60 0 60 ref 120 1800.00 ,degrees α,degrees Fig(cid:3) (cid:13)a(cid:3) L(cid:19)D coe(cid:26)cients(cid:3) Fig(cid:3) (cid:13)b(cid:3) Center of pressure and moment coe(cid:26)cients(cid:3) FIGURE (cid:4)(cid:2) E(cid:15)ect of angle of attack onaerodynamics as calculated with DS(cid:16)V andDACFREEcodes(cid:3) E(cid:3)ects of Free(cid:2)Stream Velocity Toexaminethee(cid:15)ectsoffree(cid:2)streamvelocityvariations(cid:5)DS(cid:21)VsimulationsweremadefortheApollocapsule at an altitude of (cid:11)(cid:24)(cid:16) km and (cid:2)(cid:20)(cid:16) degrees incidence for (cid:16) free(cid:2)stream velocities ranging from (cid:22)(cid:3)(cid:22) to (cid:11)(cid:16) km(cid:19)s(cid:3) Four of the velocities correspond to the nominal re(cid:2)entry conditions of the (cid:13) unmanned Apollo quali(cid:6)cation (cid:9)ight tests (cid:10)(cid:11)(cid:14)(cid:3) The (cid:11)(cid:16) km(cid:19)s velocity is representative of the upper bounds for a Mars return mission(cid:3) Conse(cid:2) quently(cid:5) this range of entry velocities is inclusive of that for reentry from LEO(cid:5) lunar return(cid:5) and Mars return missions(cid:3) Results of the simulations for variations in free(cid:2)stream velocity show (cid:7)Fig(cid:3) (cid:16)(cid:8) that the changes in the aerodynamic coe(cid:26)cients with increasing velocity are similar to those incurred with increasing rarefaction(cid:25) that is(cid:5) the magnitude of the drag(cid:5) axial(cid:5) and normal force coe(cid:26)cients increases with increasing free(cid:2)stream velocity while the magnitude of the lift and lift(cid:2)to(cid:2)drag ratio coe(cid:26)cients decreases with increasing velocity(cid:3) These (cid:6)ndings are consistent with the correlations demonstrated by Wilhite et al(cid:3) (cid:10)(cid:11)(cid:13)(cid:14) (cid:7)Fig(cid:3) (cid:22)(cid:5) p (cid:11)(cid:22)(cid:20)(cid:8) for the Shuttle Orbiter axial(cid:2)forcecoe(cid:26)cients as a function of a viscous correlation parameter(cid:3) 15 1.8 0.4 C 1.6 D 0.3 D CL L/ CD1.4 nd a CL L/D 0.2 1.2 DS3V Alt = 105 km 1 0.1 6 8 10 12 14 16 V, km/s ∞ Fig(cid:3) (cid:16)(cid:3) E(cid:15)ect of velocity on aerodynamics(cid:3) Fig(cid:3) (cid:17)(cid:3) Flight(cid:5) computed(cid:5) and wind tunnel data(cid:3) 5 Comparison with Flight and Wind Tunnel Data Figure (cid:17) presents the results of the present calculations for the aerodynamic ratio of normal(cid:2)to(cid:2)axial force coe(cid:26)cients as a function of altitude(cid:3) Also included in this (cid:6)gure are the (cid:9)ight data for the (cid:7)Apollo(cid:2)Saturn(cid:8) AS(cid:2)(cid:20)(cid:24)(cid:20)unmanned(cid:9)ighttest(cid:7)relativeentryvelocityof(cid:23)(cid:3)(cid:20)(cid:18)km(cid:19)s(cid:8)andwindtunnelmeasurementsmadeatthe