ebook img

NASA Technical Reports Server (NTRS) 20060020688: Cascaded Perforates as One-Dimensional, Bulk Absorbers PDF

3.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NASA Technical Reports Server (NTRS) 20060020688: Cascaded Perforates as One-Dimensional, Bulk Absorbers

Cascaded Perforates as One-Dimensional, Bulk Absorbers T.L.Parrott(cid:0) and M.G.Jones(cid:134) NASALangleyResearch Center,Hampton,VA 23681-2199,USA POROUScell honeycomblinersforaircraft enginenacellesofferthe possibility of exploitingextendedre- actioneffectstoimprovelinerattenuationbandwidthasgenerallyattributedtotheperformanceofbulk absorbers. This paperdescribesan analyticalprocedure, startingwith an impedanceprediction modelfor asingleperforatedplate, toestimatethebulk-absorberparametersforacascadeofsuchperforates-a(cid:2)rst stepto modelinga porouswall honeycombstructure. The objectiveis to build con(cid:2)dencein a lumpedele- mentimpedancemodel,whenappliedtoauniformly-spacedsetofporousplatestopredictits(cid:147)bulk(cid:148)absorber properties. Themodel is basedupona modi(cid:2)edversionof the two-parameter(cid:3)ow resistancemodelof the formA(cid:1) BVinc,whereAandBarephysics-based,semi-empiricalparametersthatareadjustedtoprovidean optimum (cid:2)t toa compositedatasetfromthreeplate porositiesof 2.5, 5and10%. Thecompositedatasetis achievedbyreformulatingthetwo-parameter(cid:3)owresistancemodelintoa(cid:147)reducedpressuredropcoef(cid:2)cient(cid:148) dependencyon perforatehole Reynoldsnumber. The resulting impedancemodel is employed to calculate surfaceimpedancespectraforNand2N-layerperforatecascades.Thewell-knowntwo-thicknessmethodfor experimentaldeterminationof bulk-absorberparametersisthenappliedtothese(cid:147)synthesized(cid:148)datasetsto predictthecharacteristicimpedanceandpropagationconstantfortheperforatecascades. Theseresultsare thencomparedwithexperimentalresultsreportedinacompanionpaper. Nomenclature A empiricalconstant A semi-empiricalparametergroup, a(cid:181)t 2rcsC d2 D (cid:2) (cid:3)(cid:5)(cid:4)(cid:6)(cid:2) (cid:3) B empiricalconstant,s/m B semi-empiricalparametergroup, k k 2c sC 2 ,s/m i e D (cid:2) (cid:7) (cid:3)(cid:8)(cid:4)(cid:9)(cid:2) (cid:2) (cid:3) (cid:3) a laminar(cid:3)owfrictionfactor a optimizedlaminar(cid:3)owconstant opt c soundspeed,m/s C holedischargecoef(cid:2)cient D C optimizedholedischargecoef(cid:2)cient Dopt (cid:10) d holediameter,m C aerodynamicpressuredropcoef(cid:2)cient,Dp rV2 pd (cid:4)(cid:6)(cid:2) ¥(cid:3) f frequency,Hz k entrancelosscoef(cid:2)cient i k exitlosscoef(cid:2)cient e k wavenumber,m/s k k wavevectorcompoentsinx-andy-directions,m/s x y (cid:11) L cavitylength,m cav p pressure,Pa p RMSincidentacousticparticlevelocity,m/s rms Pr Prandtlnumber (cid:12) SeniorResearchScientist,Research&TechnologyDirectorate,StructuralAcousticsBranch,MailStop463;[email protected]. (cid:134)SeniorResearchScientist,Research&TechnologyDirectorate,StructuralAcousticsBranch,MailStop463;[email protected], SeniormemberofAIAA. 1of20 AmericanInstituteofAeronauticsandAstronautics Re holeReynoldsnumber, d n V h h (cid:13) (cid:14) (cid:15) R (cid:3)owresistance, Dp V ,kg/(m2s) f inc (cid:13) (cid:14) (cid:15) t perforatethickness(holelength),m V holevelocity,V s,m/s h inc (cid:14) V incidentvelocity,m/s inc V RMSacousticparticlevelocity,m/s rms V free-streamvelocity,m/s ¥ e classicalendcorrectionfactor8d 3p (cid:14)(cid:9)(cid:13) (cid:15) s perforateopenarearatio(porosity) (cid:181) dynamicviscosityofair,kg/(ms) n kinematicviscosityofair,m2/s Dp pressuredropacrossperforate,kg/(ms2) r airdensity,kg/m3 q normalized,speci(cid:2)cacousticresistance c normalized,speci(cid:2)cacousticreactance c normalizedmassreactance m w angularfrequency,2pf,rad/s z normalized,speci(cid:2)cacousticimpedance z normalized,estimated,speci(cid:2)cacousticimpedance e z normalized,backplate(termination)impedance ter Abbreviations: dB decibels EVRR ExtendedVelocityRangeRaylometer NIT NormalIncidenceImpedanceTube NLF NonlinearFactor RMS root-mean-square Note:Theeiwt signconventionisusedthroughoutthispaper. I. Introduction ADVANCESinmaterialstechnologycontinuetoprovidenewpossibilitiesforimprovedacousticlinerdesignssuit- able to reduce noise emissions from aircraft engine nacelles. Historically, the simplest acoustic liners for this application have been single-layer, perforate-over-honeycomb core structures. Such structures are locally-reacting, andconsequentlyare pronetoexhibitstronglyresonantbehaviorthatlimitstheirattenuationbandwidth. Thisband- widthlimitationhas been alleviatedsomewhat by incorporatingmultiplelayers, whichadds weightand mechanical complexity. Itiswellknownthatbulkabsorbingmaterials, suchas foamand(cid:2)berglass, haverelativelyhighabsorp- tionbandwidths. Thiscanbeattributedtotheirdistributeddissipationandextended reaction,whichtendstosubdue depth-relatedresonances. However,formechanicalandmaintenancereasons,bulkabsorbershavenotbeenacceptable foraircraftenginenacelleapplications. With recent advances in fabrication technologies, it is now possible to implement speci(cid:2)ed wall porosity into honeycombcellwalls. Thisfabricationtechnologyallowsconventionalperforate-over-honeycombdesignstotakeon speci(cid:2)edextendedreactionbehaviorwithoutcomplicatingthebasicmechanical design. Thus, thelinerdesignercan implementdesigntrade-offsbetweentheconventionallocally-reacting,resonantabsorbersandtheextended-reacting behavior associated with bulk absorbers. The physics underlying these differences is illustratedin the sketches of (cid:2)gure1. Sketch (a) of (cid:2)gure 1 illustratesthe essential physics of a perforate-over-honeycomb liner. Inside the liner, the impervious cell walls block any wave motionparallel to the faceplate, leaving only the vertical component free to propagate. At the (cid:2)rst cavity resonance (quarter wavelength), the particle velocity is distributed approximately as 2of20 AmericanInstituteofAeronauticsandAstronautics a) b) c) Figure1. Resonant,bulkand(cid:147)hybrid(cid:148)absorbers. shownbytheshadedparabolicregion,i.e. zeroatthebackplateandmaximumnearthefaceplate. Soundabsorption isduetoviscousandvortical(cid:3)owsgeneratedinandaroundthefaceplateholes. These(cid:3)owsaregreatlyenhancedat resonance because of thefaceplate constriction. As the excitationfrequency moves from belowresonance toabove resonance, theparticlevelocityanti-resonanceplanemoves fromabove thefaceplate, throughthefaceplateandinto the cavity. Maximum absorption occurs as this plane moves through the faceplate. This (cid:147)migration(cid:148) of the anti- resonanceplaneacrossthefaceplateandintothecavity(andfurtherawayfromtheconcentratedfaceplateresistance) withincreasingfrequency,isonewaytoexplaintherelativelynarrowabsorptionbandwidthassociatedwiththistype absorber. The presence of impervious cell walls tends to accentuate the resonance condition by constraining the oscillatory(cid:3)uid(cid:3)owtothefaceplate. Sketch(b)of(cid:2)gure1illustratestheessentialphysicsofanextended-reacting,orbulkabsorber. Thereisusuallya resonanceresponseforthistypeoflineralso,butitissubduedbytwocircumstancesnotpresentforthelocally-reacting liner. First,theresistanceto(cid:3)uidmotionisnolongerconcentratedinthefaceplate, butisdistributedthroughoutthe bulkabsorber. Second,theabsenceofthecellwallallows(cid:3)uidmotionparalleltothelinerfaceplate. Thisdistributed dissipationtendstobemoreviscouscontrolledbecausethereisnohighconcentrationofparticlevelocitythroughthe faceplateholes(unless,ofcourse,aporousfaceplateisadded-anecessityinmanypracticalapplications).Incontrast withthelocally-reactingresonantstructuredepictedinsketch(a),itisclearthatastheexcitationfrequencyincreases past resonance, the particle velocity anti-resonance plane (now associated with the vertical component of the wave vector) migrates throughthe absorber surface and intothe bulkmaterial, where the relatively highparticle velocity region stillencounters resistance, resultingin signi(cid:2)cant absorption. In summary, the relatively narrow bandwidth absorptionofthelocally-reacting,resonantabsorberisassociatedwiththethinregionofresistancethroughwhichthe particlevelocityanti-nodemigratesasitmoves closertothecavitybackplatewithincreasingfrequency. Incontrast, the relatively wide absorption bandwidth of the bulk absorber is associated with the distributed resistance that the particle velocity anti-node continues to encounter as it migrates toward the back plate, as the excitation frequency increasespastthedepth-relatedresonance. Forapplicationsthatrequirebothbroadbandandtonalnoisesuppression,thetheporoushoneycombliner(porous