ArnoldEngineeringDevelopmentCenter(cid:7)AEDC(cid:8)(cid:10)(cid:11)(cid:16)(cid:14)(cid:3) Asindicated inFig(cid:3) (cid:22)aofRef(cid:3)(cid:10)(cid:11)(cid:16)(cid:14)(cid:5)theangleofattack (cid:0) formostoftheAS(cid:2)(cid:20)(cid:24)(cid:20)reentrywaslessthanthe(cid:2)(cid:20)(cid:16) experiencedbytheApollo(cid:17)mission(cid:3) The(cid:9)ightinferred(cid:10)(cid:13)(cid:14) (cid:0) anglesofattackforAS(cid:2)(cid:20)(cid:24)(cid:20)werenear(cid:2)(cid:20)(cid:16) foraltitudesof(cid:11)(cid:11)(cid:24)to(cid:11)(cid:24)(cid:24)km(cid:5)andthen decreasedtoapproximately (cid:0) (cid:2)(cid:11)(cid:22)(cid:3)(cid:16) at (cid:18)(cid:20) km and remained near this value as the capsule descended through (cid:17)(cid:24) km(cid:3) When the NS results for the Apollo (cid:17) mission are adjusted to account for the AS(cid:2)(cid:20)(cid:24)(cid:20) (cid:9)ight attitude(cid:5) then good agreement between (cid:9)ight and computation is obtained(cid:3) An approximate adjustment is made based on the DS(cid:21)V results at the (cid:0) (cid:0) (cid:11)(cid:24)(cid:16) km altitude condition in which a reduction in angle of attack from (cid:2)(cid:20)(cid:16) to (cid:2)(cid:11)(cid:22)(cid:3)(cid:16) produces a (cid:21)(cid:11) percent reductioninthevalueofCN(cid:19)CA(cid:3) When thiscorrectionfactoris applied tothe (cid:13)calculatedvaluesat altitudes below (cid:18)(cid:20) km(cid:5) the results are displayed by the dashed line in Fig(cid:3) (cid:17)(cid:5) with generally good agreement between (cid:0) (cid:0) (cid:9)ight and calculated results for two sets of conditions(cid:27) (cid:11)(cid:11)(cid:24) to (cid:11)(cid:24)(cid:24) km at (cid:2)(cid:20)(cid:16) and (cid:18)(cid:20) to (cid:17)(cid:24) km at (cid:2)(cid:11)(cid:22)(cid:3)(cid:16) (cid:3) CONCLUSIONS Signi(cid:6)cant (cid:6)ndings of the present investigation are(cid:27) (cid:7)(cid:11)(cid:8) the current numerical results are shown to be consistent with (cid:9)ight data for normal(cid:2)to(cid:2)axial force ratios(cid:5) (cid:7)(cid:20)(cid:8) the Apollo Command Module is statically unstable for much of the rare(cid:6)ed (cid:9)ow regime(cid:5) (cid:7)(cid:21)(cid:8) changes in the aerodynamic coe(cid:26)cients with increasing velocity have the same trend as that for increasing rarefaction(cid:5) (cid:7)(cid:13)(cid:8) the DSMC simulations are shown to be reasonably consistent based on the results from two di(cid:15)erent codes(cid:5) and (cid:7)(cid:16)(cid:8) close agreement in aerodynamics is obtained with DSMC and NS programs for the (cid:18)(cid:16) km altitude condition(cid:25) thereby(cid:5) providing a capability for calculating hypersonic blunt body aerodynamics for the spectrum of (cid:9)ows that include free