cellwalls)isa(cid:147)hybridliner(cid:148)thatshareskeyfeaturesofboththeresonantandbulkabsorbers. However,this(cid:147)hybridiza- tion(cid:148)needstobeaccomplishedinaprescribedmanner. Sketch(c)of(cid:2)gure1illustratesthispossibilitybymeansof a porouscell wallstructure. Inthe studydescribed here, we aspire totreat the structureas a one-dimensional, bulk absorberwhoseacousticbehaviorisdescribedbyacharacteristicimpedance andpropagationconstant. Ifsuchisthe case, then the classical analysis1,2 for duct propagationwith extended-reacting liners becomes available to provide ef(cid:2)cientparametric studiestoassess themeritofthese poroushoneycombstructuresas ductliners. The more com- putationallyintense numerical propagationmodels can thenbe reserved fora (cid:2)nal (cid:147)honing(cid:148)of a speci(cid:2)c duct liner 3of20 AmericanInstituteofAeronauticsandAstronautics design. Thus,theobjectiveofthisinvestigationistoexplorethepossibilityofcharacterizingcascaded perforatesasa (cid:147)bulk(cid:148)absorber. a) b) c) Figure2. Evolutionofconventionalto(cid:147)designer(cid:148)bulkabsorber. A suf(cid:2)cientlyaccurate predictivemodel forthebulkpropertiesofcascaded lumpedelements wouldsupportthe developmentof(cid:147)designer(cid:148)bulkmaterials.Figure2illustratestheevolutionoftheconventionalresonantlinerstructure (sketch(a)),toa(cid:147)hybrid(cid:148)liner(sketch(b)),and(cid:2)nallytoafull(cid:3)edged,3-Dbulkabsorberwithindependentlyspeci(cid:2)ed bulkpropertiesforeachofitsthreedimensions(sketch(c)). Inacompanionpaper3 forthisconference,anexperimentisdescribedthatvalidatesthehypothesisthatacascade ofuniformly-spacedperforatesexhibitbulkabsorberbehavior, atleastover thefrequencyrangestudiedhere. There remainsthetaskofdevelopingapredictivemodelofsuf(cid:2)cientaccuracytoprovideparametricevaluationsofbulkliner concepts. Thispaperdescribesa(cid:2)rststepinthisdirection. This investigation is limited to an attempt to predict the (cid:147)bulk(cid:148) properties of an N-layer cascade of uniformly- spaced perforates. It is based on a two-parameter impedance prediction model (TPIP) for a single perforate, as described in references 2 and 3. The basis of the TPIP model is a semi-empirical characterization of the perforate (cid:3)owresistance thatismanipulatedintoanon-dimensionalformtocollapsethe(cid:3)owresistanceforthethreedifferent perforateporosities(2.5,5and10%)toonecurve. Thesemi-empiricalconstantsappearinginthismodel(laminar(cid:3)ow constant, a, and ori(cid:2)ce discharge coef(cid:2)cient, C ) are optimized(least square (cid:2)t) toall three data sets when plotted D versus holeReynoldsnumber, Re . These optimizedvaluesofaandC are thenincorporatedintotheTPIP model. h D TheTPIPmodelisthenvalidatedagainstmeasuredimpedancespectraforasingleperforate-over-cavitycon(cid:2)guration, forallthreeplateporositiesandforSPL’sof100,120,and140dB.Finally,predictedimpedancespectrafromtheTPIP modelarecalculatedforuniformly-spaced,3,6and12-layerperforatecascades. Thesecalculatedimpedancespectra are takenas simulated data forthe two-thicknessmethodto determine the bulkproperties. To estimate the ef(cid:2)cacy ofthese(cid:147)synthesizeddata,(cid:148)theeducedcharacteristicimpedanceandpropagationconstantspectraarethencompared withtheirexperimentalcounterparts,asreportedinthecompanionpaperforthisconference.3 II. FlowResistance Model FLOWresistancemeasurementscanbemostsimplydescribedbyanempiricaldata(cid:2)toftheform R f A BV (1) inc rc (cid:17) (cid:16) whereR is(cid:3)owresistance,de(cid:2)nedaspressuredrop,Dp,acrossaporoussheetdividedbythenormalincident,(cid:3)uid f velocity,V . A and B inthisequationare treated strictlyas empirical constants. Inequation2 below, theA and B inc arereplacedbysemi-empiricalparametergroups(A-parametergroupandB-parametergroup)thatformthebasisofa semi-empiricalpredictionmodel;4,5i.e., R a(cid:181)t k k f i e rc 2rc sCD d2 (cid:17) 2(cid:18)c s(cid:17) CD(cid:19)2Vinc (2) (cid:16) (cid:18) (cid:19) (cid:18) (cid:19) wheretheA-parameterconstituentsincludeperforateholegeometryand(cid:3)uidproperties,andtheB-parameteraccounts 4of20 AmericanInstituteofAeronauticsandAstronautics fortheturbulence(nonlinear)contribution.Thedissipationmechanismsinthismodelarefundamentallyrestrictedto a single-hole,inthatnointeractionbetween adjacentholesis explicitlyincludedandthehole-to-hole(cid:3)uiddynamic behaviorisassumed invariant. Asidefromthe geometricconstituentsof Aand B, values forthe(cid:3)uiddynamiccon- stituents:thelaminarfrictioncoef(cid:2)cient,a,theori(cid:2)cedischargecoef(cid:2)cient,C ,andtheentrance/exitlosscoef(cid:2)cients, D k k ,are initiallyassignedidealizedvalues. Theseare adjustedfornon-idealcircumstances withtheaidof(cid:3)owre- i e sis(cid:20)tance tests. The basis oftheviscousterm isfoundinlaminarpipe(cid:3)owpipetheory,6 as evidencedbytheexplicit appearance of the hole geometry and the (cid:3)uid viscosity, (cid:181). Hole geometry is notablyabsent from the second term thatdealswithdissipation(vortices)exteriortothehole. Initial(ordefault)valuesforthefourempiricalconstantsa, C ,k andk aresettotheidealizedvaluesof64,0.76,0.5and0.5,respectively. Ofthesefour,aandC aresubject D i e D to adjustment for the limitedscope of this investigation. The entrance and exit loss coef(cid:2)cients, k k , which enter i e (cid:20) the model as k k , are associated with distortionof (cid:3)ow streamlines on approach to, and exit from, the ori(cid:2)ces. i e (cid:21) Consequently,theyaredependentuponholeseparation. Adjustmentstok k wouldsuggesthole-to-holeinteraction, i e (cid:20) whichisassumednegligiblefortheperforateholeseparationsstudiedhere. The no-hole-interactionrestriction on the (cid:3)ow resistance model can be emphasized by multiplyingequation 2 by perforate porosityand replacing the incidentvelocity by the in-holeReynoldsnumber, i.e. Re dV ns . h inc (cid:22)(cid:24)(cid:23) (cid:25)(cid:5)(cid:26) (cid:23) (cid:25) Equation2thenreducestoaformwhereplateporosityisisolatedontheleft-handsideasamultiplyingfactorofR . f Thecombination,s R rc ,isdesignatedasthe(cid:147)reduced(cid:3)owresistance.(cid:148) f (cid:23) (cid:26) (cid:23) (cid:25)(cid:5)(cid:25) Rf an (cid:27) t ki ke (cid:27) n src (cid:22) 2cCDd d(cid:28) (cid:21) (cid:23) 2c(cid:21) CD2 (cid:25) d(cid:28) Reh (3) Anotherwaytodescribe(cid:3)owresistancedataisbywayoftheaerodynamicpressuredragcoef(cid:2)cient. Thiscoef(cid:2)cient, C , is de(cid:2)ned as Dp V , where Dp isthe pressure dropacross theobjectof interest(e.g., aerodynamic dragon an pd ¥ airfoil)andrV2 ispro(cid:26) portionaltothefree-streamdynamicpressure;i.e., theaerodynamicQ. Inthepresentcontext, ¥ the pressure drag is taken to be the pressure drop, Dp, across the plate due to the streaming (cid:3)ow through it. The free-streamvelocity,V ,thusbecomestheincidentvelocityontheplate,V . Fromthede(cid:2)nitionof(cid:3)owresistanceas ¥ inc Dp V ,equation3canbefurthermanipulatedtoframethepressuredrop,Dp,acrosstheplateasC Dp rV2 . inc pd inc (cid:26) (cid:22) (cid:26) (cid:23) (cid:25) Inthiscase,thesquareofporosityappearsasamultiplyingfactorontheleft-handsideandpermitstheholeReynolds numbertoappearinitsmore(cid:147)natural(cid:148)settingasaninversemultiplyingfactorontheviscoustermwhiletheturbulence contributionis constant. MultiplyingC by s2 again reduces all three plate porosities to a single curve as shown pd in equation 4. The quantity s2C is thus called the (cid:147)reduced pressure drop coef(cid:2)cient.(cid:148) Both equations 3 and 4 pd are equally valid ways of characterizing the physics of (cid:3)uid streaming through a thin, perforated plate under the assumption thatthe only (cid:3)uiddynamic variable of importance is hole Reynoldsnumber. If (cid:3)uid compressibilityis deemedsigni(cid:2)cant,thefunctionalitywouldincludeholeMachnumber. Foracousticexcitations,thisisgenerallynot thecase. a (cid:27) t (cid:27) 1 k k s2Cpd (cid:22) 2CD d(cid:28) Reh(cid:28) (cid:21) (cid:23) i2(cid:21)CD2e(cid:25) (4) III. PerforateImpedance ModelDevelopment A. PerforateTestSpecimens THEperforated-platetestspecimensweredesignedtomaketheviscoustermthedominantcontributortoresistance atmoderateSPL’s. Tothisend,aholelength-to-diameterratioof5wastargeted. Fourdifferentsetsoftestspeci- mens(differinginporosityonly)werefabricatedfromtype307stainlesssteel. Allplateshadactiveareadimensions of 508 508mm and a nominalthickness of 1.27 mm. The nominallycircular holes were targeted to a diameter (cid:29) (cid:30) (cid:29) of 0.254mm, and were implemented bymeans of laser drillingina uniform, equilateraltriangularpattern over the activeareas. Holespacingwastargetedtoporositiesof2.5,5and10%withrespectiveholespacingof36,18,and9 holediameters. Withtheexceptionofthe2.5%porosityset,upto64platesfromagivensetcouldbecascaded with uniformspacing tosimulate a one-dimensional(cid:147)lumpedelement bulkabsorber.