molecular(cid:5) transitional(cid:5) and continuum conditions without relying on bridging functions(cid:3) REFERENCES (cid:11)(cid:3) Lee(cid:6) D(cid:3) B(cid:3)(cid:6) (cid:17)Apollo Experience Report(cid:18)AerothermodynamicsEvaluation(cid:6)(cid:19) NASATN D(cid:14)(cid:5)(cid:20)(cid:21)(cid:16)(cid:6) June (cid:11)(cid:22)(cid:10)(cid:23)(cid:3) (cid:23)(cid:3) Lee(cid:6) D(cid:3)B(cid:3)andGoodrich(cid:6) W(cid:3)D(cid:3)(cid:6)(cid:17)The AerothermodynamicEnvironmentoftheApolloCommandModuleDuring Superorbital Entry(cid:6)(cid:19)NASATN D(cid:14)(cid:5)(cid:10)(cid:22)(cid:23)(cid:6) April (cid:11)(cid:22)(cid:10)(cid:23)(cid:3) (cid:16)(cid:3) Lee(cid:6)D(cid:3)B(cid:3)(cid:6) Bertin(cid:6)J(cid:3)J(cid:3)(cid:6) andGoodrich(cid:6) W(cid:3)D(cid:3)(cid:6)(cid:17)Heat(cid:14)TransferRateandPressureMeasurementsObtainedDuring Apollo Orbital Entries(cid:6)(cid:19) NASATN D(cid:14)(cid:5)(cid:24)(cid:23)(cid:20)(cid:6) April(cid:11)(cid:22)(cid:10)(cid:24)(cid:3) (cid:21)(cid:3) Hillje(cid:6) E(cid:3) R(cid:3)(cid:6) (cid:17)Entry Flight AerodynamicsfromApollo Mission AS(cid:14)(cid:23)(cid:24)(cid:23)(cid:6)(cid:19) NASATN D(cid:14)(cid:21)(cid:11)(cid:20)(cid:12)(cid:6) October(cid:11)(cid:22)(cid:5)(cid:10)(cid:3) (cid:12)(cid:3) Moss(cid:6) J(cid:3)N(cid:3)(cid:6)Glass(cid:6) C(cid:3)G(cid:3)(cid:6)andGreene(cid:6)F(cid:3)A(cid:3)(cid:6)(cid:17)DSMCSimulationsofApolloCapsuleAerodynamicsforHypersonic Rare(cid:2)edConditions(cid:6)(cid:19) AIAAPaper (cid:23)(cid:24)(cid:24)(cid:5)(cid:14)(cid:16)(cid:12)(cid:10)(cid:10)(cid:6) June (cid:23)(cid:24)(cid:24)(cid:5)(cid:3) (cid:5)(cid:3) LeBeau(cid:6) G(cid:3) J(cid:3)(cid:6) (cid:17)AParallel Implementationof the Direct SimulationMonte Carlo Method(cid:6)(cid:19) Computer Methods in Applied Mechanics and Engineering(cid:2) Parallel Computational Methods for Flow Simulation and Modeling(cid:6)Vol(cid:3)(cid:11)(cid:10)(cid:21)(cid:6) (cid:11)(cid:22)(cid:22)(cid:22)(cid:6) pp(cid:3) (cid:16)(cid:11)(cid:22)(cid:14)(cid:16)(cid:16)(cid:10)(cid:3) (cid:10)(cid:3) Bird(cid:6) G(cid:3) A(cid:3)(cid:6) Visual DSMC Program for Three(cid:10)Dimensional Flows(cid:3) The DS(cid:16)V Program User(cid:25)s Guide(cid:6) Version (cid:11)(cid:3)(cid:23)(cid:6) March (cid:23)(cid:24)(cid:24)(cid:12)(cid:3) (cid:20)(cid:3) Cheatwood(cid:6) F(cid:3) M(cid:3)(cid:6) and Gno(cid:15)o(cid:6) P(cid:3) A(cid:3)(cid:6) (cid:17)User(cid:25)s Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (cid:7)LAURA(cid:8)(cid:6)(cid:19)NASATM (cid:21)(cid:5)(cid:10)(cid:21)(cid:6) April(cid:11)(cid:22)(cid:22)(cid:5)(cid:3) (cid:22)(cid:3) Borgnakke(cid:6) C(cid:3)(cid:6) and Larsen(cid:6) P(cid:3) S(cid:3)(cid:6) (cid:17)Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture(cid:6)(cid:19) Journal of Computational Physics(cid:6) Vol(cid:3) (cid:11)(cid:20)(cid:6) No(cid:3) (cid:21)(cid:6) (cid:11)(cid:22)(cid:10)(cid:12)(cid:6) pp(cid:3) (cid:21)(cid:24)(cid:12)(cid:14)(cid:21)(cid:23)(cid:24)(cid:3) (cid:11)(cid:24)(cid:3) Jacchia(cid:6)L(cid:3)G(cid:3)(cid:6)(cid:17)ThermosphericTemperature(cid:6)Density(cid:6)andComposition(cid:26) NewModels(cid:6)(cid:19)SmithsonianAstrophysical Observatory(cid:6)Cambridge(cid:6) MA(cid:6) Special Rept(cid:3)(cid:16)(cid:10)(cid:12)(cid:6) March (cid:11)(cid:22)(cid:10)(cid:10)(cid:3) (cid:11)(cid:11)(cid:3) Anon(cid:6)(cid:17)U(cid:3) S(cid:3) StandardAtmosphere(cid:6)(cid:11)(cid:22)(cid:5)(cid:23)(cid:6)(cid:19) Dec(cid:3) (cid:11)(cid:22)(cid:5)(cid:23)(cid:3) (cid:11)(cid:23)(cid:3) Celenligil(cid:6) M(cid:3) C(cid:3)(cid:6) Moss(cid:6) J(cid:3) N(cid:3)(cid:6) and Blanchard(cid:6) R(cid:3) C(cid:3)(cid:6) (cid:17)Three(cid:14)Dimensional Rare(cid:2)ed Flow Simulations for the Aeroassist Flight ExperimentVehicle(cid:6)(cid:19) AIAA Journal(cid:6) Vol(cid:3) (cid:23)(cid:22)(cid:6) No(cid:3)(cid:11)(cid:6) (cid:11)(cid:22)(cid:22)(cid:11)(cid:6) pp(cid:3) (cid:12)(cid:23)(cid:14)(cid:12)(cid:10)(cid:3) (cid:11)(cid:16)(cid:3) Moss(cid:6) J(cid:3) N(cid:3)(cid:6) Glass(cid:6) C(cid:3) G(cid:3)(cid:6) Hollis(cid:6) B(cid:3) R(cid:3)(cid:6) and Van Norman(cid:6) J(cid:3) W(cid:3)(cid:6) (cid:17)Low(cid:14)Density Aerothermodynamics of the In(cid:4)atable Re(cid:14)entryVehicleExperiment(cid:7)IRVE(cid:8)(cid:6)(cid:19) AIAAPaper (cid:23)(cid:24)(cid:24)(cid:5)(cid:14)(cid:11)(cid:11)(cid:20)(cid:22)(cid:6) Jan(cid:3) (cid:23)(cid:24)(cid:24)(cid:5)(cid:3) (cid:11)(cid:21)(cid:3) Wilhite(cid:6) A(cid:3) W(cid:3)(cid:6) Arrington(cid:6) J(cid:3) P(cid:3)(cid:6) and McCandless(cid:6) R(cid:3) S(cid:3)(cid:6) (cid:17)Performance Aerodynamics of Aeroassisted Orbital Transfer Vehicles(cid:6)(cid:19) Progress in Astronautics and Aeronautics(cid:6) Vol(cid:3) (cid:22)(cid:5)(cid:6) Thermal Design of Aeroassisted Orbital Transfer Vehicles(cid:6) edited byH(cid:3)F(cid:3) Nelson(cid:6) AIAA(cid:6)New York(cid:6) (cid:11)(cid:22)(cid:20)(cid:12)(cid:6) pp(cid:3)(cid:11)(cid:5)(cid:12)(cid:14)(cid:11)(cid:20)(cid:12)(cid:3) (cid:11)(cid:12)(cid:3) Boylan(cid:6)D(cid:3)E(cid:3)andGri(cid:27)th(cid:6)B(cid:3)J(cid:3)(cid:17)SimulationoftheApolloCommandModuleAerodynamicsatRe(cid:14)EntryAltitudes(cid:6)(cid:19) Proceedings ofthe Third NationalConference onAerospace Meteorology(cid:6) AmericanMeteorological Society(cid:6)Boston(cid:6) May (cid:5)(cid:14)(cid:22)(cid:6) (cid:11)(cid:22)(cid:5)(cid:20)(cid:6) pp(cid:3)(cid:16)(cid:10)(cid:24)(cid:14)(cid:16)(cid:10)(cid:20)(cid:3) 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.