(cid:148) Furtherdetailsoftheexperimental arrangementformeasuringimpedanceofthetestspecimensaregiveninthecompanionpaper.3 Figure 3 shows electron-micrographimages of fourtypicalhole geometries. On thisscale, (cid:147)hole circularity(cid:148)is clearly a relativeterm. The holeedge roughnesswasnotablygreateronthe laser beam exitside thanonentryside. Arepresentativeentrysideisshownintheupperlefthandimage. Theremainingthreeimages haveedge roughness featuresasdelimitedbytheconcentriccircles. Theseroughnessfeaturesarelikelyassociatedwiththeholeexitsides. (Entry/exitsideswerenotdocumentedbythemanufacturer.) Ontheseimages, holediametervariabilityrangesfrom 5of20 AmericanInstituteofAeronauticsandAstronautics 0.29 mm 0.31 mm 0.32 mm 0.31 mm Figure3. Electron-micrographimagesoffourtypicalholegeometries. nearly zero up to 15% for the targeted diameter. This is consistent with 24 measurements of hole diameter, taken from similar electron-micrograph images, to obtain a mean hole diameter of 0.304 mm, or about 20% greater than the targeted value. This mean hole diameter, as derived from electron-micrograph images, was used to correct the targeted (nominal)values. Thus, the nominal porositiesof 2.5, 5 and 10% become 3.6, 7.2 and 14%, respectively. Also,baseduponmeasurements, thenominalplatethicknessof1.27mmwascorrectedto1.22mmandthenominal holediameter-to-lengthratiowascorrectedfrom5to4. These(cid:147)actual(cid:148)geometricparametersareusedthroughoutthe datareductionproceduresandanalysisthatfollow;however,tosimplifyresultspresentation,the(cid:147)tags(cid:148)of2.5%,5% and10%areretainedinall(cid:2)gures. Itisevidentfromtheimagesin(cid:2)gure3that(cid:147)holeedgeroughness(cid:148)variesdramaticallybetweenwhatisbelievedto bethebeamentryside(relativelyroundandsmoothedges)andtheexitside(relativelyout-of-roundandragged). Plate orientationrelativetotheincidentsoundwasnottakenintoaccount,andwasassumedrandomforboth(cid:3)owresistance andacousticimpedancemeasurements. Toareasonableapproximationfortonalexcitation,theparticlevelocityperiod wouldbe expected tobetime-symmetric(i.e., equaltimegoingeitherdirectionthroughahole). Consequently,hole end-to-end asymmetry would be expected to (cid:147)average out(cid:148) insofar as acoustic impedance is concerned, but might not be expected to do so for the (cid:3)ow resistance (i.e., (cid:3)ow resistance is orientation sensitive). However, up to (cid:2)ve (cid:3)owresistancetestsconductedondifferentplatesofthesameporosity(randomlychosenfromthesetof64)failedto demonstrateconsistentdivergencebetweenthetwodatasets. Thus, itwasconcludedthatplateorientation(i.e., hole end-to-endasymmetry)hasnoeffect. Itwouldnotbesurprising,however,to(cid:2)ndthatholeedgeroughness,andother departuresfromtheidealgeometryassumed intheimpedance model, have a signi(cid:2)cant(cid:3)uiddynamiceffect. Thus, adjustmentstotheclassicalidealizationsembeddedinthetwo-parameterimpedancemodelaretobeanticipated. B. PerforateFlowResistanceMeasurements FLOW resistance measurements were conductedontheLangley ExtendedVelocityRange Raylometer(EVRR)as depictedbythesketchof(cid:2)gure4. The(cid:3)owpathoftheraylometerissimilartothatofablow-downwindtunnel, witha design emphasis on (cid:3)ow qualityat the incidentside of test sample. Metered air is diffusedintoa thermally insulated plenum chamber equipped with a turbulence dampening honeycomb mesh and three layers of wire-mesh screen. The(cid:3)owexitstheplenumthrougha28:1contractionintoashortsectionof51mmdiameterductcontaining acombinationpitot-staticpressureandtotaltemperatureprobe. Flowexitsfromtheshortductintoatwo-piece(cid:147)test section(cid:148) duct that holdsthe test sample and an array of 80 staticpressure ports(spaced 6 mm apart), arranged in a spiralingpatternoneithersideofthesample(see(cid:2)g4). Fromthetestsection,the(cid:3)owisdiffusedtotheatmosphere. The apparatus is designed to accommodate an incident-on-samplevelocity range of 1 mm/s to 5 m/s. Eight mass- (cid:3)owcontrollersareusedtoachieve consistentaccuracy over this5000:1velocityrange. Directaero-thermodynamic measurements obtained in the short duct, upstream of the sample are used to relate mass (cid:3)ows to average incident velocitiesonthesample. 6of20 AmericanInstituteofAeronauticsandAstronautics Figure4. SketchofLangleyExtendedVelocityRangeRaylometer(EVRR). The EVRRoperationiscontrolledbya dedicatedpersonalcomputer. Fromaprogrammedsequence oftargeted, cross-section averaged incident velocities and the resulting pressure drops across the sample (calculated from an extrapolationoflinearregressionstotheupstreamanddownstreamstaticpressuremeasurements),the(cid:3)owresistance pro(cid:2)leofthesampleisautomaticallydetermined. Biaserrorwasaddressed inthedesignoftheEVRRasa measurement systemusingcomponenterrortolerances as per manufacture’s speci(cid:2)cations. Component errors were combined according to a procedure recommended by Coleman.7 This cumulative bias error from all subsystems was estimated to be about 1% of the measured (cid:3)ow resistance. PrecisionerrorhasnotbeensystematicallydocumentedfortheEVRR;however,table1showstheresults foralimitedstudythatarespeci(cid:2)ctothistest.Fiverandomlychosenplatesfromeachporositygroup(2.5,5,and10%) weretestedatnominalincidentvelocitiesof200,1050and2000mm/s. Minimumandmaximumpercentdeviations from mean values of the respective normalized (cid:3)ow resistances are shown in the last two columns. These results containbothmeasurement precisionerror and plate-to-platevariability,withoutregard toplateorientation. Mostof theerrorshownintable1isbelievedattributabletoplate-to-platevariability. C. PerforateFlowResistancePro(cid:2)les MEASURED (cid:3)owresistance pro(cid:2)les(normalized(cid:3)owresistance versus incidentvelocity)forthe2.5, 5and10% plate porosities are shown in (cid:2)gure 5 along with least square (cid:2)ts of the two-parameter, empirical model as prescribed by equation1. To withinthe graphicalresolution, data scatter relative to theirrespective (cid:2)ts is nil, with the exception of the 2.5% data set (blue symbols and curve). The single outlierat the incident velocity of 3.8 m/s islikelymodi(cid:2)eddue tocompressibilityassociated withhighholevelocity(about106m/s)forthislowestporosity plate. Asecond(cid:2)t(red),withthispointexcluded,ismuchmoreinlinewiththeremainingdatapoints.Someindustry practitionerstakethemeasured (cid:3)owresistance at105cm/sec as thenominallinear(cid:3)owresistance, accompanied by aso-callednonlinearfactor(NLF)computedastheratioof(cid:3)owresistanceat200cm/stothatat20cm/s. Intable2, these quantities are listed for the three perforates (computed from (cid:2)ts on A and B, enclosed by parentheses), and from (cid:2)ts using the physics-based parameters, a and C (withoutparentheses - to be discussed later). The asterisk D indicatesvaluesfromthe2.5%datasetwiththeoutlierdatapointincluded.Excludingtheoutliervalue,thereisclose 7of20 AmericanInstituteofAeronauticsandAstronautics Table1. PercentDeviationfromMean(5Samples) PlatePorosity,% AveVel,mm/s AveR rc MinR rc MaxR rc MinError,% MaxError,% f f f (cid:31) (cid:31) (cid:31) 200 1.64 1.46 1.74 -10.8 6.1 2.5 1050 4.40 3.79 5.04 -13.9 14.4 1994 7.59 6.30 8.84 -17.0 16.5 200 0.52 0.49 0.53 -5.1 3.2 5 1051 1.13 1.04 1.18 -8.1 4.2 2002 1.74 1.58 1.83 -9.2 4.8 200 0.23 0.22 0.26 -6.4 12.3 10 1051 0.38 0.36 0.44 -5.6 15.1 2004 0.55 0.50 0.63 -9.1 12.8 30 25 2.5% Data 2.5% mData Rf 20 5% Data rc 10% Data 15 2.5% Fit 2.5% mFit 10 5% Fit 10% Fit 5 0 0 2 4 6 Velocity, m/s Figure5. Empirical(cid:2)tstomeasured(cid:3)owresistancepro(cid:2)les. agreement between the (cid:2)ts on the purely empirical parameters A and B and the on the physics based parameters a andC . However, thereisnotexact agreement. Thesmalldifferencesapparentlyre(cid:3)ectthefactthatthe(cid:2)tonC is D D nonlinear.Asisevident,inclusionoftheoutlierat3.8m/sdistortsboththenominalresistancevalueandtheNLF.The NLF’sof3.8and2.7forthe5%and10%plates,respectively, are tobe comparedwiththemostlinearof(cid:2)bermetal productswithNLF’s rangingfrom1.1to2.5. The targeted holelength-to-diameterratioof5(actualvalueof4)did notachieve thedegreeoflinearitydesired(due,inpart,toanactualC thatwaslessthantheidealizedvalueof0.76 D by about 30%). Consequently, the goal of achieving linear acoustic resistance values well withinthe measurement (cid:147)comfortrange(cid:148)oftheLangleyNITcapabilitywasonlymarginallyachieved. Table2. Plateporosityand(cid:3)owresistanceestimatesfrom(cid:2)tstoequation1 PlatePorosity Rf at105cm/s NonlinearFactor rc 2.5% 4.3(5.4)* 5.3(7.5)* 5% 1.3(1.2) 3.8(3.9) 10% 0.4(0.4) 2.7(2.5) Adif(cid:2)cultyariseswhenthesimpleempirical(cid:2)ts,depictedin(cid:2)gure5,areusedforestimatingthelimitingextent ofthenominallinearresistanceregionfor(cid:3)owresistancedatadescribedonthebasisofatwo-parametermodel. This isevidentatthelowincidentvelocityrange(lessthanabout0.2m/s)in(cid:2)gure5,whereanattemptismade tode(cid:2)ne the transition from viscous to turbulence-controlled resistance by means of the relatively high density of incident 8of20 AmericanInstituteofAeronauticsandAstronautics 1.0 2.5% Data 5% Data 0.8 10% Data Model Rf s rc 0.6 0.4 0.2 0.0 1 10 100 1000 10000 Hole Reynolds Number Figure6. Reduced(cid:3)owresistancepro(cid:2)le. 1000 2.5% Data 5% Data 10% Data 100 Model s2Cpd 10 1 1 10 100 1000 10000 Hole Reynolds Number Figure7. Reducedpressuredropcoef(cid:2)cientpro(cid:2)le. velocities. On a linear scale, these more closely spaced velocity pointsprovide littleinsightintothe nature of this transitionregion. In (cid:2)gure6, threesteps are takentohelpclarifythe contributionsfromthe viscousand turbulence terms in equation1. First, a logscale isused tobringfocus tothe low incidentvelocityrange. Second, the purely empirical parameters (A and B) are replaced by their semi-empirical counterparts to allow the plate porosity to be isolatedasamultiplyingfactoronthe(cid:3)owresistance(asperequation2). Finally,theaverageincidentvelocityonthe samplehasbeenreplacedbyanaverage in-holeReynoldsnumber. Theef(cid:2)cacy ofthisprocedureisthatitallowsall three plate porositiestobe collapsed toa cluster aroundone curve. This collapsed data representationis called the (cid:147)reduced(cid:3)owresistance.(cid:148) Itisaresultofhavingchosentheholesinallthreeplatestohave thesameholelength-to- diameterratio. Theaboveprocedureispursuedonestepfurtherin(cid:2)gure7,wherein(cid:3)owresistancehasbeenreplaced bya(cid:147)reducedpressuredrop(cid:148)coef(cid:2)cientacrossthesampleasperequation3. Again,thedatafromallthreeplatesare expectedtoclusteraroundasinglecurve. Figure6showsreduced(cid:3)owresistance,s R rc ,plottedversusholeReynoldsnumber,alongwithacomposite, f ! "(cid:5)" leastsquares(cid:2)ttothecombinedthreedatasets(solidcurve). Notethatthecomposite(cid:2)texcludestheholeReynolds numbervalue at2100because ofthe conjecturedcompressibilityeffect discussed earlier (the3.8m/s velocitypoint for the 2.5% data in (cid:2)gure 5). The (cid:147)stretching out(cid:148) of the low range Reynolds numbers shows that the reduced (cid:3)ow resistance suffers relativelylittlenonlinearityforhole Reynolds numbers less than about100 as ittakes about six doublingsof Reynolds number (from 1.5 to 96) to double the reduced resistance. Above 100, transitionto the 9of20 AmericanInstituteofAeronauticsandAstronautics turbulence-dominatedB-term (see equation1) begins. Inthis region, a singledoublingfrom500 to1000generates a 2.5-foldincrease in reduced (cid:3)ow resistance. Unlikethe empirical (cid:2)ts of (cid:2)gure 5, the composite (cid:2)t of (cid:2)gure 6 is performed on the laminar friction and the discharge coef(cid:2)cients (a and C ), the (cid:3)uid dynamic constituents of the D parametergroups(AandB). Whilethis(cid:2)tislinearwithrespecttoa,itisnotlinearwithrespecttoC . Furthermore, D the aandC cannot be adjustedindependently. (This isnotthe case forthe empirical(cid:2)t on A and B.) This means D thereisnouniqueoptimumforaandC . Although(cid:147)engineeringjudgment(cid:148)canbeemployedtoprioritize,orweight, D optimalchoices for a andC , these optionswere not pursued here. Instead, a straightforwardmathematical (cid:2)tting D routinewasusedtocalculate(cid:147)optimum(cid:148)values. Consequently,nophysicalmeaningshouldbeattachedtothevalues computed inthismanner. The least squares (cid:2)toptimumvalues for aandC , usingthismodel, were determined to D be51and0.58,respectively. Oneadvantageofemployingthisformofdataanalysisistoachieveasinglecomposite modelthat(cid:147)averagesout(cid:148)thenuancesinthethreedatasets(aswellasanyplate-to-platevariabilityduetohole-to-hole interaction).Itdoesnottakeintoaccount,however,theplate-to-platevariabilityaspresentedintable1. Figure7showsalog-logplotofthereducedpressuredropcoef(cid:2)cientdata,togetherwiththecorrespondingmodel (cid:2)t,asdevelopedinequation4. Again,thedatacollapseisjudgedtobeverygoodtowithinthelimitsofmeasurement errorandvariabilityoftheholefabricationprocess. Themodel(cid:2)ttothecompositedatasetsproducesoptimumvalues of50and0.56foraandC ,respectively. Inthismodel(cid:2)t,notwithstandingtheremovaloftheoutlierat2100,thenext D highesthole-Reynoldsnumberforthe2.5%data(bluesymbols)appearstobiastheasymptotic(orB-termdominated) partofthemodel(cid:2)ttohighervaluesofthereducedpressuredropcoef(cid:2)cient. ThisisborneoutbythefactthatC anda D optimumvaluesof50and0.56forthismodel(cid:2)tare2and3.5%smallerthantheirrespectivecounterparts,respectively, forthereduced(cid:3)owresistancemodel(cid:2)t. SensitivitystudieswiththeTPIPmodeldeterminedthatthesedifferencesdid notmakeasigni(cid:2)cantimpactontheTPIPmodelcomparisonwithmeasuredimpedancespectra. Therefore,thechoice ofa 50andC 056were adoptedintheTPIP model,mainlybecause thelinearregion(cid:2)tforthereduced opt Dopt # $ # % pressuredropcoef(cid:2)cientseemstohavesomewhatlessbiasthandidthereduced(cid:3)owresistancemodel(cid:2)t. Theseminor differencesinoptimumvaluesfora andC arebelievedtore(cid:3)ectthedifferencesinthetwonon-dimensional opt Drmopt $ characterizationsofthe(cid:3)owresistance asexpressed inequations3and4;i.e., directproportionalityinonecase and inverse proportionalityin the other case. These tend to emphasize different aspects of the pressure drop across a perforatesubjected tonormallyincident(cid:3)ow. The arguments presentedhere are forthepurposeof pointingoutthe potentialvalueinprovidingbothviewpoints(i.e., reduced(cid:3)owresistance andreduced pressuredropcoef(cid:2)cient) for interpretingthe(cid:3)uidphysicsoflaminarandturbulent(cid:3)owthroughthinperforates. D. Two-ParameterImpedancePrediction(TPIP)Model THE frequency-domain impedance prediction model (TPIP) is described by Kraft4 and Motsinger.5 Modi(cid:2)ed versionsofthisgeneric,semi-empiricalmodelhavebeenusedbyindustryforyearstodesignlinersforfrequencies uptoabout10kHz. Amodi(cid:2)edversionofTPIPisusedherein. Thisversionusestheoptimizedvaluesofthelaminar (cid:3)ow friction factor, a , and hole discharge coef(cid:2)cient, C as computed from the composite (cid:2)t to the reduced opt Dopt $ pressure drop coef(cid:2)cient model for the perforated plates (equation 4), as discussed previously. These values for a andC are taken to be 50 and 0.56, respectively (as compared to the classical values 64 and 0.76). A key opt Dopt $ assumption in the TPIP model is the equating of (cid:3)ow resistance from equation 1 to the acoustic resistance of the perforate. Thisresultsinthereplacement ofV bytheRMSacousticparticlevelocity,V (dueacousticexcitation inc rms alone in the absence of grazing or bias (cid:3)ow), throughthe perforate. The physical basis for this assumption is that the plate is suf(cid:2)ciently thin (relative to the acoustic wavelength), and the time scale of particle velocity change is suf(cid:2)cientlysmall,thatitcan beregardedas quasi-steady. Itisnotatallclearthattheassumptioniswarrantedwhen vorticity-generateddissipationbecomes asigni(cid:2)cantcontributor. Bymakingtheperforateholet d suf(cid:2)cientlyhigh, & thissourceofnonlinearitycanbemasked,tosomeextent,bytheviscouscontribution,andthustheaboveassumption becomeslessofanissue. Massreactanceisincludedintheperforatemodelintheusualway.4,5 Severalvariationson theclassical endcorrectionswere consideredtoaccount fortheadded mass atthe holeexits; however, theclassical end correction of e 8d 3p was chosen as providinga generally reasonable (cid:2)t to the data. Only tone-at-a-time # &(cid:9)’ ( impedancespectraarecomputedforthe2.5,5and10%perforatesovera49.5mmdepthbackingcavity,forincident SPL’sof100,120and140dB.Thebackingcavityismodeledbothasapurelyreactivechamber, cot wL c ,oras cav ) ’ & ( acavitywithahighbackplateimpedance,z ,toaccountforanobserved(cid:147)spill-out(cid:148)effectduetoananti-resonanceat ter 3500Hz. Basedonevaluationswithmultiplechoicesofimpedance,thisimpedancewaschosentobe 160p w 103 ’ & (+* rc(80rcat1000Hz). TheTPIPmodelwasimplementedinaMathematicacodeforwhichtherelevantequationsare asfollows: 10of20 AmericanInstituteofAeronauticsandAstronautics

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.